Индикация подключения нагрузки. Индикатор нагрузки - Конструкции простой сложности - Схемы для начинающих. Что такое трансформатор тока

Подписаться
Вступай в сообщество «servizhome.ru»!
ВКонтакте:

А.МУСИЕНКО,

Как известно, очень много пожаров происходит из-за оставленных без присмотра включенными различных электроприборов. Это и обогреватели, и телевизоры, и прочее. Для индикации наличия включенных электроприборов и служит устройство "Уходя, гасите свет" - УГС-1. Оно включается последовательно в цепь энергопотребителей (рис.1).


Схема УГС-1 показана на рис.2.


При включенном электроприборе горит неоновая лампочка HL1. Если все потребители выключены, неонка гореть не будет. Устанавливать УГС-1 желательно возле выходной двери.

Само УГС-1 ток практически не потребляет, а суммарный ток включенных через него потребителей может достигать 6 А.

Радиолюбитель 8/97

Розетка с индикатором включенной нагрузки.

А. ОЗНОБИХИН, г. Иркутск

Оборудовав обычную розетку предлагаемым светодиодным индикатором, можно повысить удобство пользования этим самым распространенным электроприбором. Индикатор не только покажет, что сеть исправна и поможет найти розетку в темноте, но и изменит цвет свечения, если к розетке подключена нагрузка. А о срабатывании в результате перегрузки встроенного в розетку предохранителя сигнализирует мигающий красный светодиод.

Таким индикатором желательно оснастить те розетки, к которым подключают питаемые от сети приборы, не имеющие собственных индикаторов включения и предохранителей. Устройство, собранное по схеме, изображенной на рис. 1, следует разместить внутри корпуса розетки XS1, а при недостатке в нем места - рядом с розеткой в отдельном корпусе.


В случае перегорания плавкой вставки FU1 сетевое напряжение будет приложено через резистор R2 и нагрузку (если она подключена) к ранее зашунтированным вставкой элементам VD1, R1, С1, VD5 и HL1. Диод VD1 пропускает только прямые для него полуволны сетевого напряжения, которые через токоограничительный резистор R1 заряжают конденсатор С1 до напряжения стабилизации стабилитрона VD5. Этого напряжения достаточно для работы мигающего светодиода HL1, подающего сигнал о неисправности.

Пока к розетке XS1 не подключена нагрузка, сколько-нибудь заметный ток через диоды VD2-VD4 не протекает, падение напряжения на них близко к нулю. Поэтому конденсатор С2 разряжен и полевой транзистор VT1 закрыт. Находящийся в цепи его стока светодиод HL2 не светится. Зато напряжение на резисторе R6 достаточно для открывания транзистора VT2. В цепи его стока течет ток. Светится, указывая на наличие напряжения в сети и помогая найти розетку в темноте, светодиод HL3.

Если нагрузка подключена к розетке XS1 и потребляет ток, его отрицательные полуволны протекают через диод VD3, а положительные - через соединенные последовательно диоды VD2 и VD4, падения напряжения на которых достаточно, чтобы через резистор R3 и диод VD6 зарядить конденсатор С2 до напряжения, при котором транзистор VT1 будет открыт. Включится светодиод HL2, сигнализирующий о наличии нагрузки, так как напряжение между стоком и истоком транзистора VT1 уменьшится при этом практически до нуля. Нулевым станет и напряжение между затвором и истоком транзистора VT2. Этот транзистор закроется, выключая светодиод HL3.

Следует заметить, что срабатывание индикатора от нагрузки мощностью всего 1 Вт достигнуто благодаря низкому (всего 0,6 В) пороговому напряжению полевого транзистора КП504А (VT1). Заменять этот транзистор другим не следует. А вот однотипный транзистор в позиции VT2 можно заменить на КП501 А.

Максимальная мощность нагрузки, подключаемой к розетке XS1, зависит от допустимого прямого тока диодов VD2- VD4. Для диодов указанного на схеме типа ток не должен превышать 1,7 А, а мощность нагрузки - 500...700 Вт.

Диоды КД102Б можно заменить на КД105Б или другие выпрямительные с допустимым обратным напряжением не менее 300 В, а диод Д9Б - другим германиевым той же серии или, например, серии Д2. Вместо стабилитрона КС156А подойдет любой маломощный с напряжением стабилизации 3,9...5,6 В.

Светодиоды типов, указанных на схеме, можно заменять другими с аналогичными характеристиками, выбирая цвет их свечения по собственному вкусу. Необходимо лишь помнить, что у того, кто будет пользоваться розеткой, должны сложиться устойчивые ассоциации между цветом свечения индикатора и ситуацией.

Мигающий светодиод (HL1) можно заменить обычным немигающим. Конденсатор С1 при этом из устройства можно исключить, а стабилитрон VD5 заменить обычным диодом, включив его в том же направлении. Светодиоды HL2 и HL3 можно заменить одним двуцветным трехвыводным или даже использовать два кристалла разного цвета свечения в многоцветном светодиоде. Заменить все три светодиода (HL1 - HL3) одним полноцветным без заметного усложнения и переделки схемы не представляется возможным, так как пары светодиодов имеют общие катоды. Желаемой яркости свечения светодиодов HL2 и HL3 можно добиться подборкой резистора R7, однако устанавливать его менее 22 кОм нежелательно из-за слишком большого тепловыделения.

Вариант печатной платы сигнализатора, предназначенной для установки в корпус сетевого удлинителя с несколькими розетками, показан на рис. 2. Конденсатор С1 - К50-35, С2 - любой керамический или пленочный.

Если немного уменьшить размеры платы, ее можно встроить и в настенную розетку для открытой проводки.

При недостатке места внутри розетки, утапливаемой в стену, сигнализатор можно выполнить в виде вставляемого в такую розетку переходника.

Искать включатель освещения или розетку в темноте - занятие малоприятное. В продаже появились бытовые включатели освещения, оснащенные индикаторами, подсвечивающими их местоположение. Немного усовершенствовав схему, такой индикатор можно превратить в индикатор подключения нагрузки.
Индикатор подключения нагрузки (ИПН) представпяет собой устройство, встроенное внутрь розетки и индицирующее наличие контакта между вставленной сетевой вилкой от какого-либо бытового прибора и розеткой. Особенно удобен индикатор, если подключаемые приборы не имеют собственного сетевого индикатора. ИПН также полезен для радиоэлектронных изделий, у которых индикаторы включения находятся во вторичной цепи питания, поскольку позволяет проверить их входные цепи.
ИПН состоит из:
- датчика тока нагрузки на диодах VD2...VD6;
- Г-образного фильтра R1-C1;
- ключа на полевом транзисторе VT1;
- блока индикации на элементах VD9, VD10, R2, HL1.
Если к розетке XS1 не подключена нагрузка, то через диоды VD1...VD6 ток не протекает, накопительный конденсатор С1 разряжен и полевой транзистор VT1 закрыт. Ток стока VT1 равен нулю, индикатор HL1 не светится.

При подключении нагрузки к розетке XS1 ток нагрузки протекает через встреч но-параллельно включенные диод VD1 и цепочку диодов VD2...VD6. Отрицательные полуволны сетевого напряжения проходят через VD1. а положительные - через VD2.. .VD6. Падение напряжения на диодах VD2...VD6 через резистор R1 поступает на накопительный конденсатор С1 и заряжает его до величины, превышающей напряжение отсечки полевого транзистора VT1. Транзистор VT1 открывается, и через его канал исток-сток, резистор R2, светодиод HL1 и диод VD9 протекает ток. Светодиод HL1 ярко светится, сигнализируя о подключении нагрузки. Резистор R2 является токоограничительным, диод VD9 запрещает протекание тока через нагрузку при обратных полупериодах сетевого напряжения. Диод VD10 защищает HL1 от обратного напряжения.
Следует заметить, что прямое падение напряжения на диодах VD2.. VD6 зависит от мощности подключенной к розетке XS1 нагрузки и с уменьшением мощности нагрузки также уменьшается. Поэтому для того, чтобы индикатор "реагировал" даже на маломощные (менее 1 Вт) нагрузки, в схеме ИПН применен полевой транзистор КП504А. Он имеет максимальное напряжение исток-сток 240 В и позволяет коммутировать ток в цепи стока до 0,25 А. Управляющее напряжение (0... 10 В) подается на затвор относительно
истока. Транзистор КП504А имеет напряжение отсечки +0.6 В. Предельная мощность подключаемой нагрузки определяется максимальным прямым током диодов VD1...VD6 (1,7 А) и не должна превышать 500...700 Вт.
В схеме применены резисторы типа ОМЛТ. Конденсатор С1 - оксидный, типа К50-35 или зарубежного производства с рабочим напряжением не менее 16 В. Диоды VD1...VD6 - типа КД226В. КД226Г. КД226Д. Диоды VD9, VD10 могут быть заменены на КД105Б, КД102А или на другие миниатюрные с допустимым обратным напряжением не менее 200 В. Предохранитель FU1 - керамический, миниатюрный. Он устанавливается в головке держателя предохранителя типа ДПБ и вместе со светодиодом HL1 выносится на переднюю (верхнюю) панель розетки. При наличии предохранителей, впаиваемых в печатную плату, можно обойтись без держателя предохранителя. Светодиод HL1 - практически любой низковольтный с рабочим током до 20 мА. Для увеличения яркости свечения в качестве HL1 рекомендуется использовать светодиоды повышенной яркости свечения, например, ARL-5213PGC (зеленый). ARL-3214UWC (белый). ARL-n3214UBC (голубой). Если с некоторыми типами светодиодов при закрытом VT1 будет наблюдаться незначительная подсветка светодиода, светодиод следует зашунтировать резистором сопротивлением 3...8.2 кОм.
При установке ИПН в розетку алюминиевые сетевые провода, подходящие к зажимам розетки, отсоединяются от них и через монтажные переходники подключаются к входу ИПН. Все компоненты ИПН, кроме HL1 и FU1, располагаются на плате, размеры которой определяются внутренними габаритами розетки.

А.ОЗНОБИХИН, г.Иркутск.

Приблизительно год назад загорелся идеей собрать преобразователь напряжения 12-220 вольт. Для реализации понадобился трансформатор. Поиски привели в гараж, где был найден усилитель Солнцева, собранный мною лет 20 назад. Просто извлечь трансформатор и таким образом уничтожить усилитель не поднялась рука. Родилась идея его реанимировать. В процессе оживления усилителя многое подверглось изменениям. В том числе индикатор выходной мощности. Схема прежнего индикатора была громоздкой, собрана на К155ЛА3 и т.д. Найти ее не помог даже интернет. Зато была найдена другая очень простая, но от того не менее эффективная схема индикатора выходной мощности.

Схема LED индикатора

Данная схема достаточно хорошо описана на просторах интернета. Здесь лишь вкратце расскажу (перескажу) о ее работе. Индикатор выходной мощности собран на микросхеме LM3915. Десять светодиодов подключены к мощным выходам компараторов микросхемы. Выходной ток компараторов стабилизирован, поэтому отпадает необходимость в гасящих резисторах. Напряжение питания микросхемы может находиться в пределах 6...20 В. Индикатор реагирует на мгновенные значения звукового напряжения. У микросхемы делитель рассчитан так, что включение каждого последующего светодиода происходит при увеличении напряжения входного сигнала в v2 раз (на 3 дБ), что удобно для контроля мощности УМЗЧ.

Сигнал снимается непосредственно с нагрузки - акустической системы УМЗЧ - через делитель R*/10k. Указанный на схеме ряд мощностей 0,2-0,4-0,8-1,6-3-6-12-25-50-100 Вт соответствует действительности, если сопротивление резистора R*=5,6 кОм для Rн=2 Ом, R*= 10 кОм для Rн=4 Ом, R*= 18 кОм для Rн=8 Ом и R*=30 кОм для Rн=16 Ом. LM3915 дает возможность легко менять режимы индикации. Достаточно лишь подать на вывод 9 ИМС LM3915 напряжение, и она перейдет с одного режима индикации в другой. Для этого служат контакты 1 и 2. Если их соединить, то ИМС перейдет в режим индикации "Светящийся столбик", если оставить свободными - "Бегущая точка". Если индикатор будет эксплуатироваться с УМЗЧ с иной максимальной выходной мощностью, то нужно подобрать лишь сопротивление резистора R*, чтобы светодиод, подключенный к выводу 10 ИМС, светился при максимальной мощности УМЗЧ.

Как видите, схема проста и не требует сложной настройки. Благодаря широкому диапазону питающих напряжений для ее работы использовал одно плечо импульсного двухполярного блок питания УМЗЧ +15 вольт. На входе сигнала вместо подбора отдельных резисторов R* установил переменное сопротивление номиналом 20 кОм, что сделало индикатор универсальным для акустики разного сопротивления.

Для смены режимов индикации предусмотрел установку перемычки или кнопки с фиксацией. В финале замкнул перемычкой.

Искать включатель освещения или розетку в темноте - занятие малоприятное. Гораздо приятнее, когда видишь в темноте светящийся индикатор и ориентируешься на него. Особенно полезно оснастить таким индикатором те розетки, от которых питаются устройства, не имеющие индикаторов включения и предохранителей. Предлагаю усовершенствованный вариант устройства, оснащенный индикатором перегорания предохранителя.

Когда между вилкой подключаемой нагрузки и розеткой отсутствует контакт, индикатор не светится, извещая об отсутствии "отбора мощности" нагрузкой. Если нагрузка "берет мощность", светится синий индикатор, а когда нагрузка потребляет чрезмерную мощность, сгорает предохранитель, и включается красный мигающий светодиод.

Индикатор подключения нагрузки (ИПН) состоит из (рис.1):

  • предохранителя FU1 с индикатором перегорания на элементах VD1, VD2, R1, HL1, C1;
  • силовой обводной цепи на диоде VD6;
  • датчика тока нагрузки на диодах VD4, VD5 и детектора VD7, R2, С2;
  • ключа на полевом транзисторе VT1;
  • блока индикации на элементах VD8, HL2, R4, R3, VD3.

При перегорании предохранителя FU1, если нагрузка подключена к розетке XS1, ток протекает через ранее шунтировавшиеся нулевым сопротивлением предохранителя элементы индикатора перегорания. Выпрямительный диод VD1 пропускает только отрицательные

полуволны сетевого напряжения, которые поступают через токоограничительный резистор R1 на накопительный конденсатор С1 и подключенную параллельно ему нагрузку - мигающий светодиод HL1. VD1 защищает HL1 от обратного напряжения, а стабилитрон VD2 предохраняет HL1 от перегрузки прямым током.

Когда к розетке XS1 не подключена нагрузка, через диоды VD4.VD6 ток не протекает, накопительный конденсатор С2 разряжен и полевой транзистор VT1 закрыт.

Сопротивление канала (исток-сток) очень велико, и индикатор HL2 не светится.

При подключении нагрузки к розетке XS1 ток нагрузки протекает через встречно-параллельно включенные диод VD6 и цепочку диодов VD4, VD5. Отрицательные полуволны сетевого напряжения с нижнего по схеме сетевого провода проходят через VD6, а положительные - через VD4 и VD5.

Прямое падение напряжения на диодах VD4 и VD5 через резистор R2 и диод VD7 поступает на С2 и заряжает его до величины, превышающей напряжение отсечки (+0,6 В) полевого транзистора VT1. Транзистор VT1 открывается и через его канал, параллельно включенные VD8, HL2, R4 и далее через R3 и VD3 протекает ток. Светодиод HL2 ярко светится, сигнализируя о подключении нагрузки. Резистор R3 - токоограничительный, диод VD3 запрещает протекание тока при обратных полупериодах сетевого напряжения. Резистор R4 устраняет подсветку HL2 при закрытом VT1 и при необходимости подбирается в пределах от 3 до 8,2 кОм.

Прямое падение напряжения на датчике тока (VD4, VD5) зависит от мощности подключенной нагрузки. Чтобы индикатор "реагировал" даже на маломощные (менее 1 Вт) устройства, в схеме применен сравнительно дефицитный полевой транзистор. КП504А. Он имеет максимальное напряжение исток-сток 240 В и позволяет коммутировать ток в цепи стока до 0,25 А. Управляющее напряжение на затворе относительно истока - от 0 до 10 В. Напряжение отсечки. КП504А составляет +0,6 В. Максимальная мощность нагрузки, подключаемой к розетке XS1, определяется предельным прямым током диодов VD4.VD6 (1,7 А) и не должна превышать 500.700 Вт.

В схеме применены резисторы типа ОМЛТ. Конденсатор С1 - типа К50-35 или зарубежного производства с рабочим напряжением не менее 16 В, С2 - КМ. Диоды VD1, VD3, VD8 - КД105Б, КД102А или другие миниатюрные с допустимым обратным напряжением не менее 200 В, VD4.VD6 - КД226В, КД226Г, КД226Д, VD7 - германиевый. Д2 или. Д9 с любой буквой. Стабилитрон VD2 - маломощный, с напряжением стабилизации 3,9...5,6 В, например, КС139, КС147А, КС447А, КС156А. Светодиод HL1 можно заменить 5-миллиметровым красным МСД ARL-5013URC-B или немигающим повышенной яркости, например, желтым ARL-5213UYC. В последнем случае конденсатор С1 можно исключить. Светодиод HL2 можно заменить любым низковольтным зеленого (ARL-5213PGC), белого (ARL-3214UWC) или голубого (ARL-3214UBC) цвета, желательно повышенной яркости.

Почти все элементы устройства размещаются на печатной плате, чертеж которой приведен на рис.2. Плата встраивается в сетевую розетку либо в переходник-разветвитель ("тройник"), включаемый непосредственно в розетку. Возможен вариант его размещения в корпусе блока розеток на конце удлинителя- "переноски". Предохранитель FU1 на ток. ЗА - керамический, миниатюрный. Он устанавливается в головке держателя предохранителя типа. ДПБ и выносится на переднюю панель розетки так, чтобы не мешал включению вилок. При установке индикатора в розетку сетевые провода, подходившие к контактам розетки, аккуратно отсоединяются и через клеммные зажимные колодки подключаются к плате.

Индикатор нагрузки
А. ЛАТАЙ КО, г. Днепропетровск, Украина
Иногда потребитель электрической энергии и его выключатель установлены в разных помещениях. В таких случаях желательно иметь визуальный контроль включенного состояния потребителя, оснастив выключатель дополнительным индикатором. Автор предлагаемой статьи описывает сравнительно простую конструкцию такого индикатора, демонстрируя при этом грамотный подход к выбору его элементов. Редакция надеется, что эта сторона статьи будет полезна многим читателям.
Широко известны выключатели совмещенные в одном корпусе с индикатором наличия сетевого напряжения . Однако такой подход не гарантирует штатную работу потребителя, так как фактически контролируется лишь наличие напряжения на "выходе" выключателя. Чтобы убедиться, что напряжение достигло потребителя, необходимы дополнительные провода. Их легко предусмотреть при устройстве новой проводки, но при модернизации существующей это может вызвать значительные затруднения.
В ряде случаев более информативны и удобны в монтаже индикаторы, реагирующие на по,реи яемыи нагрузкой ток. Их включают последовательно с выключателем и нагрузкой. Прокладывать дополнительные провода не требуется. Примером такого решения может служить индикатор, предложенный в . Малое число используемых деталей позволяет уместить его в корпусе стандартного выключателя. Добавив к этому индикатору еще несколько деталей, удалось расширить его функции и сделать прибор более удобным.
На рис. 1 приведена схема доработанного индикатора. При разомкнутом выключателе SA1 в цепи лампы EL1 непрерывно течет слабый ток (приблизительно 9 мА), ограниченный емкостным сопротивлением конденсатора С1. Нить накаливания лампы при таком токе остается холодной а зе пеныи кристалл светодиода HL1 светится. Потребление электроэнергии в этом состоянии очень незначительно. При замкнутом выключателе SA1 индикатор работает, как описано в , цвет свечения светодиода сменяется красным.
Постоянная подсветка облегчает использование выключателя в темноте. При обрыве цепи, например, по причине перегорания лампы, светодиод остается выключенным при любом поло-
жении выключателя SA1. Это позволяет своевременно, еще до того, как возникнет необходимость включить освещение, заменить перегоревшую лампу или устранить обрыв проводов.
Преобразователем тока нагрузки в напряжение, необходимое для светодиода, служат диоды VD1-VD3. Идеально, если снимаемое с них напряжение не зависит от мощности нагрузки хотя бы в наиболее ходовом интервале 15...200 Вт. Чтобы сделать правильный выбор, были экспериментально сняты вольт-амперные характеристики некоторых диодов и малогабаритных диодных мостов (плюсовой и минусовой выводы мостов при измерении были соединены вместе).
Напряжение измерялось в установившемся тепловом режиме после прогрева испытуемого диода протекающим током. Дело в том, что с увеличением температуры кристалла падение напряжения на р-п-переходе диода уменьшается, что в какой-то мере компенсирует увеличение пропорционального току падения напряжения на омическом сопротивлении полупроводникового материала. За счет этого эф фекта наиболее пологая зависимость напряжения от тока наблюдается у нагревающихся до большей температуры малогабаритных диодов повышенной мощности (1N4007, 1N5817). Это подтверждают экспериментально снятые графики, изображенные на рис. 2.
В индикатор необходимо установить столько последовательно соединенных диодов, чтобы в сумме на них падало напряжение, превышающее прямое падение напряжения на "красном" кристалле светодиода (1,6...1,9 В). Три диода 1N4007 (суммарное напряжение около 2,4 В) удовлетворяют этому условию. Излишек гасит резистор R2. Если по конструк-
тивным соображениям вместо отдельных диодов предпочтительнее использовать малогабаритный выпрямительный мост, диоды VD2-VD5 можно заменить цепью, показанной на рис. 3. Свойств индикатора это не изменит.
Терморезистор RK1 с отрицательным температурным коэффициентом ограничивает начальный бросок тока через холодную нить лампы накаливания EL1 и диоды VD2-VD5, что способствует увеличению ресурса лампы и повышению надежности индикатора. В момент включения практически все напряжение сети приложено к имеющему значительное сопротивление холодному терморезистору, ток в цепи лампы меньше номинального. С прогревом сопротивление терморезистора уменьшается в десятки раз, а сопро-
тивление лампы EL1 возрастает. В установившемся режиме на терморезисторе падает всего 2...2,5 В, что почти не сказывается на яркости свечения лампы. Ее "замедленное" включение почти не заметно, так как переходный процесс длится не более 1 с.
Естественно, применение терморезистора эффективно только при условии, что интервал между выключением и последующим включением освещения превышает 5...7 мин, необходимых для его охлаждения. Для нагрузок, не имеющих ярко выраженного "пускового" тока, терморезистор не нужен и может быть исключен
На рис. 4 приведены фотоснимки обычного выключателя для скрытой проводки с установленным внутри индикатором. Его плата изготовлена из фольгированного стеклотекстолита с помощью резака. Ввиду ее простоты и многообразия конструкций выключателей чертеж платы не приводится.
Конденсатор С1 - К73-17. Выводы светодиода HL1 удлинены жестким изолированным проводом, а в клавише выключателя для него проделано отверстие овальной формы. Светодиод L-59SRSGW можно заменить другим трехвыводным двухцветным повышенной или обычной яркости, например, серии АЛС331. Подбирая светодиод, следует учитывать, что через него течет импульсный ток, пиковое значение KOioporo для "красного" кристалла в два, а для "зеленого" - в 3,14 раза больше среднего.
Заметно нагревающиеся диоды VD2-VD5 и терморезистор RK1 подняты над платой на всю длину выводов. Тип терморезистора - КМТ-12. Такие ранее применялись в системах размагничивания кинескопа телевизоров УЛПЦТ Так как рабочая температура терморезистора достигает 90 °С, он не должен касаться других деталей и пластмассового корпуса выключателя.

При мощности лампы более 150 Вт в лицевой крышке выключателя полезно просверлить несколько вентиляционных отверстий. А если мощность лампы 60 Вт и менее, от диска терморезистора необходимо, надпилив надфилем, отломить половину. Это увеличит вдвое начальное сопротивление терморезистора и во столько же раз уменьшит по верхность его охлаждения. Необходимая рабочая температура и малые по-
тери напряжения будут достигнуты при меньшем токе.
Налаживание сигнализатора сводится к установке подборкой резистора R2 тока через "красный" кристалл свето-диода 8... 10 мА. На ток через "зеленый" кристалл, зависящий от емкости конденсатора С1, номинал резистора R2 не влияет. Значение тока определяют по падению напряжения на резисторе R2, измеренному стрелочным вольтме-
тром магнитоэлектрической системы (например, авометром Ц4315).
ЛИТЕРАТУРА
1. Юшин А. Клавишные выключатели со световой индикацией. - Радио, 2005, № 5, с. 52.
2. Горенко С. Индикатор включенной нагрузки. - Радио, 2005, № 1, с. 25.



← Вернуться

×
Вступай в сообщество «servizhome.ru»!
ВКонтакте:
Я уже подписан на сообщество «servizhome.ru»