Мощный импульсный металлоискатель. Мощный металлоискатель Pirat своими руками. Устройство и принцип работы импульсных металлоискателей

Подписаться
Вступай в сообщество «servizhome.ru»!
ВКонтакте:
ВНИМАНИЕ! При настройке и эксплуатации металлодетектора следует соблюдать меры электробезопасности, так как в приборе имеется высокое, потенциально опасное для жизни напряжение – на коллекторе ключевого транзистора и на поисковой катушке.
ВНИМАНИЕ! Изучите законодательство Вашей страны, связанное с возможными последствиями поисковых действий с металлоискателем, и соблюдайте эти требования!

Вся информация на сайте представлена исключительно в образовательных целях.
Администратор сайта не несет ответственности за возможные последствия использования представленной информации.

Типы металлодетекторов

Существует три основных типа металлодетекторов:

Импульсный (англ. Pulse Induction, PI ) металлодетектор (металлоискатель) (англ. Pulse Induction Metal Detector ) представляет собой одну из многочисленных разновидностей этих полезных и занимательных устройств. Импульсные металлодетекторы известны с начала 1960-х годов. Большой вклад в их разработку внес английский инженер Эрик Фостер (Eric Foster) .

Теоретические основы работы импульсного металлодетектора


В процессе его работы с помощью мощного транзисторного ключа поисковая катушка-излучатель периодически на короткое время подключается к источнику питания, что вызывает протекание через катушку тока экспоненциально нарастающего тока силой до нескольких ампер и более (первая часть кривой a ).
Напряженность магнитного поля $H$, создаваемого током $I$ в круглой катушке из $w$ витков радиусом $R$, на оси катушки расстоянии $z$ от центра катушки определяется выражением: $H = { {2 w I {R^2}} \over { {({R^2} + {z^2})}^{3 \over 2} } }$.
При резком прерывании этого тока (вторая часть кривой a ) на катушке возникает импульс напряжения самоиндукции (кривая b ) величиной до сотен вольт. Подобный процесс происходит и в катушке зажигания автомобиля.
При расположении вблизи катушки токопроводящего объекта - мишени (англ. target ) резко изменяющееся при прерывании тока первичное магнитное поле катушки пронизывает этот объект и создает в нем вихревые токи (англ. eddy currents ) (кривая c ). Эти вихревые токи всегда оказывают противодействие вызвавшему их изменению магнитного поля, создавая вторичное магнитное поле. Это переменное магнитное поле достигает витков поисковой катушки и наводит в ней переменное напряжение, которое накладывается на напряжение самоиндукции и приводит к удлинению заднего фронта импульса напряжения на катушке (кривая d ).
Для детектирования факта удлинения фронта импульса сигнал (напряжение на поисковой катушке) стробируется с помощью электронного ключа (кривая e ). При этом отсекается сигнал от передаваемого импульса и всплеск напряжения самоиндукции сразу после его окончания. Короткая задержка стробирования выбирается таким образом, чтобы за это время успели завершиться переходные процессы, вызванные прерыванием тока в катушке (кривая b ).
Таким образом происходит разделение передаваемого и принимаемого сигналов, а единственная катушка используется как для передачи, так и для приема сигнала (TR ).

Схема импульсного металлодетектора

В импульсном металлодетекторе можно выделить генератор импульсов, транзисторный ключ, узел поисковой катушки, схему детектирования и схему индикации.
Генератор импульсов
Две основные разновидности - генератор на интегральном таймере NE555 и генератор на двух транзисторах.


Транзисторный ключ
В качестве ключевого элемента используется мощный MOSFET с предварительным каскадом на биполярном транзисторе.
Во многих конструкциях в качестве ключевого транзистора применяется IRF740 (400 В, 0,55 Ом, 10 А).
Узел поисковой катушки
Катушка намотана "внавал" медным проводом диаметром 1,4 мм. Сопротивление катушки составляет ~ 0,3 Ом.


изготовление поисковой катушки


собранная катушка
Нижеприведенная схема применяется в металлодетекторах PIRAT , BM8042 - КОЩЕЙ-5И, White"s Surfmaster PI .

Параллельно поисковой катушке L включен резистор R7 для гашения импульса напряжения самоиндукции, а два включенных встречно-параллельно диода VD1 и VD2 совместно с резистором R8 ограничивают величину импульса, поступающего на вход схемы детектирования.
Диоды VD1 , VD2 - 1N4148.
Резистор R7 - 220...390 Ом.
Резистор R8 - 390...1000 Ом.
Схема детектирования
Схема детектирования состоит из двух операционных усилителей, один из которых работает в режиме усилителя, а второй в режиме компаратора.
Схема индикации
В простейшем случае схема звуковой индикации представляет собой усилитель звуковой частоты на биполярном транзисторе, нагруженный на динамик.

Моделирование металлодетектора

Изучить особенности работы и настройки рассматриваемого устройства можно с помощью схемотехнического моделирования металлодетектора. Предлагаю Вашему вниманию разработанную мной модель импульсного металлодетектора PIRAT (сокращение от PI - импульсный, RA-T - radioskot - сайт разработчиков) для популярного симулятора LTspice :
щелкните мышкой по рисунку для просмотра в крупном масштабе


Снимок окна программы LTspice с открытой моделью

Для изучения возможностей программы LTspice и основ работы с ней можете воспользоваться моим пособием:
Воронин А.В. Компьютерное моделирование переходных процессов в линейных электрических цепях: учеб.-метод. пособие. - Гомель: БелГУТ, 2014. - 94 с.
(скачать - PDF, 1,98 МБ)

Модель металлодетектора содержит генератор на таймере NE555 , узел поисковой катушки и схему детектирования (без схемы индикации).
Файл модели:
Для запуска также потребуются файлы модели операционного усилителя TL072 :
и .
Файл TL072.asy скопировать в директорию \lib\sub директории LTspice .
Файл TL072.sub скопировать в директорию \lib\sym\Opamps директории LTspice

Вы можете изменять при моделировании:
напряжение питания - параметр U ;
сопротивления резисторов настройки - параметры R12 и R13 ;
индуктивность и сопротивление поисковой катушки - параметры L и R ;
индуктивность мишени и коэффициент связи с ней - параметры Lt и Km соответственно,
а также номиналы других элементов цепи.

Результаты моделирования позволяют анализировать электромагнитные процессы в металлодетекторе:


импульсы на выходе таймера NE555

Генератор на базе таймера NE555 вырабатывает последовательность прямоугольных импульсов с большой скважностью.
В моем металлоискателе длина импульса составляет 0,17 мс, период повторения - 15,6 мс (частота повторения 64 Гц), причем расчетные значения совпадают с полученными при моделировании.

Резистор R7 предназначен для создания пути для тока при размыкании цепи посредством выключения MOSFET а (в модели обозначен M1 ). Энергия магнитного поля, накопленная в катушке, рассеивается в этом резисторе. Я выполнил моделирование при различных значения сопротивления шунтирующего катушку резистора (напряжение питания 9 вольт) и представил зависимость максимального напряжения на MOSFET е от сопротивления резистора в виде графика:


Как видно из графика, при увеличении сопротивления резистора пиковое значение напряжения возрастает (теоретически стремится к бесконечности). Если это напряжение превысит предельно допустимое напряжение для транзистора, то это может вызвать его пробой.

Также на максимальное значение импульса напряжения на катушке оказывает сильное влияние величина напряжения питания. Результаты моделирования приведены для сопротивления шунтирующего резистора R7 , равного 300 Ом:


На вышеприведенном графике видна линейная зависимость пика импульса напряжения на катушке от напряжения питания.



токи в катушке и мишени

щелкните мышкой по рисунку для просмотра в крупном масштабе


ток в катушке и напряжения в детектирующей части схемы

Увеличение сопротивления переменных резисторов R12+R13 смещает вниз напряжение на прямом входе ОУ2, и оно перестает превышать напряжение на инверсном входе ОУ2, при этом импульсы на выходе ОУ2 отсутствуют. При повышении напряжения питания требуется увеличивать сопротивление переменных резисторов до исчезновения импульсов на выходе ОУ2.


импульс напряжения на катушке

О применении Arduino в таком металлодетекторе Вы можете прочитать .

Источники
1 Энциклопедия полимеров. В.А. Каргин и др. Т.1 - М.: "Советская Энциклопедия", 1972. С. 742.

Непрерывная работа с максимальными настройками глубины может помочь извлечь глубоко залегающие цели. В другом случае настраивать глубину нецелесообразно. Тестировать увеличение глубины обнаружения лучше всего в специально подготовленном для этого месте в поле или на собственном земельном участке.

Вот 9 советов о том, как добиться максимальной производительности катушки металлоискателя по глубине.

1. Чувствительность

Настройка чувствительности - самый популярный способ увеличить глубину. Обычно, когда повышается чувствительность, увеличивается и глубина. Но имейте в виду, что есть и побочный эффект, поскольку слишком высоко взвинченная чувствительность может снизить вероятность идентификации цели, а также свести вас с ума постоянными хаотично издаваемыми звуками.

2. Баланс грунта

Каждый современный металлоискатель обычно имеет функцию баланса грунта. Правильно определить его и установить - это прямой путь к увеличению глубины. Ведь от минерализации почвы многое зависит, в том числе и то, на какой глубине вы будете обнаруживать цели.

3. Проводите катушкой как можно ближе к земле

Простой расчет: если вы сможете приблизить катушку к земле на 1,5 см, то и глубина обнаружения увеличится на те самые 1,5 см. Иногда этого бывает достаточно, чтобы поймать слабый сигнал от монеты. Иногда трава мешает перемещать катушку ближе к земле. В таком случае берите катушку побольше и потяжелее, ей проще смять растительность. Однако позаботьтесь о ее дополнительной защите.

4. Снижение дискриминации

Очень глубоко залегающие цели часто определяются металлоискателем неправильно. Но вы никогда не засечете эти многочисленные ложные срабатывания, если уровень дискриминации слишком высокий, например, как при программах «Монеты». Уменьшение дискрима до минимума может привести к успеху. Может быть, вы откопаете древний артефакт, а не очередной гвоздь.

5. Устранение помех

Очень много помех идет в цивилизованных местах, а также около линий электропередач и закопанных кабелей. Работающие электроприборы тоже достаточно сильно фонят. Обычно в таких случаях снижают чувствительность, а это уменьшает глубину. Поэтому лучше постарайтесь работать подальше от помех. Также выключите мобильник и уберите из карманов все металлические предметы. Не носите обувь с металлическим элементами. Не складывайте пели кабеля от катушки на саму катушку.

6. Специальные настройки и девайсы

Изучите инструкцию к своему металлоискателю вдоль и поперек. Ваш прибор может иметь некие уникальные параметры, которые могут помочь вам лучше слышать и видеть глубинные цели. Некоторые детекторы бывают специально созданы для того, чтобы усиливать глубокие, но слабые сигналы, например, в последнее время было некоторое оживление среди отечественных поисковиков по поводу глубинной прошивки металлоискателя АКА Signum MFT. Или также хороший результат дает использование глубинных насадок. XP выпустила такую недавно для Deus.

7. Большая катушка

Поисковые катушки больших размеров дают большую глубину обнаружения и более четкие показания от целей. Осторожно! Большая катушка может иметь большой вес. Поэтому к металлоискателю хорошо было бы приобрести специальную разгрузку, которая облегчает ношение прибора. Напомним, что большая катушка не может быть эффективной на сильно замусоренных железом участках и на высокоминерализованных почвах.

8. Экспериментируйте со скоростью проводки

К примеру, быстрое передвижение с Fisher F75 дает больше шансов на обнаружение глубоких целей, чем медленное. Опять же обращайтесь к руководству пользователя и неустанно проводите тесты - какая скорость передвижения для вашего металлоискателя дает более глубоко проникающий сигнал.

9. Носите наушники

Если вы используете обычный динамик металлоискателя, то вы вполне закономерно можете банально не различать сигналы от глубинных целей. В наушниках вы отвлекаетесь от внешних шумов и улавливаете быстрые, слабые сигналы. Если наушники вы использовать по каким-либо причинам вы не хотите, то попробуйте провести серию воздушных тестов и запомнить звуки для наиболее отдаленных целей. Иногда крошечные, незаметные изменения в аудио-тоне не отражаются на дисплее металлоискателя.

Характеристика и принцип работы импульсных металлоискателей

Обновлено 07.10.2018

Импульсный металлоискатель (Pulse metal detector или – англ.) самый чувствительный среди всех детекторов, реагирует на любые металлы, не отличает ферромагнетики от диамагнетиков. Поисковые особенности позволяют детектору обнаружить золото и золотые самородки в щелочных условиях и при экстремальной температуре грунта (или породы), которые слишком сложны для устройств VLF / TR . Он также позволяет обнаруживать металлические руды, содержащиеся в камнях и глине.

Импульсные металлодетекторы незаменимы при поиске на прибрежной зоне, под водой и на высоко минерализованном грунте. Работа приборов не зависит от влияния земли и воды. Они одинаково успешно работают под водой и на суше. Поэтому технология PI используется в подводных металлоискателях . Приборы имеют хорошие результаты при поиске на песчаных и мокрых пляжах. Глубина обнаружения объектов в земле и соленой воде больше по сравнению с VLF металлоискателями.

Импульсные металлоискатели лучше, чем VLF металлоискатели ведут себя вблизи линий электропередач, а также передающих антенн систем мобильной связи. Обслуживать этот тип металлоискателей довольно просто. Как правило, они оснащаются единственным регулятором чувствительности, хотя более продвинутые модели могут иметь и другие органы управления.

Приборы имеют высокое энергопотребление, для работы нужны мощные аккумуляторы. Обычных батарей хватает не более чем на 12 часов непрерывной работы. Если используются щелочные батареи, то длительность работы увеличивается.

Технология Pulse Induction не является универсальной, а недостатки импульсных металлоискателей ограничивают их возможности. В настоящее время лучшими металлоискателями для всех целей являются приборы использующие технологию VLF (очень низкие частоты). Однако технология PI может иметь дальнейшее развитие и в будущем могут быть разработаны новые детекторы с новыми возможностями.

Устройство и принцип работы импульсных металлоискателей

Импульсные металлоискатели имеют простую конструкцию. Прибор состоит из генератора импульсов, поисковой катушки , блока усиления сигнала, анализатора и блока индикации. Конструкция катушки также проста. Она является передающей и приемной одновременно. Это значительно уменьшает вес прибора.
Поисковая катушка воздействует на грунт пульсирующим электромагнитным полем. Излучение импульсов происходит с частотой 50 …400 Гц и энергией около 100 Вт. Вследствие магнитной индукции на поверхности металлического объекта, находящегося в зоне действия поля возникают вихревые токи.

Эти токи являются источником вторичного сигнала (отраженный импульс, отклик). В перерывах между импульсами, приёмник принимает отклик, который усиливается и обрабатывается анализатором и далее выводится на блок индикации.

Время затухания отраженного импульса больше времени затухания излученного импульса (вследствие явления самоиндукции). Разница во времени является параметром для анализа и регистрации. Затухание вихревых токов от грунта или воды происходит намного быстрее и не улавливается прибором. Именно поэтому импульсные металлодетекторы эффективно работают под водой, на минерализованных, соленых и влажных грунтах.

Related tags : импульсные металлоискатели, импульсные металлодетекторы, технология PI, Pulse Induction, принцип работы импульсных металлоискателей, устройство импульсных металлоискателей, как работает импульсный металлоискатель

Чем они отличаются от обычных детекторов и где лучше всего их применять, разберемся на примерах.

Принцип работы

Любой металлоискатель генерирует магнитное поле вокруг передатчика катушки. Благодаря этому у цели под катушкой также появляется магнитный поток, который и ловит приемник катушки. Затем этот магнитный поток преобразуется в визуальную информацию на экране и в звуковой сигнал.

Обычные грунтовые металлоискатели (VLF) генерируют постоянный ток в передатчике катушки, а изменения в фазе и амплитуде напряжения на приемнике показывает присутствие металлических объектов. А вот приборы с импульсной индукцией (PI) отличаются тем, что генерирует ток передатчика, который включается на какое-то время, и затем резко отключается. Поле катушки генерирует импульсные вихревые токи в объекте, которые обнаруживают, анализируя затухание импульса, наведенного в катушке приемника. Этот цикл повторяется непрерывно, может быть, сотни тысяч раз в секунду.

Плюсы металлоискателей с импульсной индукцией

1. Скорость обнаружения не зависит от материала между металлоискателем и целью. Это значит, что поиск можно вести сквозь воздух, воду, ил, кораллы, различные типы грунта.

2. Датчики имеют высокую чувствительность к всем металлам и никак не реагируют на высокий уровень минерализации почвы, горячие камни и соленую воду.

3. Можно искать металлические объекты и находить их на большей глубине, особенно хорошо получается на минерализованных грунтах.

4. На минерализованных почвах, соленом песке, в соленой воде не будет помех, и производительность будет выше, чем у VLF-детекторов.

5. Металлоискатели с импульсной индукцией были специально разработаны, чтобы находить золотые объекты, даже очень мелкие (самородки, цепочки).

Минусами металлоискателей с импульсной индукцией может стать не слишком хорошая дискриминация и высокая цена.

Где лучше всего себя показывают металлоискатели с импульсной индукцией?

Скорость повторения импульсов (частота передатчика) типичного металлодетектора с импульсной индукцией составляет примерно 100 герц. Разные модели МД используют частоты от 22 герц до нескольких килогерц. Чем ниже частота передачи, тем больше излучаемая мощность. На более низких частотах достигается большая глубина и чувствительность обнаружения предметов сделанных из серебра, однако при этом падает чувствительность к никелю и сплавам золота. Такие приборы имеют замедленную реакцию, поэтому требуют очень медленного перемещения рамки.

Более высокие частоты повышают чувствительность к никелю и сплавам золота, однако менее чувствительны к серебру. Возможно, сигнал не проникает так глубоко в землю, как на более низких частотах, но при этом можно перемещать катушку более быстро. Это позволяет проверить большую площадь за заданный период времени, а также такие приборы более чувствительны к главным пляжным находкам – изделиям из золота.

Таким образом, лучше всего применять PI-металлоискатели для пляжного поиска на побережьях морей и океанов, подводного поиска, поиска золота, поиска в пустынных и гористых местностях. Хороши они также в зачистке «выбитой» местности и при геологоразведке.

Топ-5 лучших металлоискателей с импульсной индукцией:

Можно купить примерно за 100-300 долларов. Цена на металлодетекторы сильно взаимосвязана с их глубиной обнаружения, далек не каждый металлоискатель может "видеть" монеты на глубине в 15 см. Помимо этого на стоимости металлодететкора еще сильно сказывается наличие распознавателя типа металлов ну и типа интерфейса, модные металлоискатели порой оснащают дисплеем для удобной работы.

В этой статье будет рассмотрен пример сборки своими руками мощного металлоискателя под названием Pirat. Прибор способен улавливать под землей монеты на глубине в 20 см. Что же касается крупных предметов, то здесь вполне реальна работа на глубине и во все 150 см.


Видео работы с металлоискателем:

Такое название этот металлоискатель получил из-за того, что он является импульсным, это обозначение двух первых его букв (PI-импульс). Ну а RA-T созвучно со словом radioskot - это название сайта разработчиков, где была и выложена самоделка . По словам автора, собирается Пират очень просто и быстро, для этого хватит даже начальных навыков в работе с электроникой.

Недостатком такого устройства является то, что оно не имеет дискриминатора, то есть не умеет распознавать цветные металлы. Так что поработать с ним на загрязненных различного рода металлами участках не получится.

Материалы и инструменты для сборки:
- микросхема КР1006ВИ1 (или ее зарубежный аналог NE555) - на ней строится передающий узел;
- транзистор IRF740;
- микросхема К157УД2 и транзистор ВС547 (на них собирается приемный узел);
- провод ПЭВ 0.5 (для наматывания катушки);
- транзисторы типа NPN;
- материалы для создания корпуса и так далее;
- изолента;
- паяльник, провода, прочий инструмент.

Остальные радиокомпоненты можно увидеть на схеме.





Еще нужно найти подходящую пластиковую коробочку для монтажа электронной схемы. Еще будет нужна пластиковая труба для создания штанги, на которую крепится катушка.

Процесс сборки металлоискателя:

Шаг первый. Создаем печатную плату
Самой сложной частью устройства является, конечно же, электроника, поэтому с нее и целесообразно начать. В первую очередь нужно сделать печатную плату. Всего есть несколько вариантов плат, в зависимости от используемых радиоэлементов. Есть плата для NE555, а есть плата на транзисторах. Все необходимые файлы для создания платы есть к статье. Также в интернете можно найти и другие варианты плат.

Шаг второй. Устанавливаем электронные элементы на плату
Теперь плату нужно спаять, все электронные элементы устанавливаются в точности, как на схеме. На картинке слева можно увидеть конденсаторы. Эти конденсаторы являются пленочными и имеют высокую термостабильность. Благодаря этому металлоискатель будет работать более стабильно. Особенно это актуально, если пользоваться металлоискателем осенью, когда на улице временами уже достаточно холодно.








Шаг третий. Источник питания для металлоискателя
Для питания устройства нужен источник от 9 до 12 В. Важно отметить, что прибор в плане потребления энергии довольно прожорлив, и это логично, ведь он и мощный. Одной батарейки крона тут надолго не хватит, рекомендуется применять сразу 2-3 батареи, которые соединяют параллельно. Еще можно использовать один мощный аккумулятор (лучше всего заряжаемый).



Шаг четвертый. Собираем катушку для металлоискателя
В связи с тем, что это импульсный металлоискатель, здесь точность сборки катушки не так важна. Оптимальным диаметром является оправка 1900-200 мм, всего нужно намотать 25 витков. После того, как катушка будет намотана, ее нужно хорошенько обмотать сверху изолентой для изоляции. Чтобы увеличить глубину обнаружения катушки, нужно намотать ее на оправку диаметром порядка 260-270 мм, а количество витков снизить до 21-22. Провод при этом используется диаметром 0.5 мм.

После того, как катушка будет намотана, ее нужно установить на жестком корпусе, на нем не должно быть металла. Здесь нужно немного подумать и поискать любой подходящий по размерам корпус. Он нужен для того, чтобы защитить катушку от ударов во время работы с устройством.

Выводы от катушки припаиваются к многожильному проводу, диаметром около 0.5-0.75 мм. Лучше всего, если это будут два, свитые между собой провода.

Шаг пятый. Настраиваем металлоискатель

При сборке точно по схеме настраивать металлоискатель не требуется, он и так имеет максимальную чувствительность. Для более тонкой настройки металлоискателя нужно покрутить переменный резистор R13, нужно добиться редких щелчков в динамике. Если достичь этого получается только в крайних положения резистора, то необходимо сменить номинал резистора R12. Переменный резистор должен настраивать устройство на нормальную работу в средних положениях.



← Вернуться

×
Вступай в сообщество «servizhome.ru»!
ВКонтакте:
Я уже подписан на сообщество «servizhome.ru»