Завод по переработке радиоактивных отходов. Проблемы обращения с оят в россии и перспективы их решения. Подготовка к переработке ОЯТ АМБ

Подписаться
Вступай в сообщество «servizhome.ru»!
ВКонтакте:

Отработанное ядерное топливо энергетических реакторов Начальная стадия послереакторного этапа ЯТЦ одинакова для открытого и закрытого циклов ЯТЦ.

Она включает в себя извлечение ТВЭЛов с отработанным ядерным топливом из реактора, хранение его в пристанционном бассейне («мокрое» хранение в бассейнах выдержки под водой) в течение нескольких лет и затем транспортировка к заводу переработки. В открытом варианте ЯТЦ отработанное топливо помещают в специально оборудованные хранилища («сухое» хранение в среде инертного газа или воздуха в контейнерах или камерах), где выдерживают нескольких десятилетий, затем перерабатывают в форму, предотвращающую хищение радионуклидов и подготавливают к окончательному захоронению.

В закрытом варианте ЯТЦ отработавшее топливо поступает на радиохимический завод, где перерабатывается с целью извлечения делящихся ядерных материалов.

Отработанное ядерное топливо (ОЯТ) - особый вид радиоактивных материалов – сырьё для радиохимической промышленности.

Облученные тепловыделяющие элементы, извлеченные из реактора после их отработки, обладают значительной накопленной активностью. Различают два вида ОЯТ:

1) ОЯТ промышленных реакторов, которое имеет химическую форму как самого топлива, так и его оболочки, удобную для растворения и последующей переработки;

2) ТВЭЛы энергетических реакторов.

ОЯТ промышленных реакторов перерабатывают в обязательном порядке, тогда как ОЯТ перерабатывают далеко не всегда. Энергетическое ОЯТ относят к высокоактивным отходам, если не подвергают дальнейшей переработке, или к ценному энергетическому сырью, если подвергают переработке. В некоторых странах (США, Швеция, Канада, Испания, Финляндия) ОЯТ полностью относят к радиоактивным отходам (РАО). В Англии, Франции, Японии – к энергетическому сырью. В России часть ОЯТ считается радиоактивными отходами, часть поступает на переработку на радиохимические заводы (146).

Из-за того, что далеко не все страны придерживаются тактики замкнутого ядерного цикла, ОЯТ в мире постоянно увеличивается. Практика стран, придерживающихся замкнутого уранового топливного цикла показала, что частичное замыкание ЯТЦ легководных реакторов убыточно даже при возможном в последующие десятилетия удорожании урана в 3-4 раза. Тем не менее эти страны замыкают ЯТЦ легководных реакторов, покрывая затраты за счет увеличения тарифов на электроэнергию. Наоборот, США и некоторые другие страны отказываются от переработки ОЯТ, имея в виду будущее окончательное захоронение ОЯТ, предпочитая его длительную выдержку, что оказывается дешевле. Тем не менее, ожидается, что к двадцатым годам переработка ОЯТ в мире увеличится.

Извлеченное из активной зоны энергетического реактора ТВС с отработанным ядерным топливом хранят в бассейне выдержки на АЭС в течение 5-10 лет для снижения в них тепловыделения и распада короткоживущих радионуклидов. В 1 кг отработавшего ядерного топлива АЭС в первый день после его выгрузки из реактора содержится от 26 до 180 тыс. Ки радиоактивности. Через год активность 1 кг ОЯТ снижается до 1 тыс. Ки, через 30 лет-до 0,26 тыс. Ки. Через год после выемки, в результате распада короткоживущих радионуклидов активность ОЯТ сокращается в 11 - 12 раз, а через 30 лет - в 140 - 220 раз и дальше медленно уменьшается в течение сотен лет 9 (146).

Если в реактор первоначально загружался природный уран, то в отработавшем топливе остается 0,2 - 0,3% 235U. Повторное обогащение такого урана экономически нецелесообразно, поэтому он остается в виде так называемого отвального урана. Отвальный уран в дальнейшем может быть использован как воспроизводящий материал в реакторах на быстрых нейтронах. При использовании для загрузки ядерных реакторов низкообогащенного урана ОЯТ содержит 1% 235U. Такой уран может быть дообогащен до первоначального содержания его в ядерном топливе, и возвращен в ЯТЦ. Восстановление реактивности ядерного топлива может быть осуществлено добавлением в него других делящихся нуклидов - 239Pu или 233U, т.е. вторичного ядерного топлива. Если к обедненному урану добавляется 239Pu в количестве, эквивалентном обогащению топлива 235U, то реализуется уран-плутониевый топливный цикл. Смешанное уран-плутониевое топливо используется как в реакторах на тепловых, так и на быстрых нейтронах. Уран-плутониевое топливо обеспечивает максимально полное использование урановых ресурсов и расширенное воспроизводство делящегося материала. Для технологии регенерации ядерного топлива чрезвычайно важны характеристики выгружаемого из реактора топлива: химический и радиохимический состав, содержание делящихся материалов, уровень активности. Эти характеристики ядерного топлива определяются мощностью реактора, глубиной выгорания топлива в реакторе, продолжительностью кампании, коэффициентом воспроизводства вторичных делящихся материалов, времени выдержки топлива после выгрузки его из реактора, типом реактора.

Выгруженное из реакторов отработавшее ядерное топливо передается на переработку только после определенной выдержки. Это связано с тем, что среди продуктов деления имеется большое количество короткоживущих радионуклидов, которые определяют большую долю активности выгружаемого из реактора топлива. Поэтому свежевыгруженное топливо выдерживают в специальных хранилищах в течение времени, достаточного для распада основного количества короткоживущих радионуклидов. Это значительно облегчает организацию биологической защиты, снижает радиационное воздействие на химические реагенты и растворители в процессе переработки обработавшего ядерного топлива и уменьшает набор элементов, от которых должны быть очищены основные продукты. Так, после двух-трехлетней выдержки активность облученного топлива определяют долгоживущие продукты деления: Zr, Nb, Sr, Ce и другие РЗЭ, Ru и α-активные трансурановые элементы. 96% ОЯТ – это уран-235 и уран-238, 1% - плутоний, 2-3% - радиоактивные осколки деления.

Время выдержки ОЯТ - 3 года для легководных реакторов, 150 суток для реакторов на быстрых нейтронах (155).

Суммарная активность продуктов деления, содержащихся в 1 т ОЯТ ВВЭР-1000 после трех лет выдержки в бассейне выдержки (ББ), составляет 790000 Ки.

При хранении ОЯТ в пристанционном хранилище, его активность монотонно уменьшается (примерно на порядок за 10 лет). Когда активность упадет до норм, определяющих безопасность транспортировки ОЯТ по железной дороге, его извлекают их хранилища и перемещают либо в долговременное хранилище, либо на завод по переработке топлива. На перерабатывающем заводе сборки ТВЭЛов с помощью погрузочно-разгрузочных механизмов перегружается из контейнеров в заводской буферный бассейн-хранилище. Здесь сборки хранят до тех пор, пока их не направляют на переработку. После выдержки в бассейне в течение срока, выбранного на данном заводе, ТВС выгружают из хранилища и направляют в отделение подготовки топлива к экстракции на операции вскрытия отработавших твэлов.

Переработку облученного ядерного топлива проводят с целью извлечения из него делящихся радионуклидов (прежде всего 233U, 235U и 239Pu), очистки урана от нейтрон поглощающих примесей, выделения нептуния и некоторых других трансурановых элементов, получения изотопов для промышленных, научных или медицинских целей. Под переработкой ядерного топлива понимают переработку ТВЭЛов энергетических, научных или транспортных реакторов, так и переработку бланкетов реакторов-размножителей. Радиохимическая переработка ОЯТ – основная стадия закрытого варианта ЯТЦ, и обязательная стадия наработки оружейного плутония (рис.35).

Переработка делящегося материала, облученного нейтронами в ядерном реакторе топлива осуществляется для решения таких задач, как

Получение урана и плутония для производства нового топлива;

Получение делящихся материалов (урана и плутония) для производства ядерных боеприпасов;

Получение разнообразных радиоизотопов, находящих применение в медицине, промышленности и науке;

Рис. 35. Некотрые этапы переботки отработанного ядерного топлива на ПО Маяк. Все операции проводят с помощью манипуляторов и камерах защищенных 6-слойным свинцовым скеклом (155).

Получение доходов от других стран, которые либо заинтересованы в первом и втором, либо не хотят хранить у себя большие объемы ОЯТ;

Решение экологических проблем, связанных с захоронением РАО.

В России перерабатывается облученный уран реакторов-бридеров и ТВЭЛы реакторов ВВЭР-440, БН и некоторых судовых двигателей; ТВЭЛы основных типов энергетических реакторов ВВЭР-1000, РБМК (любых типов) не перерабатываются и в настоящее время накапливаются в специальных хранилищах.

В настоящее время количество ОЯТ постоянно увеличивается и его регенерация - основная задача радиохимической технологии переработки отработавших ТВЭЛов. В процессе переработки проводится выделение урана и плутония и очистка их от радиоактивных продуктов деления, в том числе от нейтронопоглощающих нуклидов (нейтронных ядов), которые при повторном использовании делящихся материалов могут препятствовать развитию в реакторе цепной ядерной реакции.

Среди радиоактивных продуктов деления содержится большое количество ценных радионуклидов, которые можно использовать в области малой ядерной энергетики (радиоизотопные источники тепла для термогенераторов электроэнергии), а также для изготовления источников ионизирующего излучения. Применение находят трансурановые элементы, получающиеся в результате побочных реакций ядер урана с нейтронами. Радиохимическая технология переработки ОЯТ должна обеспечивать извлечение всех нуклидов, полезных с практической точки зрения или представляющих научный интерес(147 43).

Процесс химической переработки отработавшего топлива связан с решением проблемы изоляции от биосферы большого количества радионуклидов образующихся в результате деления ядер урана. Эта проблема - одна из наиболее серьезных и трудно решаемых проблем развития ядерной энергетики.

Первая стадия радиохимического производства включает подготовку топлива, т.е. в освобождение его от конструкционных деталей сборок и разрушение защитных оболочек ТВЭЛов. Следующая стадия связана с переводом ядерного топлива в ту фазу, из которой будет производиться химическая обработка: в раствор, в расплав, в газовую фазу. Перевод в раствор чаще всего производят растворением в азотной кислоте. При этом уран переходит в шестивалентное состояние и образует ион уранила, UO 2 2+ , а плутоний - частично в шести и в четырехвалентное состояние, PuO 2 2+ и Pu 4+ соответственно. Перевод в газовую фазу связан с образованием летучих галогенидов урана и плутония. После перевода ядерных материалов соответствующую фазу проводят ряд операций, непосредственно связанных с выделением и очисткой ценных компонентов и выдачей каждого из них в форме товарного продукта(рис.36).

Рис.36. Общая схема обращения урана и плутония в замкнутом цикле (156).

Переработка (репроцессинг) ОЯТ заключается в извлечении урана, накопленного плутония и фракций осколочных элементов. В 1 т ОЯТ на момент извлечения из реактора содержится 950-980 кг 235U и 238U, 5,5-9,6 кг Pu, а также небольшое количество α- излучателей (нептуний, америций, кюрий и др.), активность которых может достигать 26 тыс. Ки на 1 кг ОЯТ. Именно эти элементы в ходе замкнутого ЯТЦ необходимо выделить, сконцентрировать, очистить и перевести в необходимую химическую форму.

Технологический процесс переработки ОЯТ включает:

Механическую фрагментацию (рубку) ТВС и ТВЭЛов с целью вскрытия топливного материала;

Растворение;

Очистку растворов балластных примесей;

Экстракционное выделение и очистку урана, плутония и других товарных нуклидов;

Выделение диоксида плутония, диоксида нептуния, гексагидрата нитрата уранила и закиси-окиси урана;

Переработку растворов, содержащих другие радионуклиды, и их выделение.

В основе технологии выделения урана и плутония, их разделения и очистки от продуктов деления лежит процесс экстракции урана и плутония трибутилфосфатом. Он осуществляется на многоступенчатых экстракторах непрерывного действия. В результате уран и плутоний очищаются от продуктов деления в миллионы раз. Переработка ОЯТ связана с образованием небольшого объема твердых и газообразных РАО активностью около 0,22 Ки/год (предельно допустимый выброс 0,9 Ки/год) и большим количеством жидких радиоактивных отходов.

Все конструкционные материалы ТВЕЛов отличаются химической стойкостью, и растворение их представляет серьезную проблему. Кроме делящихся материалов, ТВЭЛы содержат различные накопители и покрытия, состоящие из нержавеющей стали, циркония, молибдена, кремния, графита, хрома и др. При растворении ядерного топлива эти вещества не растворяются в азотной кислоте и создают в полученном растворе большое количество взвесей и коллоидов.

Перечисленные особенности ТВЭЛов обусловили необходимость разработки новых методов вскрытия или растворения оболочек, а также осветления растворов ядерного топлива перед экстракционной переработкой.

Глубина выгорания топлива реакторов для получения плутония существенно отличается от глубины выгорания топлива энергетических реакторов. Поэтому на переработку поступает материалы с гораздо более высоким содержанием радиоактивных осколочных элементов и плутония на 1 т U. Это приводит к повышению требований к процессам очистки получаемых продуктов и к обеспечению ядерной безопасности в процессе переработки. Трудности возникают из-за необходимости переработки и захоронения большого количества жидких высокоактивных отходов.

Далее проводят выделение, разделение и очистку урана, плутония и нептуния тремя экстракционными циклами. В первом цикле осуществляют совместную очистку урана и плутония от основной массы продуктов деления, а затем проводят разделение урана и плутония. На втором и третьем циклах уран и плутоний подвергают дальнейшей раздельной очистке и концентрированию. Полученные продукты - уранилнитрат и нитрат плутония - помещают в буферные ёмкости до передачи их в конверсионные установки. В раствор нитрата плутония добавляют щавелевую кислоту, образующуюся суспензию оксалата фильтруют, осадок кальцинируют.

Порошкообразную окись плутония просеивают через сито и помещают в контейнеры. В таком виде плутоний хранят до того, как он поступит на завод по изготовлению новых ТВЭЛов.

Отделение материала оболочки ТВЭЛов от топливной оболочки - одна из наиболее сложных задач процесса регенерации ядерного топлива. Существующие методы можно разделить на две группы: методы вскрытия с разделением материалов оболочки и сердечника ТВЭЛов и методы вскрытия без отделения материалов оболочки от материала сердечника. Первая группа предусматривает снятие оболочки ТВЭЛов и удаление конструкционных материалов до растворения ядерного топлива. Водно-химические методы заключаются в растворении материалов оболочки в растворителях, не затрагивающих материалы сердечника.

Использование этих методов характерно для переработки ТВЭЛов из металлического урана в оболочках из алюминия или магния и его сплавов. Алюминий легко растворяется в едком натре или азотной кислоте, а магний - в разбавленных растворах серной кислоты при нагревании. После растворения оболочки сердечник растворяют в азотной кислоте.

Однако ТВЭЛы современных энергетических реакторов имеют оболочки из коррозионностойких, труднорастворимых материалов: циркония, сплавов циркония с оловом (циркалой) или с ниобием, нержавеющей стали. Селективное растворение этих материалов возможно только в сильно агрессивных средах. Цирконий растворяют в плавиковой кислоте, в смесях её со щавелевой или азотной кислотами или растворе NH4F. Оболочку из нержавеющей стали - в кипящей 4-6 М H 2 SO 4 . Основной недостаток химического способа снятия оболочек - образование большого количества сильно засолённых жидких радиоактивных отходов.

Чтобы уменьшить объем отходов от разрушения оболочек и получить эти отходы сразу в твёрдом состоянии, более пригодном для длительного хранения, разрабатывают процессы разрушения оболочек под воздействием неводных реагентов при повышенной температуре (пирохимические методы). Оболочку из циркония снимают безводным хлористым водородом в псевдоожиженном слое Аl 2 О 3 при 350-800 о С. Цирконий превращается при этом в летучий ZrC l4 и отделяется от материала сердечника сублимацией, а затем гидролизуется, образуя твердую двуокись циркония. Пирометаллургические методы основаны на прямом оплавлении оболочек или растворения их в расплавах других металлов. Эти методы используют различие в температурах плавления материалов оболочки и сердечника или различие их растворимости в других расплавленных металлах или солях.

Механические методы снятия оболочек включают несколько стадий. Сначала отрезают концевые детали тепловыделяющей сборки и разбирают ее на пучки ТВЭЛов и на отдельные ТВЭЛы. Затем механически снимают оболочки отдельно с каждого ТВЭЛа.

Вскрытие ТВЭЛов может проводиться без отделения материалов оболочки от материала сердечника.

При реализации водно-химических методов оболочку и сердечник растворяют в одном и том же растворителе с получением общего раствора. Совместное растворение целесообразно при переработке топлива с высоким содержанием ценных компонентов (235U и Pu) или когда на одном заводе перерабатывают разные виды ТВЭЛов, различающихся размером и конфигурацией. В случае пирохимических методов ТВЭЛ обрабатывают газообразными реагентами, которые разрушают не только оболочку, но и сердечник.

Удачной альтернативой методам вскрытия с одновременным удалением оболочки и методам совместного разрушения оболочки и сердечников оказался метод «рубка-выщелачивание». Метод пригоден для переработки ТВЭЛов в оболочках, нерастворимых в азотной кислоте. Сборки ТВЭЛов разрезают на мелкие куски, обнаружившийся сердечник ТВЭЛа становится доступным действию химических реагентов и растворяется в азотной кислоте. Нерастворившиеся оболочки отмывают от остатков задержавшегося в них раствора и удаляют в виде скрапа. Рубка ТВЭЛов имеет определенные преимущества. Образующиеся отходы - остатки оболочек - находятся в твердом состоянии, т.е. не происходит образования жидких радиоактивных отходов, как при химическом растворении оболочки; не происходит и значительных потерь ценных компонентов, как при механическом снятии оболочек, так как отрезки оболочек могут быть отмыты с большой степенью полноты; конструкция разделочных машин упрощается в сравнении с конструкцией машин для механического снятия оболочек. Недостаток метода рубки-выщелачивания - сложность оборудования для рубки ТВЭЛов и необходимость его дистанционного обслуживания. В настоящее время исследуют возможность замены механических способов рубки на электролитический и лазерный методы.

В отработанных ТВЭЛах энергетических реакторов высокой и средней глубины выгорания накапливается большое количество газообразных радиоактивных продуктов, которые представляют серьезную биологическую опасность: тритий, иод и криптон. В процессе растворения ядерного топлива они в основном выделяются и уходят с газовыми потоками, но частично остаются в растворе, а затем распределяются в большом количестве продуктов по всей цепочки переработки. Особенно опасен тритий, образующий тритированную воду НТО, которую затем трудно отделить от обычной воды Н2О. Поэтому на стадии подготовки топлива к растворению вводят дополнительные операции, позволяющие освободить топливо от основной массы радиоактивных газов, сосредоточив их в небольших объемах сбросных продуктов. Куски оксидного топлива подвергают окислительной обработке кислородом при температуре 450-470 о С. При перестройке структуры решетки топлива в связи с переходом UO 2 -U 3 O 8 происходит выделение газообразных продуктов деления - тритий,йод, благородных газов. Разрыхление топливного материала при выделении газообразных продуктов, а также при переходе диоксида урана в закись-окись способствует ускорению последующего растворения материалов в азотной кислоте.

Выбор метода переведения ядерного топлива в раствор зависит от химической формы топлива, способа предварительной подготовки топлива, необходимости обеспечения определенной производительности. Металлический уран растворяют в 8-11М HNO 3 , а диоксид урана - в 6-8М HNO 3 при температуре 80-100 о С.

Разрушение топливной композиции при растворении приводит к освобождению всех радиоактивных продуктов деления. При этом газообразные продукты деления попадают в систему сброса отходящих газов. Перед выбросом в атмосферу сбросные газы очищают.

Выделение и очистка целевых продуктов

Уран и плутоний, разделенные после первого цикла экстракции, подвергают дальнейшей очистке от продуктов деления, нептуния и друг от друга до уровня, отвечающего техническим условиям ЯТЦ и затем превращают в товарную форму.

Наилучших результатов по дальнейшей очистке урана достигают комбинированием разных методов, например экстракции и ионного обмена. Однако в промышленном масштабе экономичнее и технически проще использовать повторение циклов экстракции с одним и тем же растворителем - трибутилфосфатом.

Число циклов экстракции и глубина очистки урана определяются типом и выгоранием ядерного топлива, поступающего на переработку, и задачей отделения нептуния. Для удовлетворения технических условий по содержанию примесных α-излучателей в уране общий коэффициент очистки от нептуния должен быть ≥500. Уран после сорбционной очистки реэкстрагируют в водный раствор, который анализируют на чистоту, содержание урана и степень обогащения по 235U.

Завершающая стадия аффинажа урана предназначена для перевода его в оксиды урана - либо осаждением в виде перекиси уранила, оксалата уранила, уранилкарбоната аммония или ураната аммония с последующим их прокаливанием, либо прямым термическим разложением гексагидрата уранилнитрата.

Плутоний после отделения от основной массы урана подвергают дальнейшей очистке от продуктов деления, урана и других актиноидов до собственного фона по γ- и β-активности. В качестве конечного продукта на заводах стремятся получать диоксид плутония, а в дальнейшем в комплексе с химической переработкой осуществлять и производство ТВЭЛов, что позволяет избежать дорогостоящих перевозок плутония, требующих особых предосторожностей особенно при перевозке растворов нитрата плутония. Все стадии технологического процесса очистки и концентрирования плутония требуют особой надежности систем обеспечения ядерной безопасности, а также защиты персонала и предотвращения возможности загрязнения окружающей среды ввиду токсичности плутония и высокого уровня α-излучения. При разработке оборудования учитывают все факторы, которые могут вызвать возникновение критичности: массу делящегося материала, гомогенность, геометрию, отражение нейтронов, замедление и поглощение нейтронов, а также концентрацию делящегося вещества в данном процессе и др. Минимальная критическая масса водного раствора нитрата плутония равна 510 г (при наличии водяного отражателя). Ядерная безопасность при осуществлении операций в плутониевой ветви обеспечивается специальной геометрией аппаратов (их диаметр и объем) и ограничением концентрации плутония в растворе, которая постоянно контролируется в определенных точках непрерывного процесса.

Технология окончательной очистки и концентрирования плутония основывается на проведении последовательных циклов экстракции или ионного обмена и дополнительной аффинажной операции осаждения плутония с последующим термическим превращением его в двуокись.

Диоксид плутония поступает в установку кондиционирования, где её подвергают прокаливанию, дроблению, просеиванию, комплектованию партий и упаковке.

Для изготовления смешанного уран-плутониевого топлива целесообразен метод химического соосаждения урана и плутония, позволяющий достичь полной гомогенности топлива. Такой процесс не требует разделения урана и плутония при переработке отработавшего топлива. В этом случае смешанные растворы получают при частичном разделении урана и плутония вытеснительной реэкстракций. Таким способом можно получать (U, Pu)O2 для легководных ядерных реакторов на тепловых нейтронах с содержанием PuO2 3%, а также для реакторов на быстрых нейтронах с содержанием PuO2 20%.

Дискуссия о целесообразности регенерации отработавшего топлива носит не только научно-технический и экономический, но и политический характер, так как развертывание строительства заводов регенерации представляет потенциальную угрозу распространения ядерного оружия. Центральная проблема - обеспечение полной безопасности производства, т.е. обеспечение гарантий контролируемого использования плутония и экологической безопасности. Поэтому сейчас создаются эффективные системы контроля технологического процесса химической переработки ядерного топлива, обеспечивающие возможность определения количества делящихся материалов на любой стадии процесса. Обеспечению гарантий нераспространения ядерного оружия служат так же предложения так называемых альтернативных технологических процессов, например CIVEX-процесс, в котором плутоний ни на одной из стадий процесса не отделяется полностью от урана и продуктов деления, что значительно затрудняет возможность его использования во взрывных устройствах.

Civex - воспроизводство ядерного топлива без выделения плутония.

Для повышения экологичности переработки ОЯТ разрабатываются неводные технологические процессы, в основе которых лежат различия летучести компонентов перерабатываемой системы. Преимущества неводных процессов заключаются в их компактности, в отсутствии сильных разбавлений и образовании больших объемов жидких радиоактивных отходов, в меньшем влиянии процессов радиационного разложения. Образующиеся отходы находятся в твердой фазе и занимают значительно меньший объем.

В настоящее время прорабатывается вариант организации АЭС, при котором на станции строятся не одинаковые блоки (например, три однотипных блока на тепловых нейтронах), а разнотипные (например, два тепловых и один быстрый реактор). Сначала обогащенное по 235U топливо сжигается на тепловом реакторе (с образованием плутония), затем ОТЯ топливо перемещается в быстрый реактор, в котором за счет возникшего плутония перерабатывается 238U. После окончания цикла использования, ОЯТ подается на радиохимический завод, который расположен прямо на территории АЭС. Завод не занимается полной переработкой топлива - он ограничивается выделением из ОЯТ только урана и плутония (путем отгонки шестифтористых фторидовэтих элементов). Выделенные уран и плутоний поступают на изготовление нового смешанного топлива, а оставшееся ОЯТ идёт или на завод по выделению полезных радионуклидов, или на захоронение.

Топливо, побывавшее в ядерном реакторе, становится радиоактивным, т. е. опасным для окружающей среды и человека. Поэтому обращение с ним осуществляется дистанционно и с применением толстостенных упаковочных комплектов, позволяющих поглотить испускаемое им излучение. Однако кроме опасности отработавшее ядерное топливо (ОЯТ) может приносить и несомненную пользу: оно является вторичным сырьем для получения свежего ядерного топлива, поскольку содержит уран-235, изотопы плутония и уран-238. Переработка ОЯТ позволяет уменьшить вред, наносимый окружающей среде в результате разработки урановых месторождений, так как свежее топливо фабрикуется из очищенного урана и плутония - продуктов переработки облученного топлива. Более того, из ОЯТ выделяются радиоактивные изотопы, используемые в науке, технике и медицине.

Предприятия по хранению и/или переработке ОЯТ - Производственное объединение «Маяк» (г. Озерск, Челябинская область) и Горно-химический комбинат (г. Железногорск, Красноярский край) входят состав комплекса ядерной и радиационной безопасности Госкорпорации «Росатом». На ПО «Маяк» ведется переработка отработавшего ядерного топлива, а на Горно-химическом комбинате завершается строительство нового «сухого» хранилища для ОЯТ. Развитие ядерной энергетики в нашей стране, по-видимому, повлечет за собой и увеличение масштабов предприятий по обращению с ОЯТ, тем более, что стратегии развития атомного энергопромышленного комплекса России подразумевают реализацию замкнутого ядерного топливного цикла с использованием очищенного урана и плутония, выделенных из ОЯТ.

На сегодняшний день заводы по переработке ОЯТ действуют лишь в четырех странах мира - России, Франции, Великобритании и Японии. Единственный действующий завод в России - РТ-1 на ПО «Маяк» - имеет проектную производительность 400 тонн ОЯТ в год, хотя сейчас его загрузка не превышает 150 тонн в год; завод РТ-2 (1500 тонн в год) на Горно-химическом комбинате находится в стадии замороженного строительства. Во Франции сейчас эксплуатируется два таких завода (UP-2 и UP-3 на мысе Ла Аг) с общей производительностью 1600 тонн в год. Кстати, на этих заводах перерабатывается не только топливо французских АЭС, заключены многомиллиардные контракты на его переработку с энергокомпаниями Германии, Японии, Швейцарии и других стран. В Великобритании действует завод «Торп» («Thorp») мощностью 1200 тонн в год. В Японии эксплуатируется предприятие, расположенное в Роккасе-Мура, производительностью 800 тонн ОЯТ в год; есть также опытный завод в Токаи-Мура (90 тонн в год).
Таким образом, ведущие мировые ядерные державы придерживаются идеи «замыкания» ядерного топливного цикла, которое постепенно становится экономически выгодным в условиях удорожания добычи урана, связанной с переходом к разработке менее богатых месторождений с низким содержанием урана в руде.

ПО «Маяк» также выпускает изотопную продукцию - радиоактивные источники для науки, техники, медицины и сельского хозяйства. Производством стабильных (нерадиоактивных) изотопов занимается Комбинат «Электрохимприбор», выполняющий, в том числе, и гособоронзаказ.

Отработанное ядерное топливо энергетических реакторов Начальная стадия послереакторного этапа ЯТЦ одинакова для открытого и закрытого циклов ЯТЦ.

Она включает в себя извлечение ТВЭЛов с отработанным ядерным топливом из реактора, хранение его в пристанционном бассейне («мокрое» хранение в бассейнах выдержки под водой) в течение нескольких лет и затем транспортировка к заводу переработки. В открытом варианте ЯТЦ отработанное топливо помещают в специально оборудованные хранилища («сухое» хранение в среде инертного газа или воздуха в контейнерах или камерах), где выдерживают нескольких десятилетий, затем перерабатывают в форму, предотвращающую хищение радионуклидов и подготавливают к окончательному захоронению.

В закрытом варианте ЯТЦ отработавшее топливо поступает на радиохимический завод, где перерабатывается с целью извлечения делящихся ядерных материалов.

Отработанное ядерное топливо (ОЯТ) - особый вид радиоактивных материалов – сырьё для радиохимической промышленности.

Облученные тепловыделяющие элементы, извлеченные из реактора после их отработки, обладают значительной накопленной активностью. Различают два вида ОЯТ:

1) ОЯТ промышленных реакторов, которое имеет химическую форму как самого топлива, так и его оболочки, удобную для растворения и последующей переработки;

2) ТВЭЛы энергетических реакторов.

ОЯТ промышленных реакторов перерабатывают в обязательном порядке, тогда как ОЯТ перерабатывают далеко не всегда. Энергетическое ОЯТ относят к высокоактивным отходам, если не подвергают дальнейшей переработке, или к ценному энергетическому сырью, если подвергают переработке. В некоторых странах (США, Швеция, Канада, Испания, Финляндия) ОЯТ полностью относят к радиоактивным отходам (РАО). В Англии, Франции, Японии – к энергетическому сырью. В России часть ОЯТ считается радиоактивными отходами, часть поступает на переработку на радиохимические заводы (146).

Из-за того, что далеко не все страны придерживаются тактики замкнутого ядерного цикла, ОЯТ в мире постоянно увеличивается. Практика стран, придерживающихся замкнутого уранового топливного цикла показала, что частичное замыкание ЯТЦ легководных реакторов убыточно даже при возможном в последующие десятилетия удорожании урана в 3-4 раза. Тем не менее эти страны замыкают ЯТЦ легководных реакторов, покрывая затраты за счет увеличения тарифов на электроэнергию. Наоборот, США и некоторые другие страны отказываются от переработки ОЯТ, имея в виду будущее окончательное захоронение ОЯТ, предпочитая его длительную выдержку, что оказывается дешевле. Тем не менее, ожидается, что к двадцатым годам переработка ОЯТ в мире увеличится.



Извлеченное из активной зоны энергетического реактора ТВС с отработанным ядерным топливом хранят в бассейне выдержки на АЭС в течение 5-10 лет для снижения в них тепловыделения и распада короткоживущих радионуклидов. В 1 кг отработавшего ядерного топлива АЭС в первый день после его выгрузки из реактора содержится от 26 до 180 тыс. Ки радиоактивности. Через год активность 1 кг ОЯТ снижается до 1 тыс. Ки, через 30 лет-до 0,26 тыс. Ки. Через год после выемки, в результате распада короткоживущих радионуклидов активность ОЯТ сокращается в 11 - 12 раз, а через 30 лет - в 140 - 220 раз и дальше медленно уменьшается в течение сотен лет 9 (146).

Если в реактор первоначально загружался природный уран, то в отработавшем топливе остается 0,2 - 0,3% 235U. Повторное обогащение такого урана экономически нецелесообразно, поэтому он остается в виде так называемого отвального урана. Отвальный уран в дальнейшем может быть использован как воспроизводящий материал в реакторах на быстрых нейтронах. При использовании для загрузки ядерных реакторов низкообогащенного урана ОЯТ содержит 1% 235U. Такой уран может быть дообогащен до первоначального содержания его в ядерном топливе, и возвращен в ЯТЦ. Восстановление реактивности ядерного топлива может быть осуществлено добавлением в него других делящихся нуклидов - 239Pu или 233U, т.е. вторичного ядерного топлива. Если к обедненному урану добавляется 239Pu в количестве, эквивалентном обогащению топлива 235U, то реализуется уран-плутониевый топливный цикл. Смешанное уран-плутониевое топливо используется как в реакторах на тепловых, так и на быстрых нейтронах. Уран-плутониевое топливо обеспечивает максимально полное использование урановых ресурсов и расширенное воспроизводство делящегося материала. Для технологии регенерации ядерного топлива чрезвычайно важны характеристики выгружаемого из реактора топлива: химический и радиохимический состав, содержание делящихся материалов, уровень активности. Эти характеристики ядерного топлива определяются мощностью реактора, глубиной выгорания топлива в реакторе, продолжительностью кампании, коэффициентом воспроизводства вторичных делящихся материалов, времени выдержки топлива после выгрузки его из реактора, типом реактора.

Выгруженное из реакторов отработавшее ядерное топливо передается на переработку только после определенной выдержки. Это связано с тем, что среди продуктов деления имеется большое количество короткоживущих радионуклидов, которые определяют большую долю активности выгружаемого из реактора топлива. Поэтому свежевыгруженное топливо выдерживают в специальных хранилищах в течение времени, достаточного для распада основного количества короткоживущих радионуклидов. Это значительно облегчает организацию биологической защиты, снижает радиационное воздействие на химические реагенты и растворители в процессе переработки обработавшего ядерного топлива и уменьшает набор элементов, от которых должны быть очищены основные продукты. Так, после двух-трехлетней выдержки активность облученного топлива определяют долгоживущие продукты деления: Zr, Nb, Sr, Ce и другие РЗЭ, Ru и α-активные трансурановые элементы. 96% ОЯТ – это уран-235 и уран-238, 1% - плутоний, 2-3% - радиоактивные осколки деления.

Время выдержки ОЯТ - 3 года для легководных реакторов, 150 суток для реакторов на быстрых нейтронах (155).

Суммарная активность продуктов деления, содержащихся в 1 т ОЯТ ВВЭР-1000 после трех лет выдержки в бассейне выдержки (ББ), составляет 790000 Ки.

При хранении ОЯТ в пристанционном хранилище, его активность монотонно уменьшается (примерно на порядок за 10 лет). Когда активность упадет до норм, определяющих безопасность транспортировки ОЯТ по железной дороге, его извлекают их хранилища и перемещают либо в долговременное хранилище, либо на завод по переработке топлива. На перерабатывающем заводе сборки ТВЭЛов с помощью погрузочно-разгрузочных механизмов перегружается из контейнеров в заводской буферный бассейн-хранилище. Здесь сборки хранят до тех пор, пока их не направляют на переработку. После выдержки в бассейне в течение срока, выбранного на данном заводе, ТВС выгружают из хранилища и направляют в отделение подготовки топлива к экстракции на операции вскрытия отработавших твэлов.

Переработку облученного ядерного топлива проводят с целью извлечения из него делящихся радионуклидов (прежде всего 233U, 235U и 239Pu), очистки урана от нейтрон поглощающих примесей, выделения нептуния и некоторых других трансурановых элементов, получения изотопов для промышленных, научных или медицинских целей. Под переработкой ядерного топлива понимают переработку ТВЭЛов энергетических, научных или транспортных реакторов, так и переработку бланкетов реакторов-размножителей. Радиохимическая переработка ОЯТ – основная стадия закрытого варианта ЯТЦ, и обязательная стадия наработки оружейного плутония (рис.35).

Переработка делящегося материала, облученного нейтронами в ядерном реакторе топлива осуществляется для решения таких задач, как

Получение урана и плутония для производства нового топлива;

Получение делящихся материалов (урана и плутония) для производства ядерных боеприпасов;

Получение разнообразных радиоизотопов, находящих применение в медицине, промышленности и науке;

Рис. 35. Некотрые этапы переботки отработанного ядерного топлива на ПО Маяк. Все операции проводят с помощью манипуляторов и камерах защищенных 6-слойным свинцовым скеклом (155).

Получение доходов от других стран, которые либо заинтересованы в первом и втором, либо не хотят хранить у себя большие объемы ОЯТ;

Решение экологических проблем, связанных с захоронением РАО.

В России перерабатывается облученный уран реакторов-бридеров и ТВЭЛы реакторов ВВЭР-440, БН и некоторых судовых двигателей; ТВЭЛы основных типов энергетических реакторов ВВЭР-1000, РБМК (любых типов) не перерабатываются и в настоящее время накапливаются в специальных хранилищах.

В настоящее время количество ОЯТ постоянно увеличивается и его регенерация - основная задача радиохимической технологии переработки отработавших ТВЭЛов. В процессе переработки проводится выделение урана и плутония и очистка их от радиоактивных продуктов деления, в том числе от нейтронопоглощающих нуклидов (нейтронных ядов), которые при повторном использовании делящихся материалов могут препятствовать развитию в реакторе цепной ядерной реакции.

Среди радиоактивных продуктов деления содержится большое количество ценных радионуклидов, которые можно использовать в области малой ядерной энергетики (радиоизотопные источники тепла для термогенераторов электроэнергии), а также для изготовления источников ионизирующего излучения. Применение находят трансурановые элементы, получающиеся в результате побочных реакций ядер урана с нейтронами. Радиохимическая технология переработки ОЯТ должна обеспечивать извлечение всех нуклидов, полезных с практической точки зрения или представляющих научный интерес(147 43).

Процесс химической переработки отработавшего топлива связан с решением проблемы изоляции от биосферы большого количества радионуклидов образующихся в результате деления ядер урана. Эта проблема - одна из наиболее серьезных и трудно решаемых проблем развития ядерной энергетики.

Первая стадия радиохимического производства включает подготовку топлива, т.е. в освобождение его от конструкционных деталей сборок и разрушение защитных оболочек ТВЭЛов. Следующая стадия связана с переводом ядерного топлива в ту фазу, из которой будет производиться химическая обработка: в раствор, в расплав, в газовую фазу. Перевод в раствор чаще всего производят растворением в азотной кислоте. При этом уран переходит в шестивалентное состояние и образует ион уранила, UO 2 2+ , а плутоний - частично в шести и в четырехвалентное состояние, PuO 2 2+ и Pu 4+ соответственно. Перевод в газовую фазу связан с образованием летучих галогенидов урана и плутония. После перевода ядерных материалов соответствующую фазу проводят ряд операций, непосредственно связанных с выделением и очисткой ценных компонентов и выдачей каждого из них в форме товарного продукта(рис.36).

Рис.36. Общая схема обращения урана и плутония в замкнутом цикле (156).

Переработка (репроцессинг) ОЯТ заключается в извлечении урана, накопленного плутония и фракций осколочных элементов. В 1 т ОЯТ на момент извлечения из реактора содержится 950-980 кг 235U и 238U, 5,5-9,6 кг Pu, а также небольшое количество α- излучателей (нептуний, америций, кюрий и др.), активность которых может достигать 26 тыс. Ки на 1 кг ОЯТ. Именно эти элементы в ходе замкнутого ЯТЦ необходимо выделить, сконцентрировать, очистить и перевести в необходимую химическую форму.

Технологический процесс переработки ОЯТ включает:

Механическую фрагментацию (рубку) ТВС и ТВЭЛов с целью вскрытия топливного материала;

Растворение;

Очистку растворов балластных примесей;

Экстракционное выделение и очистку урана, плутония и других товарных нуклидов;

Выделение диоксида плутония, диоксида нептуния, гексагидрата нитрата уранила и закиси-окиси урана;

Переработку растворов, содержащих другие радионуклиды, и их выделение.

В основе технологии выделения урана и плутония, их разделения и очистки от продуктов деления лежит процесс экстракции урана и плутония трибутилфосфатом. Он осуществляется на многоступенчатых экстракторах непрерывного действия. В результате уран и плутоний очищаются от продуктов деления в миллионы раз. Переработка ОЯТ связана с образованием небольшого объема твердых и газообразных РАО активностью около 0,22 Ки/год (предельно допустимый выброс 0,9 Ки/год) и большим количеством жидких радиоактивных отходов.

Все конструкционные материалы ТВЕЛов отличаются химической стойкостью, и растворение их представляет серьезную проблему. Кроме делящихся материалов, ТВЭЛы содержат различные накопители и покрытия, состоящие из нержавеющей стали, циркония, молибдена, кремния, графита, хрома и др. При растворении ядерного топлива эти вещества не растворяются в азотной кислоте и создают в полученном растворе большое количество взвесей и коллоидов.

Перечисленные особенности ТВЭЛов обусловили необходимость разработки новых методов вскрытия или растворения оболочек, а также осветления растворов ядерного топлива перед экстракционной переработкой.

Глубина выгорания топлива реакторов для получения плутония существенно отличается от глубины выгорания топлива энергетических реакторов. Поэтому на переработку поступает материалы с гораздо более высоким содержанием радиоактивных осколочных элементов и плутония на 1 т U. Это приводит к повышению требований к процессам очистки получаемых продуктов и к обеспечению ядерной безопасности в процессе переработки. Трудности возникают из-за необходимости переработки и захоронения большого количества жидких высокоактивных отходов.

Далее проводят выделение, разделение и очистку урана, плутония и нептуния тремя экстракционными циклами. В первом цикле осуществляют совместную очистку урана и плутония от основной массы продуктов деления, а затем проводят разделение урана и плутония. На втором и третьем циклах уран и плутоний подвергают дальнейшей раздельной очистке и концентрированию. Полученные продукты - уранилнитрат и нитрат плутония - помещают в буферные ёмкости до передачи их в конверсионные установки. В раствор нитрата плутония добавляют щавелевую кислоту, образующуюся суспензию оксалата фильтруют, осадок кальцинируют.

Порошкообразную окись плутония просеивают через сито и помещают в контейнеры. В таком виде плутоний хранят до того, как он поступит на завод по изготовлению новых ТВЭЛов.

Отделение материала оболочки ТВЭЛов от топливной оболочки - одна из наиболее сложных задач процесса регенерации ядерного топлива. Существующие методы можно разделить на две группы: методы вскрытия с разделением материалов оболочки и сердечника ТВЭЛов и методы вскрытия без отделения материалов оболочки от материала сердечника. Первая группа предусматривает снятие оболочки ТВЭЛов и удаление конструкционных материалов до растворения ядерного топлива. Водно-химические методы заключаются в растворении материалов оболочки в растворителях, не затрагивающих материалы сердечника.

Использование этих методов характерно для переработки ТВЭЛов из металлического урана в оболочках из алюминия или магния и его сплавов. Алюминий легко растворяется в едком натре или азотной кислоте, а магний - в разбавленных растворах серной кислоты при нагревании. После растворения оболочки сердечник растворяют в азотной кислоте.

Однако ТВЭЛы современных энергетических реакторов имеют оболочки из коррозионностойких, труднорастворимых материалов: циркония, сплавов циркония с оловом (циркалой) или с ниобием, нержавеющей стали. Селективное растворение этих материалов возможно только в сильно агрессивных средах. Цирконий растворяют в плавиковой кислоте, в смесях её со щавелевой или азотной кислотами или растворе NH4F. Оболочку из нержавеющей стали - в кипящей 4-6 М H 2 SO 4 . Основной недостаток химического способа снятия оболочек - образование большого количества сильно засолённых жидких радиоактивных отходов.

Чтобы уменьшить объем отходов от разрушения оболочек и получить эти отходы сразу в твёрдом состоянии, более пригодном для длительного хранения, разрабатывают процессы разрушения оболочек под воздействием неводных реагентов при повышенной температуре (пирохимические методы). Оболочку из циркония снимают безводным хлористым водородом в псевдоожиженном слое Аl 2 О 3 при 350-800 о С. Цирконий превращается при этом в летучий ZrC l4 и отделяется от материала сердечника сублимацией, а затем гидролизуется, образуя твердую двуокись циркония. Пирометаллургические методы основаны на прямом оплавлении оболочек или растворения их в расплавах других металлов. Эти методы используют различие в температурах плавления материалов оболочки и сердечника или различие их растворимости в других расплавленных металлах или солях.

Механические методы снятия оболочек включают несколько стадий. Сначала отрезают концевые детали тепловыделяющей сборки и разбирают ее на пучки ТВЭЛов и на отдельные ТВЭЛы. Затем механически снимают оболочки отдельно с каждого ТВЭЛа.

Вскрытие ТВЭЛов может проводиться без отделения материалов оболочки от материала сердечника.

При реализации водно-химических методов оболочку и сердечник растворяют в одном и том же растворителе с получением общего раствора. Совместное растворение целесообразно при переработке топлива с высоким содержанием ценных компонентов (235U и Pu) или когда на одном заводе перерабатывают разные виды ТВЭЛов, различающихся размером и конфигурацией. В случае пирохимических методов ТВЭЛ обрабатывают газообразными реагентами, которые разрушают не только оболочку, но и сердечник.

Удачной альтернативой методам вскрытия с одновременным удалением оболочки и методам совместного разрушения оболочки и сердечников оказался метод «рубка-выщелачивание». Метод пригоден для переработки ТВЭЛов в оболочках, нерастворимых в азотной кислоте. Сборки ТВЭЛов разрезают на мелкие куски, обнаружившийся сердечник ТВЭЛа становится доступным действию химических реагентов и растворяется в азотной кислоте. Нерастворившиеся оболочки отмывают от остатков задержавшегося в них раствора и удаляют в виде скрапа. Рубка ТВЭЛов имеет определенные преимущества. Образующиеся отходы - остатки оболочек - находятся в твердом состоянии, т.е. не происходит образования жидких радиоактивных отходов, как при химическом растворении оболочки; не происходит и значительных потерь ценных компонентов, как при механическом снятии оболочек, так как отрезки оболочек могут быть отмыты с большой степенью полноты; конструкция разделочных машин упрощается в сравнении с конструкцией машин для механического снятия оболочек. Недостаток метода рубки-выщелачивания - сложность оборудования для рубки ТВЭЛов и необходимость его дистанционного обслуживания. В настоящее время исследуют возможность замены механических способов рубки на электролитический и лазерный методы.

В отработанных ТВЭЛах энергетических реакторов высокой и средней глубины выгорания накапливается большое количество газообразных радиоактивных продуктов, которые представляют серьезную биологическую опасность: тритий, иод и криптон. В процессе растворения ядерного топлива они в основном выделяются и уходят с газовыми потоками, но частично остаются в растворе, а затем распределяются в большом количестве продуктов по всей цепочки переработки. Особенно опасен тритий, образующий тритированную воду НТО, которую затем трудно отделить от обычной воды Н2О. Поэтому на стадии подготовки топлива к растворению вводят дополнительные операции, позволяющие освободить топливо от основной массы радиоактивных газов, сосредоточив их в небольших объемах сбросных продуктов. Куски оксидного топлива подвергают окислительной обработке кислородом при температуре 450-470 о С. При перестройке структуры решетки топлива в связи с переходом UO 2 -U 3 O 8 происходит выделение газообразных продуктов деления - тритий,йод, благородных газов. Разрыхление топливного материала при выделении газообразных продуктов, а также при переходе диоксида урана в закись-окись способствует ускорению последующего растворения материалов в азотной кислоте.

Выбор метода переведения ядерного топлива в раствор зависит от химической формы топлива, способа предварительной подготовки топлива, необходимости обеспечения определенной производительности. Металлический уран растворяют в 8-11М HNO 3 , а диоксид урана - в 6-8М HNO 3 при температуре 80-100 о С.

Разрушение топливной композиции при растворении приводит к освобождению всех радиоактивных продуктов деления. При этом газообразные продукты деления попадают в систему сброса отходящих газов. Перед выбросом в атмосферу сбросные газы очищают.

Выделение и очистка целевых продуктов

Уран и плутоний, разделенные после первого цикла экстракции, подвергают дальнейшей очистке от продуктов деления, нептуния и друг от друга до уровня, отвечающего техническим условиям ЯТЦ и затем превращают в товарную форму.

Наилучших результатов по дальнейшей очистке урана достигают комбинированием разных методов, например экстракции и ионного обмена. Однако в промышленном масштабе экономичнее и технически проще использовать повторение циклов экстракции с одним и тем же растворителем - трибутилфосфатом.

Число циклов экстракции и глубина очистки урана определяются типом и выгоранием ядерного топлива, поступающего на переработку, и задачей отделения нептуния. Для удовлетворения технических условий по содержанию примесных α-излучателей в уране общий коэффициент очистки от нептуния должен быть ≥500. Уран после сорбционной очистки реэкстрагируют в водный раствор, который анализируют на чистоту, содержание урана и степень обогащения по 235U.

Завершающая стадия аффинажа урана предназначена для перевода его в оксиды урана - либо осаждением в виде перекиси уранила, оксалата уранила, уранилкарбоната аммония или ураната аммония с последующим их прокаливанием, либо прямым термическим разложением гексагидрата уранилнитрата.

Плутоний после отделения от основной массы урана подвергают дальнейшей очистке от продуктов деления, урана и других актиноидов до собственного фона по γ- и β-активности. В качестве конечного продукта на заводах стремятся получать диоксид плутония, а в дальнейшем в комплексе с химической переработкой осуществлять и производство ТВЭЛов, что позволяет избежать дорогостоящих перевозок плутония, требующих особых предосторожностей особенно при перевозке растворов нитрата плутония. Все стадии технологического процесса очистки и концентрирования плутония требуют особой надежности систем обеспечения ядерной безопасности, а также защиты персонала и предотвращения возможности загрязнения окружающей среды ввиду токсичности плутония и высокого уровня α-излучения. При разработке оборудования учитывают все факторы, которые могут вызвать возникновение критичности: массу делящегося материала, гомогенность, геометрию, отражение нейтронов, замедление и поглощение нейтронов, а также концентрацию делящегося вещества в данном процессе и др. Минимальная критическая масса водного раствора нитрата плутония равна 510 г (при наличии водяного отражателя). Ядерная безопасность при осуществлении операций в плутониевой ветви обеспечивается специальной геометрией аппаратов (их диаметр и объем) и ограничением концентрации плутония в растворе, которая постоянно контролируется в определенных точках непрерывного процесса.

Технология окончательной очистки и концентрирования плутония основывается на проведении последовательных циклов экстракции или ионного обмена и дополнительной аффинажной операции осаждения плутония с последующим термическим превращением его в двуокись.

Диоксид плутония поступает в установку кондиционирования, где её подвергают прокаливанию, дроблению, просеиванию, комплектованию партий и упаковке.

Для изготовления смешанного уран-плутониевого топлива целесообразен метод химического соосаждения урана и плутония, позволяющий достичь полной гомогенности топлива. Такой процесс не требует разделения урана и плутония при переработке отработавшего топлива. В этом случае смешанные растворы получают при частичном разделении урана и плутония вытеснительной реэкстракций. Таким способом можно получать (U, Pu)O2 для легководных ядерных реакторов на тепловых нейтронах с содержанием PuO2 3%, а также для реакторов на быстрых нейтронах с содержанием PuO2 20%.

Дискуссия о целесообразности регенерации отработавшего топлива носит не только научно-технический и экономический, но и политический характер, так как развертывание строительства заводов регенерации представляет потенциальную угрозу распространения ядерного оружия. Центральная проблема - обеспечение полной безопасности производства, т.е. обеспечение гарантий контролируемого использования плутония и экологической безопасности. Поэтому сейчас создаются эффективные системы контроля технологического процесса химической переработки ядерного топлива, обеспечивающие возможность определения количества делящихся материалов на любой стадии процесса. Обеспечению гарантий нераспространения ядерного оружия служат так же предложения так называемых альтернативных технологических процессов, например CIVEX-процесс, в котором плутоний ни на одной из стадий процесса не отделяется полностью от урана и продуктов деления, что значительно затрудняет возможность его использования во взрывных устройствах.

Civex - воспроизводство ядерного топлива без выделения плутония.

Для повышения экологичности переработки ОЯТ разрабатываются неводные технологические процессы, в основе которых лежат различия летучести компонентов перерабатываемой системы. Преимущества неводных процессов заключаются в их компактности, в отсутствии сильных разбавлений и образовании больших объемов жидких радиоактивных отходов, в меньшем влиянии процессов радиационного разложения. Образующиеся отходы находятся в твердой фазе и занимают значительно меньший объем.

В настоящее время прорабатывается вариант организации АЭС, при котором на станции строятся не одинаковые блоки (например, три однотипных блока на тепловых нейтронах), а разнотипные (например, два тепловых и один быстрый реактор). Сначала обогащенное по 235U топливо сжигается на тепловом реакторе (с образованием плутония), затем ОТЯ топливо перемещается в быстрый реактор, в котором за счет возникшего плутония перерабатывается 238U. После окончания цикла использования, ОЯТ подается на радиохимический завод, который расположен прямо на территории АЭС. Завод не занимается полной переработкой топлива - он ограничивается выделением из ОЯТ только урана и плутония (путем отгонки шестифтористых фторидовэтих элементов). Выделенные уран и плутоний поступают на изготовление нового смешанного топлива, а оставшееся ОЯТ идёт или на завод по выделению полезных радионуклидов, или на захоронение.

Химическая переработка облученного ядерного топлива осуществляется с целью извлечения плутония, урана и других ценных компонентов и очистки их от продуктов деления. В лабораториях ядерных центров многих стран исследовались различные методы переработки облученного топлива, которые можно классифицировать как водные и неводные . В опытном масштабе исследовались такие методы как: висмут-фосфатный, тригли, бутекс, торекс, экстракция аминами, аква-фтор-процесс - водные методы ; возгонка фторидов, плавка-рафинирование с селективным окислением, электролиз солей - неводные методы .

В ряде стран ведутся исследования и разработки так называемых сухих (безводных ) методов химической регенерации: фторидных (основанных на превращении U и Pu в газообразную фазу гексафторидов), пирометаллургических, экстракционных, в расплавах солей и др. Их цель – обеспечить наиболее эффективную в техническом и экономическом отношении промышленную технологию регенерации с одновременным решением проблемы переработки, консервации и удаление радиоактивных отходов в наиболее компактном и безопасном для хранения виде. Предполагается, что сухие методы позволят осуществить регенерацию топлива активных зон реакторов-размножителей на быстрых нейтронах с короткой выдержкой этого топлива и с меньшими потерями его по сравнению с жидкостной экстракцией. Эти методы привлекательны также тем, что удельные объемы получаемых радиоактивных отходов малы (преимущественно твердая компактная форма, пригодная для консервации в процессе регенерации). Большая часть установок, на которых проводили исследования и отработку перечисленных выше методов в настоящее время не функционируют.

Интенсивно разрабатывались водные методы переработки, основанные на использовании жидкостной противоточной экстракции. Среди них водно-экстракционная технология выделения и очистки урана и плутония от продуктов деления трибутилфосфатом (пьюрекс-процесс ) признана наиболее эффективной и используется на всех существующих промышленных предприятиях по переработке ОЯТ. Этот метод является единственным промышленно освоенным методом химической переработки отработавшего в реакторах АЭС оксидного уранового топлива.

Экстракция урана и плутония трибутилфосфатом по технологической схеме, названной пьюрекс-процессом, впервые примененной в США в 1945г. для выделения плутония из облученного металлического природного урана. Этот метод имеет различные усовершенствования и технологические варианты, направленные на снижение радиационного воздействия на экстрагент и достижение более глубокой очистки урана и плутония от продуктов деления. Эти усовершенствования позволили применить пьюрекс-процесс для переработки окисного топлива.

Как при жидкостных, так и при сухих методах химической переработки отработавшего топлива процессы (и связанные с ними трудности) очистки, консервации и удаления газообразных и летучих продуктов деления весьма схожи, хотя при сухих процессах улавливание и удаление йода и трития упрощаются. На рис.19 приведена схема основных этапов подготовки и радиохимической переработки отработавшего топлива методом жидкой экстракции.

Для отработавшего топлива реакторов на тепловых нейтронах типа LWR (США), ВВЭР и РБМК (Россия) установлено оптимальное время выдержки в бассейнах с водой на АЭС 3-5 лет, минимальное – 1 год. Для реакторов-размножителей на быстрых нейтронах нормативное время пребывания ТВС в бассейнах выдержки пока не установлено. В интересах получения малого времени удвоения топлива это время должно быть минимальным (не более года).

Поступившее от АЭС на радиохимический завод топливо перегружают под водой из контейнеров в бассейн складов хранилищ, где ТВС устанавливают в специальных стойках или стеллажах, размещая так, чтобы в любых случаях не достигалась критическая масса и обеспечивалось необходимое охлаждение. Глубина бассейнов и толщина слоя воды над ТВС рассчитаны так, чтобы создать необходимую радиационную защиту. Бассейны имеют замкнутую циркуляционную систему для охлаждения и очистки воды и снабжены отсосами воздуха в систему специальной очистки вентиляции.

Из бассейнов ТВС поступают в отделение разделки, представляющее собой наиболее сложный комплекс радиохимического завода, оснащенный дистанционно-управляемой техникой. Разделка ТВС перед растворением топлива на заводах США и Западной Европы (кроме завода «Еврокемик» в Моле, Бельгия) осуществляется механическими средствами: рубка с помощью специальных прессов, разрезка фрезами ТВС целиком без разборки на отдельные твэлы, при этом предварительно отрезаются концевые детали («холостые концы»), не содержащие топлива. На заводе «Еврокемик» в Бельгии применялось химическое удаление циркониевых оболочек твэлов. Недостаток этого способа – большое количество (8-10 м 3 /т урана) промежуточных радиоактивных отходов. Разрабатываются установки для резки лучом лазера (Великобритания, Франция), а также для разборки ТВС на отдельные твэлы и их разделка. Для обеспечения лучшей растворимости стержни твэлов режут на куски длиной 15-50 мм. Отрезанные куски падают в желоба и попадают в баки-растворители периодического действия из нержавеющей борсодержащей стали. В этих баках осуществляется выщелачивание (извлечение) урана и плутония с помощью нагретой крепкой азотной кислоты. Полное растворение окисного топлива происходит за 2-4 часа, металлического - за 24 часа.

Во Франции и США ведется разработка аппаратов растворения непрерывного действия барабанного типа. Ядерная безопасность достигается добавлением в раствор нейтронных поглотителей (например, гадолиния) или комбинацией безопасной геометрии и поглотительными вставками. Растворы тщательно фильтруются с использованием фильтров из мелкопористой нержавеющей стали (диаметр пор порядка 3 мкм) или центрифуг. Растворение двуокиси урана в азотной кислоте происходит по реакции:

UO 2 + 4HNO 3 → UO 2 (NO 3) 2 + 2NO 2 + 2H 2 O

Для более полного растворения плутония вводятся дополнительные операции. Металлический уран растворяют в кипящей крепкой азотной кислоте. Для рекомбинации окислов азота в систему добавляют кислород и в результате получают азотную кислоту, снова возвращаемую в цикл.

Тщательно отфильтрованный водный раствор уранилнитрата UO 2 (NO 3) 2 с сопутствующими ему растворимыми продуктами деления поступает на экстракцию растворителями.

Основной процесс экстракции растворителями является распределение растворенного вещества между двумя несмешивающимися жидкостями (водная и органическая фазы). Между этими фазами по известному закону в каждой ступени распределяются растворенные вещества в определенном постоянном соотношении. Отношение концентрации вещества в органической фазе к его концентрации в водной фазе в условиях равновесия между фазами называется коэффициентом распределения .

При нескольких последовательных процессах экстракции можно сконцентрировать в органической фазе почти 100% нитратов урана и плутония, обеспечив необходимый коэффициент очистки их от радиоактивных продуктов деления: 5·10 7 -10 8 для плутония, 10 6 -10 7 для урана.

Таким образом, многоступенчатая экстракция органическим растворителем позволяет иметь одновременно высокое извлечение ядерного топлива из растворов и его глубокую очистку от радиоактивных продуктов деления. Степень этой очистки должна допускать работу с регенерированным ураном без биологической защиты, т.е. его радиоактивность должна быть близка к естественной радиоактивности (~ 0,3 мкКи/кг или 1,1·10 4 расп./(с кг)). Это и определяет тот предел очистки, к которому следует стремиться при химической переработке отработавшего топлива.

В качестве органического экстрактора-растворителя успешно применяется трибутилфосфат (ТБФ), разбавленный до 30% очищенным керосином (Н-додеканом). Главным преимуществом ТБФ как экстрагента является его способность селективно извлекать из азотнокислого раствора уран и плутоний. При этом азотная кислота служит в качестве высаливающего агента. Азотная кислота легко очищается дистилляцией, что позволяет возвращать ее в процесс и не увеличивать за счет нее радиоактивные сбросы. Органическая фаза избирательно экстрагирует только уран и плутоний, оставляя почти все продукты деления в водо-кислой фазе, в которой таким образом концентрируются высокоактивые отходы процесса. Органическая фаза, содержащая уран и плутоний, промывается азотной кислотой в целях удаления различных загрязняющих веществ и затем направляется во второй аппарат, где контактирует с водой, которая смывает с ТБФ уран и плутоний, переводя их снова в водную фазу (реэкстракция). Этим завершается первый цикл экстракции.

Во втором экстракционном цикле, или цикле разделения U-Pu, жидкая водяная фаза из первого цикла (после концентрирования в испарителе) опять направляется в экстракционно-промывной контактор (колонну). Загружаемая фаза (органический экстракт) подается в другую колонну, где уран отделяется от плутония путем контактирования органической фазы с водным раствором, содержащим агент-восстановитель (обычно применяется четырехвалентный уран). Четырехвалентный плутоний восстанавливается до трехвалентного состояния, в котором он менее подвержен экстракции ТБФ и, следовательно, может быть удален из колонны в водной фазе. Раствор плутония в азотной кислоте концентрируется, затем подвергается денитрации и превращается в сухой порошок двуокиси плутония PuO 2 . уран же удаляется из органической фазы в третьей колонне. Для полного извлечения уранового продукта используется два-три дополнительных цикла экстракции органическим растворителем.

Для очистки от продуктов деления (особенно от рутения) и концентрирования плутония требуется один дополнительный цикл экстракции с последующей обработкой на анионообменном реагенте.

Отходы, оставшиеся в азотной кислоте, выпаривают для концентрирования и хранения, очистки и возврата азотной кислоты в процесс.

Органический растворитель (ТБФ) на выходе из экстракционного процесса очищают от оставшегося урана. Плутония и продуктов деления, а также растворенных веществ, оказавшихся в ТБФ из-за химического и радиохимического повреждения органической фазы. Процесс очистки растворителя включает обычно щелочную и кислотную промывку. После очистки органический растворитель (сольвент) возвращается в процесс.

Циклы экстракции на перерабатывающих заводах позволяют выделить 98,5-99,5% урана и плутония, содержащихся в перерабатываемых твэлах, и достичь высоких коэффициентов очистки от продуктов деления. Существуют трудности в очистке рабочих растворов от циркония, ниобия и рутения. Радиоактивный изотоп 95 Zr (Т 1/2 = 65 сут.) образуется при делении урана тепловыми нейтронами с выходом 6,2%. Распадаясь, он превращается в 95 Nb (Т 1/2 =35 сут.), который, в свою очередь, превращается в стабильный 95 Mo. Эти элементы, как и уран, и плутоний, также экстрагируются ТБФ, образуя комплексные соединения, коллоиды, и сорбируются на твердых материалах. 103 Ru (Т 1/2 = 39,35 сут.) и 106 Ru (Е 1/2 = 1год) также имеют значительные выходы при делении урана тепловыми нейтронами (3 и 0,38% соответственно) и еще больший выход при делении быстрыми. Чтобы избавиться от этих «назойливых и вредоносных спутников», применяется ряд усложняющих и удорожающих технологию процессов, в том числе операции по предварительной очистке растворов, обязательное введение двух циклов экстракции как урана, так и плутония, дополнительная очистка на абсорбентах, а также посредством ионного обмена и др.

В первом цикле экстракции удается почти целиком избавиться от долгоживущих изотопов цезия, стронция, иттрия, а также редкоземельных элементов. Все они образуют в растворах азотной кислоты простые гидротированные ионы. Не вызывает особых затруднений очистка от стабильных нуклидов – продуктов коррозии стенок аппарата, компонентов оболочечных сплавов.

Отмывка уранилнитрата и нитрата плутония от ТБФ и вывод остаточных продуктов деления и продуктов разложения ТБФ производится с помощью водных растворов гидроокиси натрия, соды, азотной кислоты и других реагентов или методом водопаровой дистилляции. С помощью центробежных экстракторов достигается очень малое время контакта и разделения фаз, что способствует радиолизной устойчивости ТБФ при воздействии интенсивного облучения.

Завершающая стадия топливного цикла атомной энергетики – химическая переработка отработавшего ядерного топлива – на фоне бурного роста темпов строительства АЭС оказалась наиболее отставшей от уровня промышленного и технологического развития других стадий ядерного топливного цикла. Это связано с тем, что стоимость извлеченного из облученного топлива урана пока намного превышает его стоимость, при добыче, извлечении и обогащении. Плутоний нашел пока применение только в форме МОХ - топлива, производство которого существует во Франции.

Технические данные об основных радиохимических заводах зарубежных стран приведены в табл.19. В России переработка ОТВС ведется на производственном объединении (ПО) «Маяк».

Таблица 19

Технические данные заводов по переработке ОЯТ

*) - в конце 1976 г фирма NFS заявила об окончательном отказе от дальнейшей эксплуатации и реконструкции своего завода ввиду сейсмичности района Уэст-Валли и предстоящих больших затратах (~600 млн. долл.). В США работы по химической переработке топлива АЭС с 1977 г. были прекращены, и радиохимические заводы законсервированы на неопределенный срок. Однако продолжались научно-исследовательские и опытно-конструкторские работы. Ведется сооружение федеральных долговременных хранилищ ОТВС. В настоящее время государственная программа развития ядерной энергетики США предусматривает возврат к промышленной переработке отработанного топлива.

**) - завод «Еврокемик» в Моле в 1979 г демонтирован.

***) - в ФРГ ряд лет ведутся острые дискуссии о допустимости, по соображениям безопасности и охраны окружающей среды, сооружения в стране радиохимических заводов и долговременных хранилищ радиоактивных отходов. До 2007 г Правительством ФРГ решение не принято.

Как и всякое другое производство, переработка топлива представляет определенную экологическую опасность. Особенности технологического процесса, с точки зрения образования экологически опасных отходов производства, могут быть рассмотрены на примере крупного завода спроектированного фирмой KEWA для переработки оксидного топлива реакторов PWR и BWR в Западной Германии. Его производительность 1400 т урана в год (около 5 тонн в сутки). Стандартное содержание плутония в ОТВС реакторов PWR и BWR не превышает 0,8%, а продуктов деления – 3% массы твэл (2,3·10 6 Ки/т). Большую часть топлива предполагается поставлять на завод в 120 тонных контейнерах. Время выдержки в бассейнах реакторов – 3 года. Предполагается использовать сухую выгрузку. Сборки размещаются в бассейнах на специальных стеллажах. Два бассейна на 700 т урана каждый рассчитаны на максимальный объем поставок топлива. Выделяемое тепло будет отводиться с помощью охлаждающих установок.

На первой стадии переработки ТВС будут разрезаться пресс-ножницами на куски длиной 20-50 мм, а затем топливо растворяться в кипящей азотной кислоте. Выделяющиеся при этом газообразные продукты деления будут отводиться на установку по очистке отходящих газов. Йод предполагается улавливать фильтром из неорганического материала, содержащего серебро. Для улавливания криптона запроектирован метод низкотемпературной ректификации. Оставшиеся после растворения топлива куски оболочек будут направляться прямо в хранилище твердых отходов, а мелкодисперсные (~ 1 мкм) нерастворимые частицы отфильтровывать и осветленный раствор подавать на экстракцию.

Запроектированная схема экстракции предусматривает следующие основные технологические пьюрекс-процессы. В трех циклах экстракции из раствора выделяют уран, плутоний и продукты деления. В первом цикле с применением нескольких ступеней пульсационных колонн отделяют продукты деления, а также разделяют уран и плутоний. Во втором и третьем циклах экстракции производят экстракционную очистку растворов нитратов уранила и плутония, которые затем поступают в промежуточное хранилище. Технологическая схема включает в себя вспомогательные процессы регенерации кислоты, очистки экстрагента, приготовления растворов химических реагентов и очистки газообразных отходов. Окончательная очистка урана происходит в селикагелевых колоннах. Затем раствор с высоким содержанием 235 U превращается прямо на заводе в UF 4 , пригодный для промежуточного хранения, который по мере необходимости используют для получения UF 6 . Сильнообедненный раствор урана выпаривают с последующим получением UO 3 , который хранится на территории завода до отправки на постоянное хранение.

Нитрат плутония сразу же после экстракции превращают в двуокись. Затем этот продукт можно направлять на установку по изготовлению топлива или в центральное хранилище плутония.

Для промежуточного хранения высокоактивных твердых отходов (куски оболочек, осадки) предназначены специальные хранилища. В дальнейшем эти отходы будут цементироваться и отправляться на постоянное хранение. Подобным образом будут обрабатываться прочие негорючие отходы после их предварительной очистки и измельчения. Горючие твердые отходы будут сжигаться, а остатки цементироваться и храниться в металлических емкостях. Для временного хранения жидких высокоактивных отходов будут использоваться резервуары из нержавеющей стали. После значительного снижения активности жидкие отходы будут отверждаться и подвергаться остекловыванию. Жидкие отходы средней активности (после извлечения органических компонентов и свободных кислот) будут концентрироваться и временно храниться в жидкой форме. Жидкие отходы низкой активности путем перегонки, концентрирования и химической обработки будут разделяться на фракцию, которую можно безопасно сбрасывать в окружающую среду, и кубовой остаток средней активности. 85 Kr, сжижаемый в процессе очистки газообразных отходов, будут хранить в герметичных баллонах. После значительного снижения активности в период временного хранения все отходы будут направляться в постоянное хранилище, размещенное в выработках соляного рудника. Численность персонала завода – 1000 человек. Некоторые значимые технические показатели завода приведены в табл.20.

Таблица 20

Технические характеристики проектного завода по переработке ОЯТ

Строительство такого завода обходится в несколько миллиардов долларов, цена переработки составляет несколько сот долларов за килограмм урана. Понятно, что средства от продажи урана и плутония, извлеченных при переработке топлива, при таких условиях покроют лишь часть расходов на саму переработку, обезвреживание и захоронение отходов. Поэтому переработку топлива реакторов на тепловых нейтронах следует рассматривать не как возможный источник дохода и прибыли, а скорее, как необходимый производственный процесс, обеспечивающий обезвреживание и удаление радиоактивных отходов, а также сохранение и увеличение сырьевых ресурсов за счет использования невыгоревшего урана и образующегося при облучении топлива плутония.

Наиболее активно занимается переработкой топлива среди западных стран Франция на радиохимическом заводе в м.Аг. Причем на этом заводе перерабатывается не только Французское топливо, но и с других стран (Япония, Германия).

Перспективы переработки в будущем связаны также с переработкой уран-плутониевого топлива быстрых реакторов.

Наряду с отработкой промышленных технологий переработки облученного топлива на опытных и опытно-промышленных установках и заводах в различных странах проводятся лабораторные исследования, направленные на улучшение отдельных стадий в технологии пьюрекс-процесса, поиск и испытание новых экстрагентов и разработку новых процессов переработки топлива. В перспективе ставится задача разработать технологию переработки облученного топлива, обеспечивающую:

· удаление актинидов из высокоактивных отходов, что позволит уменьшить время, в течение которого отходы остаются опасными с 25·10 4 до 10 3 лет;

· уменьшение объема отходов от переработки топлива в 20 раз по сравнению с современной технологией на основе пьюрекс-процесса;

· выделение благородных металлов, таких как палладий, родий и рутений.

Во всех странах, за исключением США, научные исследования проводятся в центрах, принадлежащих государственным органам управления и контроля над использованием атомной энергии. В США часть исследований передается частным фирмам по контрактам государства (под потранажем Департамента энергетики США).

Освоение ядерной энергии повлекло за собой такое количество катастроф и человеческих жертв, что мы до сих пор не можем оценить перспективы развития атомной отрасли, положив на одну чашу весов ее очевидную экономическую выгоду, а на другую — не менее очевидную опасность. Хотя специалисты, убежденные в том, что альтернативы атомной энергетике нет, стараются сделать все, чтобы эту опасность минимизировать. Сегодня в мире на атомных электростанциях действуют 440 блоков, и большинство стран не собираются сворачивать свои ядерные программы. Однако не стоит забывать и о том, что кроме столь необходимой человечеству электроэнергии, АЭС производят еще и радиоактивные ядерные отходы… Их переработка и утилизация — одна из основных проблем, касающихся не только представителей атомной промышленности, но и экологов, и политиков, а по большому счету и каждого из нас. И для того чтобы хотя бы частично разобраться в этой проблеме, мы обратились к двум авторитетным, но достаточно полярным мнениям. Первое принадлежит Президенту Российского научного центра «Курчатовский институт», академику Евгению Павловичу Велихову, а второе — члену-корреспонденту РАН, вице-президенту Международного Географического Союза
Никите Федоровичу Глазовскому и доктору географических наук, ведущему научному сотруднику Института географии РАН Николаю Николаевичу Клюеву.

Что такое отработавшее ядерное топливо?

Если кратко, то это уран, поработавший в ядерном реакторе и содержащий радиоактивные продукты деления. Поэтому его называют также облученным, или выгоревшим, ядерным топливом. В общепринятом смысле топливо — это то, что горит, то есть дрова, уголь, нефть, газ. Горение — это химическая реакция соединения какого-либо вещества с окислителем (в приведенных примерах — углеводородных соединений с кислородом), протекающая с интенсивным выделением тепла. Именно горение применяют в технике для получения тепла в топках, печах и камерах сгорания двигателей. На этой «огневой» энергетике в основном и базируется современная цивилизация. Совсем по-другому «горит» ядерное топливо. Уран выделяет тепло в результате не химической, а физической реакции — деления, для протекания которой не требуется ни кислород, ни иной окислитель. При каждом акте деления тяжелого ядра урана-235, инициируемом поглощением медленного нейтрона, образуются 2, а иногда 3 более легких ядра и несколько быстрых нейтронов. Будучи положительно заряженными, эти ядра с огромными скоростями разлетаются в разные стороны и, сталкиваясь с окружающими атомами, передают им свою кинетическую энергию, то есть нагревают вещество. Существует два типа отработавшего ядерного топлива (ОЯТ). Первый — природная смесь изотопов урана, которая длительно облучалась в промышленном реакторе с целью накопления оружейного плутония. Второй — тепловыделяющие сборки энергетических реакторов, содержащие ТВЭЛы (тепловыделяющие элементы) из обогащенного урана, выгорание которого достигло технологического предела из-за накопления продуктов деления.

ОЯТ всегда содержит три компонента:
. Невыгоревший уран
. Продукты деления урана
. Трансурановые элементы

Отработавшим, или облученным, ядерным топливом принято называть уран, побывавший в ядерном реакторе и прошедший реакцию деления. Собственно, отработавшее ядерное топливо содержит разнообразные продукты деления, а также значительное количество невыгоревшего урана. Одна из основных проблем в обращении с ОЯТ состоит в том, что оно представляет собой смесь различных веществ, часть из которых еще может принести пользу, а часть уже не пригодна для использования. Здесь возникает достаточно широкое поле для дискуссии — можно ли считать ОЯТ радиоактивными отходами (РАО) или нет?

Чем ОЯТ отличается от «свежего» ядерного топлива?

«Свежим» называют ядерное топливо до загрузки его в реактор, отработавшим — то же топливо, но после облучения. Главное отличие ОЯТ от «свежего» топлива — огромная радиоактивность, обусловленная накопленными продуктами деления. Для «свежего» ядерного топлива характерна очень малая радиоактивность. Настолько слабая, что при изготовлении блочков из литого естественного урана нет необходимости использовать противорадиационную защиту персонала. У нас в Курчатовском институте экскурсантам, которые посещают первый в Европе и Азии экспериментальный реактор Ф-1 (кстати, успешно работающий с 1946 года), даже дают подержать один из таких блочков в руках, не опасаясь какого-либо облучения. Правда, предупреждают: «Осторожно!» Но за этим предупреждением вместо ожидаемого почти каждым гостем слова «радиация!» следует «не уроните!» При плотности около 18 г/см 3 небольшой по размерам, удобно умещающийся в ладони блочок неожиданно массивен (его вес при диаметре 35 мм и высоте 100 мм составляет 1,7 кг). А вот ОЯТ, напротив, — один из самых радиационно-опасных объектов ядерного топливного цикла. Даже кратковременное пребывание человека вблизи ОЯТ, выгруженного из ядерного реактора, неизбежно сопровождается очень высокими дозами облучения. Поэтому любые операции с ОЯТ осуществляют только дистанционно, с использованием мощной экранирующей защиты от проникающих ионизирующих излучений.

Отличий у «свежего» и отработавшего ядерного топлива немало. Но в контексте обсуждаемой темы главным представляется то, что топливо, не побывавшее в реакторе, конечно, обладает радиоактивностью, но ее уровень относительно низок. Его опасность для окружающей среды и здоровья человека несопоставимо мала по сравнению с отработавшим ядерным топливом, радиоактивность которого огромна и может нанести чрезвычайно серьезный ущерб природе, а также представляет прямую угрозу здоровью и жизни людей.

Здесь необходимо подчеркнуть, что при обращении с ОЯТ мы имеем дело с очень опасным веществом, и любая аварийная ситуация или нарушение технологии в ходе его переработки неминуемо приведут к самым тяжелым последствиям. Поэтому при решении вопроса о целесообразности ввоза ОЯТ из-за рубежа и оценке финансовых выгод от этого предприятия было бы правильным учитывать в том числе и возможные экономические потери в случае какой-либо нештатной ситуации.

Есть в обсуждаемой проблеме один весьма неожиданный аспект, на который мало обращают внимание. Это появление новых изотопов, которых вообще нет в природе. «Свежий» уран, не побывавший в реакторе, содержится в земной коре. Реакция биосферы на увеличение или уменьшение его количества в целом изучена. Но ведь во время ядерного синтеза, происходящего в реакторе, возникают трансурановые элементы и искусственные изотопы обычных веществ — это, на мой взгляд, одна из самых больших проблем ядерной энергетики, да и не только ее. Перед современным человечеством в полный рост встает вопрос о загрязнении биосферы теми элементами и химическими соединениями, которых в ней никогда не было. Поясню свою мысль: раньше на улицах городов для борьбы с гололедом разбрасывали соль. Из-за этого гибла растительность, но особого загрязнения биосферы в целом не происходило, потому что и натрий, и хлор (из которых состоит поваренная соль) — одни из самых распространенных элементов земной коры. Некоторое перераспределение этих веществ, в общем, не трагично, хотя и может вызвать весьма негативные последствия для данного конкретного скверика. Совсем иное дело, когда начинают накапливаться совершенно новые химические элементы и вещества, которые встречаются в природе в предельно малых количествах. Что в этом случае будет происходить, никто просто не знает, потому что у нас еще нет соответствующего опыта. Мне представляется, что проблема новых изотопов и химических соединений, возможно, даже более серьезная, чем проблема радиоактивного загрязнения, о котором наши знания за последнее время существенно расширились. При этом проведение хотя бы двухэтапного тестирования того или иного вещества стоит очень дорого, из-за чего значительная часть вновь появляющихся соединений вообще никак не оценена с экологической точки зрения.

Чем ОЯТ отличается от радиоактивных отходов (РАО)?

Прежде всего тем, что ОЯТ — это ценный продукт, содержащий 2 полезных компонента — невыгоревший уран и трансурановые элементы. Кроме того, среди продуктов деления содержатся радионуклиды (радиоактивные изотопы), которые можно с успехом применять в промышленности, медицине, а так-же в научных исследованиях. После того как из ОЯТ, которое представляет собой неразделенную смесь полезных и ненужных продуктов, выделяют как минимум два полезных компонента, невыгоревший уран и трансурановые элементы, включая плутоний, остаток превращается в особую разновидность РАО — отходы высокой удельной активности.

Понятие «отработавшее ядерное топливо» ядерщики предлагают не смешивать с понятием «радиоактивные отходы». В принципе основания для такого
разделения есть — ОЯТ содержит различные элементы, которые можно использовать повторно, в том числе и для производства энергии. Отходы же — это то, чему нельзя найти применение. И все же нужно сказать, что между этими понятиями существует весьма тонкая грань. Есть такое выражение, что отходы — это те же природные ресурсы, только не в том месте, не в то время и не в том количестве. Само понятие «отходы» — весьма относительно и зависит от множества условий. Так, сколько бы полезных компонентов отходы ни содержали, если затраты на их извлечение слишком велики, то отходы так и останутся отходами.

Кроме того, нужно сказать, что некоторые реакторы, по сути, работают на производство отходов, например создавая оружейный плутоний. В таких реакторах образуются те изотопы, которые потом можно использовать в ядерном оружии, и в данном случае производство энергии — это побочный процесс, а основной — производство отходов (если выпуск ядерного оружия прекращен). Если же производство ядерного оружия продолжится или плутоний станут использовать как топливо для АЭС, то продукция таких реакторов автоматически перестанет быть отходами.

Когда возникла проблема обращения с ОЯТ?

В полный рост эта проблема встала в период создания отечественного ядерного оружия в конце 1940-х годов. Она была успешно разрешена в результате проектирования и сооружения первого в нашей стране радиохимического завода (РХЗ) большой производительности на Урале, в городе Челябинск-40, на базе № 10, известной теперь как комбинат «Маяк». Исходная задача комбината состояла в получении оружейного плутония, но вся цепочка химических реакций, отделяющих разные элементы друг от друга, естественно, пригодна и для переработки ОЯТ с атомных электростанций. По сходной схеме работают и другие отечественные РХЗ на Сибирском и Горно-химическом комбинатах — в городах Томск-7 (СХК) и Красноярск-26 (ГХК). Такую же задачу решали РХЗ в США, Великобритании, Франции и Китае.

С большой долей вероятности можно предположить, что аналогичные радио-химические установки небольшой мощности были использованы Индией и Пакистаном при получении плутония для национальных ядерных зарядов. В настоящее время крупной производительностью отличаются английский РХЗ фирмы BNFL (Селлафилд), находящийся на берегу внутреннего Ирландского моря, и французский — фирмы Cogema на мысе Аг, в проливе Ла-Манш.

По мере свертывания ядерных оружейных программ и роста числа АЭС радиохимические заводы все больше переориентировались на переработку ОЯТ энергетических реакторов. В частности, наш первый РХЗ в Челябинске-40 был модернизирован для этой цели и с тех пор носит новое название «РТ-1». Строившийся до развала Советского Союза второй завод — «РТ-2» законсервирован.

США избрали стратегию отсроченной (на 50—70 лет) утилизации выгруженного и выгружаемого из 107 американских АЭС ядерного топлива, приступив к сооружению глубинного федерального хранилища ОЯТ, рассматриваемого как стратегический государственный запас.

Вскоре после того, как было создано ядерное оружие, появились и сложности с утилизацией радио-активных материалов — отработавшего ядерного топлива и радиоактивных отходов. Таким образом, обсуждаемой сейчас проблеме без малого шесть десятков лет. В общественном сознании укоренился стереотип, что ядерная энергетика — это что-то страшное и, безусловно,
вредное.

В связи с этим приходит вот какая мысль: вообще говоря, большинство всех технологических процессов разрабатывалось без учета того, как они будут влиять на природную среду. Но вот как раз в период создания ядерной энергетики, когда появилось осознание угрозы, исходящей от объектов атомной отрасли, вопросам безопасности старались уделять большое внимание. Другое дело, что соображения безопасности нередко (особенно в первые годы ядерной энергетики) приносились в жертву экономической и политической целесообразности. Кроме того, изначально не были продуманы важнейшие вопросы, которые казались второстепенными.

Как утилизировать радиоактивные отходы, что делать с отработавшим ядерным топливом, можно ли демонтировать устаревшие атомные станции, как замкнуть ядерный топливный цикл?

Все эти «неудобные» вопросы предпочитали не замечать, а их решение откладывать на потом. Проблема обращения с ОЯТ ныне так остра во многом именно потому, что аккумулировалась десятилетиями. И по большому счету, традиция принимать решения, не думая о завтрашнем дне, сохранилась и по сей день.

Почему другие страны не строят заводы для переработки ОЯТ?

Переработка ОЯТ, поступающего с АЭС, — очевидное будущее всех государств, развивающих ядерную энергетику. Такое «замыкание» ядерного топливного цикла (ЯТЦ) экономически целесообразно по ряду причин. Прежде всего значительно (на 1/6 часть) сокращаются потребности в природном уране как за счет возврата 235-го изотопа урана, не сгоревшего в реакторе, так и в результате образования нового ядерного горючего — плутония. Как источник тепловой энергии 1 грамм плутония, кстати, эквивалентен примерно 1 тонне нефти. Переработанные ОЯТ можно использовать для производства ТВЭЛов, в том числе на основе смеси оксидов урана и плутония (так называемого МОХ-топлива). Помимо экономических преимуществ замыкание ЯТЦ снижает опасность распространения ядерного оружия из-за «сжигания» образующегося плутония, который в открытом цикле необходимо хранить под крайне жестким контролем. Хотя в мире накоплено около 240 тыс. тонн ОЯТ, переработано только 85 тыс. тонн. Из 30 государств, развивающих ядерную энергетику, только Великобритания, Франция и Россия построили и эксплуатируют РХЗ для переработки ОЯТ с АЭС. Это также обусловлено экономическими причинами, поскольку сооружение РХЗ экономически целесообразно лишь при годовой производительности 1 500 т ОЯТ, для чего необходимо эксплуатировать около 50 крупных АЭС. Поэтому Япония, в которой уже действуют 54 АЭС, вырабатывающие 1/3 всей электроэнергии, тоже приступила к сооружению РХЗ и планирует ввести его в строй через 2—3 года. В то же время необходимость переработки ОЯТ побудила владельцев многих АЭС искать предпринимателей, готовых взяться за эту работу. Возникшую нишу заполнили уже упоминавшиеся английский и французский радиохимические заводы. Они в течение нескольких десятилетий по долгосрочным контрактам перерабатывают ОЯТ с АЭС Бельгии, Германии, Швейцарии, Японии и других стран. Непременное условие таких контрактов — возврат всех трех перечисленных ранее компонентов ОЯТ (в том числе отходов высокой удельной активности) в страну — поставщика этого топлива. Кстати, отметим, что в соответствии с ранее заключенными международными соглашениями Россия также перерабатывала ОЯТ, которое поступало с АЭС, построенных по советским проектам в Болгарии, Венгрии, ГДР, Финляндии, Чехословакии и загружавшихся «свежим» ядерным топливом по поставкам из СССР и России. В настоящее время такие операции выполняются для ОЯТ с АЭС в Армении, Болгарии и Украине. Снижение порога ядерного противостояния сопровождается снижением загрузки перерабатывающих предприятий как у нас, так и за рубежом. Освобождающиеся мощности РХЗ целесообразно использовать для переработки ОЯТ из зарубежных стран. Законодательно закрепленная теперь инициатива Минатома РФ — попытка выступить конкурентом на этом высокоприбыльном рынке.

Дело в том, что проектирование, строительство и функционирование радиохимического предприятия экономически оправдано только для государств с развитой самостоятельной ядерной энергетикой. К тому же страна, решившая построить радиохимический завод, должна обладать соответствующими технологиями и высококвалифицированным персоналом. В России все это есть.

Именно поэтому и удалось «протолкнуть» закон о ввозе зарубежного отработавшего ядерного топлива. Однако не следует забывать, что как раз на радиохимические заводы приходится львиная доля той радиоактивности, источником которой является вся ядерная отрасль. И решившись перерабатывать у себя чужое ОЯТ, мы должны понимать, что значительную часть радиоактивности мы оставляем себе. Пока радиохимические заводы кроме России работают во Франции и Великобритании. США придерживаются так называемого отложенного решения — предпочитая консервировать свое ОЯТ в специальных хранилищах, чтобы в будущем либо заняться его переработкой, либо произвести окончательное захоронение. Опытный завод по переработке ОЯТ есть в Японии, но его мощности невелики, и эта страна в основном пользуется услугами европейских компаний.

Как осуществляют перевозки ОЯТ?

Проблема транспортировки ОЯТ, которая существует со времени строительства РХЗ для целей выделения плутония как ядерной взрывчатки, обострилась после сооружения первых АЭС. Ведь промышленные реакторы и РХЗ находятся на одной площадке или вблизи друг от друга (например, в Челябинске-40 их разделяют всего 2 км), тогда как АЭС строили в регионах, остро нуждающихся в электроэнергии и удаленных от РХЗ на многие тысячи километров. При перевозках ОЯТ с площадок АЭС следовало решить 3 задачи: обеспечить радиационную безопасность персонала и населения (в том числе при аварийных ситуациях), исключить перегрев ОЯТ во время транспортировки и принять меры против попыток хищения топлива злоумышленниками. Это было сделано в результате разработки массивных защитных контейнеров из таких поглощающих радиацию материалов, как чугун, сталь и бетон, которые снижают интенсивность излучения до допустимых пределов, и специализированных вагон-контейнерных поездов. Ежегодно по дорогам России проходит 30 транспортов с радиационно опасными грузами, и пока не было зафиксировано ни одной аварии. В США для перевозок контейнеров с ОЯТ используют преимущественно автотрейлеры большой грузоподъемности. В Швеции, где большая часть АЭС находится на берегу Балтийского моря, для этой цели разработаны и построены специализированные суда. Транспортировку ОЯТ из японских АЭС на перерабатывающие заводы Великобритании и Франции также осуществляют морским путем. За 50 лет транспортировки ОЯТ и других источников ионизирующих излучений большой активности (в частности, используемых в радиотерапии злокачественных заболеваний) не было ни единого случая аварий с какими-либо радиационными последствиями, хотя в мире уже осуществлено более 1 млн. таких перевозок.

Как у нас в стране, так и за рубежом основные перевозки ОЯТ производят в специальных железнодорожных вагонах, а также на спроектированных для этих целей морских судах. И железнодорожные, и морские перевозки ОЯТ обязательно осуществляются под контролем охраны, а сами контейнеры выдерживают большие внешние нагрузки. Ядерщики утверждают, что транспортировка ОЯТ в таких условиях абсолютно безопасна и никаких инцидентов никогда не было. Однако эта сфера является абсолютно секретной, и мы не можем говорить, что обладаем полной информацией по данному вопросу. Кроме того, в свете последних событий в мире с точки зрения террористической угрозы перевозка ОЯТ, конечно, становится весьма небезопасным предприятием.

К сказанному необходимо добавить, что, во всяком случае, при перевозке радиоактивных отходов аварии случались, а ведь такие транспортировки, надо полагать, тоже сопровождались повышенными мерами безопасности. И еще: несмотря на режим секретности, маршруты следования поездов и морских судов периодически становятся достоянием гласности, чему мы бываем свидетелями, наблюдая за протестами «зеленых». Так что проблема транспортировки ОЯТ, безусловно, имеется, хотя нас и пытаются убедить в обратном.

Чем переработка ОЯТ грозит экологической ситуации?

Эксплуатация отечественного РХЗ в начальные годы его работы сопровождалась чрезмерным радиационным воздействием не только на персонал, но и на окружающую среду. При создании проекта этого уникального промышленного предприятия опереться на какой-либо опыт не было возможности. И хотя на комбинате были предусмотрены и сооружены хранилища радиоактивных отходов, многочисленные аварийные ситуации, особенно в первый период его работы, быстро привели к их переполнению. Уже в 1949 году поставленную в техническом задании на проектирование РХЗ задачу очистки сбросов в гидросеть, в частности в реку Теча, пришлось снять с повестки дня — создание такой системы существенно затягивало работы по получению плутония для первой советской атомной бомбы. Один из ветеранов Минатома, А.К. Круглов, в своей книге «Как создавалась атомная промышленность СССР» пишет, что «к концу 1949 г. нужно было выбирать: либо продолжать нарабатывать плутоний, либо остановить завод, прекратив сбросы радиоактивных вод в реку Теча. Решение было принято. Наработка плутония продолжалась. Специальная комиссия одобрила предложение комбината, поддержанное Минздравом СССР, об использовании бессточного озера Карачай для сброса радиоактивных растворов. Из-за загрязнения реки и прибрежной территории радиационному воздействию подверглись 124 тыс. человек, проживающих в районе поймы реки в Челябинской и Курганской областях. Большие дозы облучения (до 170 бэр) получили 28 тыс. чел. Было зарегистрировано 935 случаев заболеваний хронической лучевой болезнью. Пришлось отселить около 8 тыс. человек из 21 населенного пункта».

Конечно, сегодня ситуация далека от той, что была характерна для эпохи гонки ядерных вооружений. Десятилетия работ по снижению объемов и активности образующихся отходов, создание и совершенствование методов и средств очистки жидких и улавливания газообразных радиоактивных веществ, оптимизации сроков выдержки выгруженного ОЯТ не прошли даром. В настоящее время выбросы и сбросы радионуклидов с РХЗ не превышают допустимых величин, устанавливаемых независимыми от Минатома России контрольными и надзорными органами, автоматизированные системы радиометрического и спектрометрического контроля позволяют быстро отсечь недопустимые сбросы, направив их в дополнительно созданные хранилища, либо снизить производительность комбината. Опыт работы «мокрого» хранилища ОЯТ на Красноярском ГХК показывает, что в выбросах обнаруживается только Cs-137, концентрация которого в 250 раз ниже допустимой, установленной Минздравом России в соответствии с международными рекомендациями. Заслуживает упоминания, что в Великобритании и Франции жидкие отходы РХЗ продолжают сливать в море, что приводит к повышенным концентрациям техногенных радионуклидов не только вблизи мест сбросов в Ирландском море и в проливе Ла-Манш, но и за тысячи километров от них. В частности, сбросы английского РХЗ являются главным источником поступления таких долгоживущих радионуклидов, как Sr-90 и Cs-137 с периодами полураспада 28 и 30 лет, в Северное, Норвежское, Баренцево, Карское и даже Белое моря. В соответствии с решением стран — участниц Лондонской конвенции планируется прекратить такие сбросы в моря к 2018 году. В нашей стране сливы жидких радиоактивных отходов (в основном от эксплуатации атомных подводных лодок) были прекращены в 1993 году.

Радиоэкологические проблемы переработки ОЯТ с использованием современных технологий и накопленного опыта в основном решены. Конечно, сказанное не относится к тяжелой задаче реабилитации радиоактивно-загрязненных районов, особенно вблизи комбината «Маяк», в частности озера Карачай и Теченского каскада водоемов и территорий, пострадавших от аварии в 1986 году на Чернобыльской АЭС. Это потребует многих лет работы и многомиллиардных затрат. Для оценки их масштаба стоит указать, что в США для проведения аналогичных работ выделяется по 2 млрд. долларов ежегодно. В соответствии с недавно принятым законом «О специальных экологических программах» именно на цели реабилитации и возвращения к нормальной жизни обширных регионов, выведенных ранее из использования в народном хозяйстве, и пойдут средства, которые выручит Минатом от переработки ОЯТ с зарубежных АЭС. По оценкам, сделанным на основе опыта, накопленного в нашей стране и за рубежом, переработка и хранение 20 тыс. тонн ОЯТ приводит к увеличению дозы облучения персонала РХЗ и населения ближайшей области всего на 1% в сравнении с получаемой от природных источников радиации (эта добавка в 10 раз меньше того облучения, которое мы ежегодно получаем в медицинских учреждениях). Сегодня переработка ОЯТ не вызывает чрезмерного радиационного воздействия на персонал ядерно-химических предприятий и население страны.

Оценка столь серьезных и опасных производств должна делаться еще на стадии проектирования. Ранее наиболее действенным и реальным был институт экологической экспертизы. Сейчас, увы, позиции государственной экспертизы во многом утрачены, и немалая часть недоброкачественных в экологическом смысле проектов тем не менее реализуется. Поэтому уверенности в том, что весь цикл переработки ОЯТ находится под жестким экологическим контролем, нет. Если же говорить о недавно принятом законе, разрешающем ввоз из-за рубежа и переработку ОЯТ на наших РХЗ, то, полагаю, та поспешность и та атмосфера, в которой принималось это решение, не добавляет нам уверенности в его экологической безупречности.

При обсуждении этого закона было много разговоров о том, что наша страна при реализации данного проекта получит значительные средства, за счет которых можно будет решить многие экологические проблемы. Но пока ни ОЯТ, ни деньги из-за рубежа не поступали, поэтому сказать, как на самом деле будет реализовываться принятый закон на практике, нельзя. Топливо, поступающее на переработку сейчас, — этот тот уран, который мы поставляли на АЭС, построенные за границей и который мы обязаны забирать после отработки. Поэтому на сегодняшний день никаких «ядерных» денег у нас нет, а следовательно, и о решении экологических проблем за счет этих средств говорить не приходится. Хотя нельзя не учитывать и того, что у России не так много конкурентоспособных «высоких» технологий мирового уровня. Технология переработки ОЯТ— одна из них. Развитие производств ядерного топливного цикла, в том числе радиохимических, обогащает технологическую культуру всего общества, ибо требует новых материалов, высококвалифицированных специалистов и так далее. Россия — ядерная держава (здесь нет оценок — хорошо это или плохо, это — факт), у нас накоплено радиоактивных веществ суммарной активностью более 4 млрд. Ku (Кюри). Поведение этих веществ придется контролировать тысячелетиями, если мы не научимся их перерабатывать, утилизировать. Уже в силу этого Россия намертво привязана к ядерной энергетике. Поэтому ядерно-энергетический потенциал страны необходимо поддерживать (хотя и вовсе не обязательно за счет переработки ОЯТ).

Каковы перспективы переработки ОЯТ?

Конечно, в период гонки ядерных вооружений переработка ОЯТ велась по политическим, даже геополитическим, причинам — без РХЗ наша страна не смогла бы обеспечить стратегического паритета с США в «холодной войне». Выполнение поставленной задачи изготовления и испытания первой советской атомной бомбы в исключительно короткие сроки сопровождалось вынужденными решениями. Одно из них — крайне высокие дозы облучения персонала отечественного РХЗ. По данным, опубликованным в 1990-е годы (до того времени они были секретными), при допустимом тогда пределе 30 бэр в год индивидуальные дозы в 1948—1958 годах составляли: для дозиметристов — около 150 бэр, для основного персонала технологических цехов — от 170 до 270 бэр. Последняя величина более чем в 100 раз превышает современную допустимую радиационную нагрузку для профессионалов! Такие высокие уровни облучения не могли не сказаться на здоровье людей. Лучевые заболевания были диагностированы у 3 444 сотрудников РХЗ. К счастью, эти мрачные страницы уже далеко позади. По мере совершенствования технологии, улучшения средств автоматизированного контроля и защиты, систем дозиметрии и радиационной безопасности условия труда при переработке ОЯТ приблизились к допустимым, не вызывающим опасений за состояние здоровья.

Дальнейшие работы по совершенствованию переработки ОЯТ продолжаются. Особое внимание в этой сфере уделяют методам снижения суммарной активности отходов. Здесь перспективным представляется способ «выжигания» вредных компонентов путем дополнительного облучения и превращения (трансмутации) долгоживущих радионуклидов в более короткоживущие. Такие научно-исследовательские работы по многолетним программам ведутся во Франции, Японии и в России в рамках Федеральной целевой программы обращения с ОЯТ и радиоактивными отходами. Не меньшее внимание привлекают способы отверждения жидких отходов высокой удельной активности (ОВУА), которые многие годы хранят в баках из нержавеющей стали. Жидкие ОВУА ныне эффективно остекловывают как в нашей стране, так и за рубежом, и это резко снижает опасность миграции долгоживущих радионуклидов из временных хранилищ. В Курчатовском институте совместно с МосНПО «Радон» создан способ плазменной переработки радиоактивных отходов, резко снижающий их объем (но не активность!) и существенно удешевляющий последующее хранение. Разрабатываются также новые способы антикоррозионной защиты химических реакторов и их дезактивации, совершенствуются методы улавливания газов и аэрозолей (особенно радиоактивного йода), изучаются возможности фторидной технологии переработки ОЯТ, практически исключающей образование жидких РАО. Снижаются выбросы и сбросы радиоактивных веществ в окружающую среду.

На мой взгляд, перспективы переработки ОЯТ зависят от ответа на несколько очень важных вопросов. Один из главных — насколько экономически эффективна как сама переработка, так и ядерная отрасль в целом. Проще говоря, сколько стоит весь цикл производства, начиная от разработки месторождения и кончая переработкой и захоронением радиоактивных материалов? К сожалению, таких достоверных данных нет. Все цифры, которые мы имеем на сегодняшний день, весьма неполны, а в некоторых случаях — фальсифицированы. Если посчитать собственно стоимость работы АЭС, то получается, что во многих случаях это рентабельное производство. Беда в том, что полностью ядерный топливный цикл не просчитан. А имеющиеся расчеты показывают, что практически все виды производства электроэнергии требуют примерно одинаковых затрат. В последнее время удалось существенно приблизить к рентабельности даже ветровые и солнечные установки. И тут возникает проблема оценки риска дальнейшего развития атомной энергетики.

Если мы готовы к тому, что примерно раз в столетие на атомных станциях возможна серьезная авария, значит, мы сознательно принимаем такой риск.

Таким образом, мы подошли еще к одному первостепенному вопросу ядерной энергетики — безопасности функционирования отрасли. Каким бы способом мы ни перерабатывали ОЯТ, все равно при этом образуется определенное количество веществ, которые в силу чрезвычайно высокой радиоактивности должны быть очень надежно спрятаны. Так, например, хранилища жидких отходов на многих АЭС близки к заполнению. Хуже всего обстоят дела на Курской АЭС — там почти не осталось места для жидких отходов. Поэтому прежде всего нужно понять, есть ли у атомщиков стратегия переработки ОЯТ и захоронения отходов. Пока такой четкой, предельно ясной стратегии не видно. Во всяком случае, те способы захоронения, которыми пользуются сегодня, довольно опасны. И мы сейчас закладываем бомбу замедленного действия если не для себя, то для наших потомков. Следовательно, перспективы переработки ОЯТ зависят от экономической эффективности ядерной энергетики, правильной оценки допустимой степени риска, которую несет в себе эта отрасль, и возможности безопасного захоронения радиоактивных отходов. Учтя все это, нужно принять решение о приоритетном способе добычи энергии. Станет ли таким приоритетом ядерная энергетика — большой вопрос. Но, конечно, подобное решение не может и не должно приниматься в одночасье. Тем более что время для дискуссии есть. Ведь только разведанных запасов нефти хватит примерно на 100 лет, газа — на 70—150, угля — на 500, если, конечно, не будет существенного скачка энергопотребления. В чем я убежден совершенно, так это в том, что просто жизненно необходимо активизировать поиски новых источников энергии и развивать энергосберегающие технологии. Для России энергосбережение на ближайшую перспективу — главная задача. Ведь если посчитать, какой объем ВВП (внутреннего валового продукта) в денежном эквиваленте производится на джоуль энергии, то окажется, что в России этот показатель в 6—7 раз меньше, чем в Западной Европе, то есть эффективность очень низкая и резервы тут огромны.

Если говорить о чисто технической стороне вопроса, то приходится констатировать, что на сегодняшний день каких-то принципиально новых отработанных технологий в области переработки ОЯТ нет. В ряде стран только начинает разрабатываться абсолютно новая — трансмутационная — технология, позволяющая под воздействием излучения превращать долгоживущие радионуклиды в короткоживущие, которые можно считать более безопасными. Наиболее привлекательным выглядит активно обсуждаемое в последнее время создание замкнутого цикла — когда отработавшее топливо используется повторно как энергоноситель. Тем не менее полностью замкнуть ядерный топливный цикл нельзя, но минимизировать количество отходов можно, и это первейшая задача. И тут уже возникает проблема материальных затрат на эти мероприятия — не превысят ли эти расходы выгоды от использования ядерной энергии?



← Вернуться

×
Вступай в сообщество «servizhome.ru»!
ВКонтакте:
Я уже подписан на сообщество «servizhome.ru»