Азот ной кис ло той. Азотная кислота (I)

Подписаться
Вступай в сообщество «servizhome.ru»!
ВКонтакте:
Подробности Категория: Просмотров: 7174

АЗОТНАЯ КИСЛОТА , HNO 3 , получается растворением окислов азота в воде:

3NO 2 + H 2 O = 2HN 3 + NO
N 2 O 3 + H 2 O = HNO 3 + NO
N 2 O 5 + H 2 O = 2HNO 3

Физические свойства азотной кислоты . Молярный вес - 63,016; бесцветная жидкость с характерным запахом; температура кипения 86°, температура плавления -47°; удельный вес 1,52 при 15°; при перегонке благодаря разложению 2HNО 3 = N 2 О 3 + 2О + H 2 О азотная кислота тотчас выделяет кислород, N 2 О 3 и воду; поглощение последней вызывает повышение температуры кипения. В водном растворе крепкая азотная кислота обычно содержит окислы азота , и приготовление совершенно безводной азотной кислоты представляет значительные затруднения. Получить безводную азотную кислоту перегонкой невозможно, так как минимум упругости имеют водные растворы азотной кислоты, т. е. прибавление воды к кислоте и обратно понижает упругость пара (и повышает температуру кипения). Поэтому в результате перегонки слабой кислоты (D < 1,4) получается постоянно кипящий остаток D = 1,415, с содержанием 68% HNО 3 и с температурой кипения 120°,5 (735 мм). Перегонка при пониженном давлении дает остаток с меньшим содержанием HNО 3 , при повышенном давлении - с большим содержанием HNO 3 . Кислота D = 1,503 (85%), очищенная продуванием воздуха от N 2 О 4 , дает при перегонке остаток с 77,1% HNО 3 . Кислота D = 1,55 (99,8%) дает при перегонке сначала сильно окрашенный окислами азота раствор D = 1,62, а в остатке кислоту D = 1,49. Т. о. в остатке при перегонке азотной кислоты всегда оказывается кислота, соответствующая минимуму упругости (максимуму температуры кипения). Безводную кислоту можно получить лишь при смешивании крепкой (99,1%) азотной кислоты с азотным ангидридом.

Вымораживанием, по-видимому, нельзя получить кислоту свыше 99,5%. При новых способах (Валентинера) добывания азотной кислоты из селитры, кислота получается достаточно чистой, при старых приходилось ее очищать преимущественно от хлористых соединений и от паров N 2 О 4 . Наиболее крепкая кислота имеет D 0 = 1,559, D 15 = 1,53, а 100%-ная HNO 3 - D 4 = 1,5421 (Велей и Манлей); 100%-ная кислота дымит на воздухе и притягивает пары воды столь же сильно, как и серная кислота. Кислота с D = 1,526 при смешивании со снегом нагревается.

Теплоты образования (из 1 / 2 Н 2 + 1 / 2 N 2 + 3 / 2 O 2):

HNO 3 – пар + 34400 cal
HNO 3 – жидкость + 41600 cal
HNO 3 – кристаллы + 42200 cal
HNO 3 – раствор + 48800 cal

Теплоты разведения: при прибавлении к HNO 3 одной частицы Н 2 O - 3,30 Cal, двух частиц - 4,9 Cal, пяти частиц - 6,7 Cal, десяти - 7,3 Cal. Дальнейшее прибавление дает ничтожное повышение теплового эффекта. В виде кристаллов получаются:
1) HNO 3 ·H 2 O = H 3 NO 4 - ромбические, напоминающие AgNО 3 таблички, температура плавления = -34° (-38°);
2) HNО 3 (H 2 O) 2 = H 5 NO 5 - иглы, температура плавления -18°,2, устойчивы лишь ниже -15°. Кривая температур кристаллизации водной кислоты имеет три эвтектики (при -66°,3, при -44°,2, при -43°) и два максимума (HNО 3 ·H 2 О -38°, HNО 3 ·3H 2 О -18°,2). Те же особенные точки наблюдаются для теплот растворения и для переломов кривой электропроводности, но на последней еще замечены 2HNO 3 ·Н 2 О и HNО 3 ·10Н 2 О. Из только что сказанного и по аналогии с фосфорными кислотами следует, что в растворах азотной кислоты имеется ее гидрат HNO 3 , но он очень легко разлагается, что и обусловливает высокую реакционную способность HNO 3 . Азотная кислота, содержащая в растворе NO 2 , называется дымящей (красной).

Химические свойства . Чистая HNO 3 легко разлагается и окрашивается в желтоватый цвет благодаря реакции 2HNO 3 = 2NO 2 + O 2 + H 2 Oи поглощению образовавшегося азотноватого ангидрида. Чистая азотная кислота и вообще крепкая азотная кислота устойчива лишь при низкой температуре. Основным признаком азотной кислоты является ее чрезвычайно сильная окислительная способность за счет отдачи кислорода. Так, при действии на металлы (кроме Pt, Rh, Ir, Au, на которые HNО 3 при отсутствии хлора не действует) азотная кислота окисляет металл с выделением окислов азота тем меньшей степени окисления, чем энергичнее в качестве восстановителя был окисляемый металл. Например, свинец (Рb) и олово (Sn) дают N 2 O 4 ; серебро - преимущественно N 2 O 3 . Сера, особенно свежеосажденная, окисляется легко, фосфор при легком подогревании превращается в фосфористую кислоту. Уголь, накаленный докрасна, загорается в парах азотной кислоты и в самой азотной кислоте. Окисляющее действие дымящей красной кислоты больше, чем бесцветной. Железо, погруженное в нее, делается пассивным и уже не поддается действию кислоты. На циклические органические соединения (бензол, нафталин и т. п.) азотная кислота безводная или в смеси с серной кислотой, действует очень сильно, давая нитросоединения С 6 Н 5 Н + HNО 3 = C 6 H 5 NO 2 + НОН. Нитрация парафинов идет медленно, притом только при действии слабой кислоты (большая степень ионизации). В результате взаимодействия веществ, содержащих гидроксил (глицерин, клетчатка), с азотной кислотой получаются азотнокислые эфиры, неправильно называемые нитроглицерином, нитроклетчаткой и т. п. Все опыты и всю работу с азотной кислотой необходимо вести в хорошо вентилируемом помещении, но лучше под специальной тягой.

Анализ . Для обнаружения следов азотной кислоты применяют: 1) дифенилэнданилодигидротриазол (в продаже - «нитрон»); 5 или 6 капель 10 %-ного раствора нитрона в 5 %-ной уксусной кислоте приливают к 5-6 см 3 исследуемого раствора, прибавив к нему заранее одну каплю H 2 SО 4: в случае присутствия заметных количеств ионов NО 3 выделяется обильный осадок, при очень слабых растворах выделяются игольчатые кристаллы; при 0° можно открыть при помощи нитрона даже 1 / 80000 HNО 3 ; 2) бруцин вводном растворе; смешивают с исследуемым раствором и осторожно приливают по стенке пробирки к крепкой серной кислоте; на месте соприкосновения обоих слоев в пробирке образуется розовато-красное окрашивание, переходящее снизу в зеленоватое.

Для определения количества HNО 3 в растворе дымящей азотной кислоты нужно протитровать N 2 О 4 раствором КМnO 4 , определить плотность жидкости ареометром и вычесть указанную в особой таблице поправку на содержание N 2 O 4 .

Промышленные способы добывания азотной кислоты . Добывается азотная кислота гл. обр. из селитры. Раньше добывание селитры велось в т. н. «селитряницах» (salpetriere), или «буртах», где, в результате перемешивания навоза, мочи и т. и. со старой штукатуркой, постепенно, отчасти благодаря действию бактерий, происходит окисление мочевины и других органических соединений азота (амины, амиды и т. п.) в азотной кислоте, образующую с известняком кальциевую селитру. В жаркие дни, особенно на юге (например, в Индии и в Средней Азии), процесс идет очень быстро.

Во Франции в 1813 г. добывали из селитряниц до 2000000 кг селитры. 25 крупных животных дают около 500 кг селитры в год. В некоторых местностях, с основной почвой, богатой животными остатками (например, Кубанская область), возможно наличие в почве заметного, но недостаточного для добывания, количества селитры. Заметные количества добывались в долине Ганга и находятся в наших среднеазиатских крепостях, где запасы содержащей селитру почвы доходят до 17 т в каждом месте, но содержание в ней селитры не больше 3%. Залежи натриевой селитры – чилийской - были открыты в 1809 г.; они находятся преимущественно в провинции Тарапака, между 68° 15" и 70° 18" восточной долготы и 19° 17" и 21° 18" южной широты, но встречаются и южнее и севернее (в Перу и в Боливии); месторождение их расположено на высоте 1100 м над уровнем моря. Залежи имеют протяжение около 200 км длины, 3-5 км ширины, содержание NaNO 3 в среднем 30-40%. Запасов, принимая ежегодный рост потребления в 50000 т, может хватить на 300 лет. В 1913 г. вывезено 2738000 т, но вывоз в Европу несколько уменьшился, хотя, после очень заметного падения вывоза во время войны, он снова несколько повысился с 1920 г. Обычно сверху лежит «костра» (50 см - 2м толщины), состоящая из кварцевого и полевошпатового песка, а под ней «калихе» (25 см - 1,5 м), содержащая селитру (залежи находятся в пустыне рядом с залежами соли и борнокальциевой соли). Состав «калихе» очень разнообразен; в нем NaNО 3 - от 30% до 70%, йодистых и йодноватых солей - до 2%, хлористого натрия - 16-30%, сернокислых солей - до 10%, магниевых - до 6%. Лучшие сорта содержат в среднем: NaNO 3 - 50%, NaCl - 26%, Na 2 SO 4 - 6%, MgSO 4 - 3%. Растворение NaNO 3 ведется при высокой температуре, чтобы в раствор перешло гораздо больше NaNО 3 , чем NaCl, растворимость которого незначительно увеличивается с температурой. Из 3 т «калихе» получается 1 т сырой селитры со средним содержанием 95-96% селитры. Из 1 л маточного рассола обычно получается 2,5-5 г йода. Обычно сырая селитра бурого цвета, из-за примеси окиси железа. Для удобрения применяют селитру, содержащую до 1-2% хлористых соединений. Чистый азотнокислый натрий бесцветен, прозрачен, не гигроскопичен, если не содержит хлористых соединений; кристаллизуется в кубах. Для получения азотной кислоты селитру нагревают с серной кислотой; взаимодействие идет по уравнению:

NaNO 3 + H 2 SO 4 = HNO 3 + NaSO 4

т. e. получают кислый сульфат. Последний можно применить для добывания хлороводорода прокаливанием смеси NaHSО 4 и NaCl в муфелях. Для взаимодействия по уравнению

теоретически необходимо взять на 100 кг NaNО 3 57,6 кг H 2 SО 4 или 60 кг кислоты 66° Вẻ. В действительности, во избежание разложения, серной кислоты берут на 20-30% больше. Взаимодействие ведут в горизонтальных цилиндрических железных ретортах 1,5 м длины, 60 см диаметром, со стенками в 4 см толщины. В каждый цилиндр входит 75 кг селитры и 75 кг H 2 SО 4 . Пары проводят сначала через керамиковый холодильник, охлаждаемый водой, или через наклонную керамиковую трубу, потом через поглотители: «баллоны» или «бонбоны», т. е. большие керамиковые «вульфовы склянки». Если взята серная кислота 60° Вẻ (71%) и в первый поглотитель помещено 4 кг воды на 100 кг селитры, то получится кислота в 40-42° Вẻ (38-41%); применив кислоту в 66° Вẻ (99,6%) и сухую селитру, получим 50° Вẻ (53%); для получения кислоты в 36° Вẻ, в первый поглотитель помещают 8 л воды, во второй - 4 л, а в следующие по 2,6 л. Дымящую азотную кислоту получают, действуя на селитру вдвое меньшим количеством серной кислоты, чем следует по расчету. Поэтому способу получается кислота, загрязненная хлористым нитрозилом и другими веществами, отходящими в начале процесса, и окислами азота - в конце отгонки. Окислы азота сравнительно легко отогнать, продувая через кислоту ток воздуха. Гораздо выгоднее работа в ретортах, охватываемых со всех сторон огнем и имеющих снизу трубу для выпуска бисульфата, содержащего заметное количество кислоты. Дело в том, что чугун не разъедается кислотой, если он достаточно нагрет и если соприкосновение огнем со всех сторон гарантирует от осаждения капель кислоты. В подобных ретортах (1,20 шириной и 1,50 м диаметром, с толщиной стенок 4-5 см) селитру обрабатывают серной кислотой из расчета 450 кг и даже 610 кг селитры на 660 кг H 2 SО 4 (66° Вẻ). Вместо баллонов теперь часто применяют вертикальные трубы или соединяют эти трубы с баллонами.

По способу Гутмана разложение производится в чугунных ретортах, составленных из нескольких частей (фиг. 1 и 1а); части соединены замазкой, состоящей обычно из 100 ч. железных опилок, 5 ч. серы, 5 ч. хлористого аммония с возможно малым количеством воды; реторты и, по возможности, загрузочный люк заключены в кирпичную кладку и нагреваются печными газами.

В реторту загружают 800 кг селитры и 800 кг 95%-ной серной кислоты и ведут перегонку 12 час.; при этом тратится около 100 кг угля. Применяются также и цилиндрические реторты. Выделяющиеся пары попадают сначала в баллон 8; затем проходят ряд керамиковых труб, 12 и 13, помещенных в деревянный короб с водой; здесь пары сгущаются в азотную кислоту, которая стекает по трубам 22 установки Гутмана, и 23 в сборник 28, сюда же попадает и конденсат из баллона 8; не сгустившаяся в трубах 12 азотная кислота попадает через 15а в башню, заполненную шарами и омываемую водой; последние следы кислоты, не поглощенные в башне, улавливаются в баллоне 43а; газы же через трубу 46а уносятся в дымовую трубу. Для окисления образующихся при перегонке окислов азота к газам непосредственно при выходе из реторты примешивается воздух. Если в производстве применяется крепкая серная кислота и высушенная селитра, то получается бесцветная 96-97%-ная азотная кислота. Почти вся кислота конденсируется в трубах, лишь малая часть (5%) поглощается в башне, давая 70%-ную азотную кислоту, которую прибавляют к следующей загрузке селитры. Т. о. получается бесцветная азотная кислота, лишенная хлора, с выходом в 98-99% от теории. Способ Гутмана получил большое распространение в виду простоты и дешевизны установки.

Из селитры добывают 96-100%-ную кислоту по способу Валентинера, перегонкой под уменьшенным давлением (30 мм) в чугунных ретортах смеси из 1000 кг NaNО 3 , 1000 кг H2SО 4 (66°Вẻ) и такого количества слабой кислоты HNO 3 , чтобы с ней ввести 100 кг воды. Перегонка идет 10 час., причем все время вводится воздух в сплав. Взаимодействие идет при 120°, но в конце процесса происходит «кризис» (1 час) и возможны сильные толчки (при 120-130°). После этого нагрев доводится до 175-210°. Весьма важно правильное сгущение и улавливание кислоты. Пары из реторты поступают в баллон, из него в 2 сильно охлаждаемых змеевика, из них в сборник (типа вульфовой склянки), за ним снова поставлен змеевик и дальше 15 баллонов, за которыми помещен насос. При 1000 кг загрузки NaNО 3 в 6-8 ч. получается 600 кг HNO 3 (48° Вẻ), т. е. 80% от нормы.

Для получения азотной кислоты из норвежской селитры (кальциевой) последнюю растворяют, добавляют крепкую азотную кислоту и примешивают серную кислоту, после чего отфильтровывают азотную кислоту от гипса.

Хранение и упаковка . Для хранения азотной кислоты можно применять стеклянную, шамотовую и чисто алюминиевую (не больше 5% примесей) посуду, а также посуду из специальной кремнистой кислотоупорной стали Круппа (V2A). Т. к. при действии крепкой азотной кислоты на дерево, опилки, тряпки, смоченные растительным маслом, и т. п. возможны вспышки и пожары (например, если лопнет бутыль при перевозке), то перевозить азотную кислоту можно лишь в специальных поездах. Особенно легко при нагревании вспыхивает скипидар при попадании в крепкую азотную кислоту.

Применение : 1) в виде солей для удобрения, 2) для получения взрывчатых веществ, 3) для получения полуфабрикатов для красящих веществ, а отчасти и самих красителей. Гл. обр. применяются соли азотной кислоты или селитры (натриевая, аммонийная, кальциевая и калийная) для удобрений. В 1914 г. мировое потребление азота в виде чилийской селитры достигало 368000 т и в виде азотной кислоты из воздуха - 10000 т. В 1925 г. потребление должно было дойти до 360000 т азотной кислоты из воздуха. Потребление азотной кислоты сильно возрастает во время войны в виду траты на взрывчатые вещества, главными из которых являются нитроглицерин и нитроклетчатки разных типов, нитросоединения (нитротолуол, тротил, мелинит и т. д.) и вещества для запалов (гремучая ртуть). В мирное время азотная кислота тратится на добывание нитросоединений, например, нитробензола, для перехода к красителям через анилин, получающийся из нитробензола восстановлением. Значительное количество азотной кислоты применяется для травления металлов; соли азотной кислоты (селитры) применяются для взрывчатых веществ (аммонийная селитра - в бездымных, калийная - в дымных порохах) и для фейерверков (бариевая селитра - для зеленого цвета).

Стандарт азотной кислоты . Стандарт азотной кислоты существует пока только в СССР и утвержден Комитетом по стандартизации при СТО в качестве общесоюзного обязательного стандарта (ОСТ-47) для кислоты в 40° Вẻ. Стандарт устанавливает содержание HNО 3 в азотной кислоте в 61,20% и ограничивает содержание примесей: серной кислоты не более 0,5%, хлора не более 0,8%, железа не более 0,01%, твердого остатка не более 0,9%; стандартная азотная кислота не должна содержать осадка. Стандарт регулирует взаимоотношения продавца и покупателя, жестко регламентируя методику отбора проб и производства анализов. Содержание азотной кислоты определяется прибавлением к кислоте NaOH и обратным титрованием кислотой. Содержание серной кислоты определяется в виде BaSО 4 осаждением ВаСl 2 . Содержание хлора определяют титрованием в щелочной среде азотнокислым серебром. Содержание железа определяют осаждением полуторных окислов аммиаком, восстановлением окисного железа в закисное и последующим титрованием КМnO 4 . Упаковка азотной кислоты не носит пока стандартного характера. Не касаясь размера, веса и качества тары, стандарт обусловливает упаковку азотной кислоты в стеклянную посуду и дает указания, как ее упаковывать и закупоривать.

Получение азотной кислоты.

I. Из воздуха . Синтез азотной кислоты из воздуха при действии вольтовой дуги повторяет до известной степени процесс, совершающийся в природе под влиянием разрядов атмосферного электричества. Кавендиш первый наблюдал (в 1781 г.) образование окислов азота при горении Н 2 в воздухе, а затем (в 1784 г.) и при проскакивании электрической искры через воздух. Мутман и Гофер в 1903 г. первые попытались изучить равновесие: N 2 + О 2 2NO. Пропуская через воздух вольтову дугу переменного тока в 2000-4000 V, они практически добились концентрации NО от 3,6 до 6,7 объемных %. Расход энергии на 1 кг HNО 3 у них достигал 7,71 kWh. Это равновесие изучал затем Нернст, пропуская воздух через иридиевую трубку. Далее в том же направлении работали Нернст с Еллинеком и др. исследователи. Путем экстраполирования экспериментальных результатов исследования равновесия между воздухом и окисью азота Нернсту удалось вычислить, что в правой части уравнения устанавливается при температуре 3750° (т. е. приблизительно при температуре вольтовой дуги) содержание 7 объемных % NО.

Приоритет идеи технического использования вольтовой дуги для фиксации атмосферного азота принадлежит французской исследовательнице Лефебр, которая еще в 1859 г. запатентовала в Англии свой метод получения азотной кислоты из воздуха. Но в то время стоимость электрической энергии была слишком высока, чтобы метод Лефебр мог получить практическое значение. Следует указать еще на патенты Мак Дугаля (Ан. П. 4633, 1899 г.) и на осуществленный в техническом масштабе метод Bradley и Lovejoy, эксплуатировавшийся в 1902 г. американской фирмой Atmospheric Products С° (с 1 млн. долл. капитала) с использованием энергии Ниагарского водопада. К этому же времени следует отнести попытки использования напряжения в 50000 V для фиксации атмосферного азота, сделанные Ковальским и его сотрудником И. Мосьцицким. Но первый существенный успех в деле фабрикации азотной кислоты из воздуха принесла историческая идея норвежского инженера Биркелянда, которая заключалась в том, чтобы использовать для повышения выходов окислов азота при пропускании через воздух вольтовой дуги способность последней растягиваться в сильном электромагнитном поле. Эту мысль Биркелянд совместил с другим норвежским инженером Эйде претворил в техническую установку, сразу же давшую рентабельную возможность получения из воздуха азотной кислоты. Благодаря постоянной перемене направления токаи действию электромагнита образующееся пламя вольтовой дуги имеет все время тенденцию как бы раздуваться в разные стороны, что приводит к образованию быстро перемещающейся все время со скоростью до 100 м/сек вольтовой дуги, создающей впечатление спокойно горящего широкого электрического солнца диаметром в 2 м и более. Через это солнце непрерывно продувается сильная струя воздуха, а самое солнце заключено в окованную медью особую печь из огнеупорной глины (фиг. 1, 2 и 3).

Полые электроды вольтовой дуги изнутри охлаждаются водой. Воздух через каналы а в шамотовой кладке печи поступает в дуговую камеру b; через с окисленный газ покидает печь и охлаждается с использованием его тепла для нагревания котлов выпаривательных аппаратов. После этого NО поступает в окислительные башни, где окисляется за счет кислорода воздуха до NO 2 . Последний процесс является процессом экзотермическим (2NO + О 2 = 2NО 2 + 27Cal), и поэтому условия, увеличивающие поглощение тепла, значительно способствуют реакции в этом направлении. Далее, двуокись азота поглощается водой согласно следующим уравнениям:

3NO 2 + H 2 O = 2HNO 3 + NO
2NO 2 + H 2 O = HNO 3 + HNO 2

По другому способу, реагирующую смесь газов перед поглощением охлаждают ниже 150°; при этой температуре обратное разложение – NO 2 = NO + O почти не имеет места. Имея в виду, что при некоторых условиях равновесие NO + NО 2 N 2 О 3 устанавливается с максимальным содержанием N 2 О 3 , можно получить, поливая горячие нитритные газы еще до полного их окисления, при температуре от 200 до 300°, раствором соды или едкого натра, вместо азотнокислых солей - чистые нитриты (метод Norsk Hydro). При выходе из печи продуваемый воздух содержит от 1 до 2% окислов азота, которые сейчас же улавливаются встречными струями воды и затем нейтрализуются известью с образованием кальциевой, так наз. «норвежской» селитры. На проведение самого процесса N 2 + О 2 2NO - 43,2 Cal требуется затрата сравнительно лишь незначительного количества электрической энергии, а именно: для получения 1 тонны связанного азота в виде NО лишь 0,205 kW-года; между тем в лучших современных установках приходится затрачивать в 36 раз больше, т. е. около 7,3 и до 8 kW-лет на 1 тонну. Другими словами, свыше 97% затрачиваемой энергии идет не на образование NО, а на создание для этого процесса благоприятных условий. Чтобы сдвинуть равновесие в сторону возможно большего содержания NО, необходимо пользоваться температурой от 2300 до 3300° (содержание NО при 2300° - 2 объемных % и для 3300° - 6 объемных %), но при таких температурах 2NO быстро распадается обратно на N 2 + О 2 . Поэтому в небольшую долю секунды необходимо удалить газ из горячих областей в более холодные и охладить его хотя бы до 1500°, когда распад NО протекает более медленно. Равновесие N 2 + О 2 2NО устанавливается при 1500° в 30 ч., при 2100° - в 5 сек., при 2500° - в 0,01 сек. и при 2900° - в 0,000035 сек.

Существенными усовершенствованиями по сравнению с методом Биркелянда и Эйде отличается метод Шонгерра, сотрудника BASF. В этом методе, вместо пульсирующего и действующего все же с перебоями прерывистого пламени вольтовой дуги переменного тока, применяется спокойное пламя сильного постоянного тока. Этим предотвращается весьма вредное для процесса частое задувание пламени. Такого же результата, впрочем, можно достигнуть и при вольтовой дуге переменного тока, но продувая воздух через сожигательное пламя не прямолинейно, а в виде вихревого ветра вдоль пламени вольтовой дуги. Поэтому печь м. б. сконструирована в виде довольно узкой металлической трубки, притом т. о., чтобы пламя дуги не касалось ее стенок. Схема конструкции печи Шонгерра изображена на фиг. 4.

Дальнейшее усовершенствование в дуговой метод вносит метод Паулинга (фиг. 5). Электроды в сожигательной печи имеют вид роговых разрядников. Образующаяся между ними вольтова дуга в 1 м длиной вздувается сильной струей воздуха кверху. В наиболее узком месте оборвавшееся пламя дуга вновь зажигается при помощи дополнительных электродов.

Несколько иная конструкция печи для окисления азота воздуха запатентована И. Мосьцицким. Один из обоих электродов (фиг. 6) имеет форму плоского диска и находится от другого электрода на весьма близком расстоянии. Верхний электрод трубчатый, и через него поступают быстрой струей нейтральные газы, распространяющиеся затем конусом.

Пламя, вольтовой дуги приведено в круговое движение под влиянием электромагнитного поля, а быстрая конусообразная струя газа препятствует коротким замыканиям. Подробное описание всей установки приведено у В. Waeser, Luftstickstoff-Industrie, р. 475, 1922. По методу И. Мосьцицкого работает один завод в Швейцарии (Chippis, Wallis), вырабатывая 40%-ную НNO 3 . Другой завод в Польше (Bory-Jaworzno) рассчитан на 7000 kW и должен вырабатывать концентрированную НNO 3 и (NH 4) 2 SO 4 . Для улучшения выходов окислов азота и для повышения пламени вольтовой дуги, в последнее время применяется в качестве исходного продукта не воздух, а более богатая кислородом смесь азота и кислорода, с отношением 1: 1. С такой смесью работает французский завод в Ларош-де-Рам с очень хорошим результатом.

Получаемую четырехокись азота N 2 О 4 целесообразно сгущать в жидкость путем охлаждения до -90°. Такая жидкая четырехокись азота, полученная из предварительно высушенных газов - кислорода и воздуха, не реагирует с металлами и поэтому может транспортироваться в стальных бомбах и служить для изготовления HNО 3 крепких концентраций. В качестве охлаждающей жидкости в этом случае одно время применялся толуол, но, вследствие неизбежного просачивания окислов азота и действия их на толуол, на заводах Tschernewitz (в Германии) и Bodio (в Швейцарии) случились страшные взрывы, разрушившие оба предприятия. Извлечение N 2 О 4 из газовой смеси м. б. достигнуто также при помощи абсорбции N 2 О 4 силикагелем, выделяющим при нагревании поглощенный N 2 О 4 обратно.

II. Контактным окислением аммиака . Все описанные методы получения синтетической азотной кислоты непосредственно из воздуха, как уже было указано, рентабельны лишь при наличии дешевой гидроэлектрической энергии. Проблема связанного азота (см. Азот) не могла бы считаться окончательно разрешенной, если бы не был найден способ получения сравнительно дешевой синтетической азотной кислоты. Усвоение связанного азота удобрений растениями особенно облегчено, если эти удобрения представляют собою соли азотной кислоты. Аммонийные соединения, внесенные в почву, должны предварительно подвергнуться нитрификации в самой почве (см. Азотные удобрения). Кроме того, азотная кислота, наравне с серной кислотой, является основой многочисленных отраслей химической промышленности и военного дела. Получение взрывчатых веществ и бездымного пороха (тротил, нитроглицерин, динамит, пикриновая кислота и мн. др.), анилиновых красок, целлулоида и искусственного шелка, многих медикаментов и т. д. невозможно без азотной кислоты. Поэтому-то в Германии, отрезанной во время мировой войны блокадой от источника чилийской селитры и в то же время не располагавшей дешевой гидроэлектрической энергией, в значительной степени развилось производство синтетической азотной кислоты по контактному методу, исходя из каменноугольного или синтетического аммиака путем окисления его кислородом воздуха при участии катализаторов. Во время войны (1918 г.) в Германии производилось до 1000 т азотной кислоты и азотнокислого аммония в день.

Еще в 1788 г. Мильнером в Кембридже была установлена возможность окисления NH 3 в окислы азота при действии перекиси марганца при нагревании. Кульман в 1839 г. установил контактное действие платины при окислении аммиака воздухом. Технически же метод окисления аммиака до азотной кислоты был разработан Оствальдом и Брауэром и запатентован ими в 1902 г. (Интересно, что в Германии заявка Оствальда была отклонена в виду признания приоритета за французским химиком Кульманом.) При действии мелкораздробленной платины и медленном течении газовой смеси, окисление идет по реакции 4NH 3 + ЗО 2 = 2N 2 + 6H 2 О. Поэтому процесс д. б. строго регулирован как в смысле значительной скорости движения газовой струи, продуваемой через контактный «конвертор», так и в смысле состава газовой смеси. Поступающая в «конверторы» смесь газов д. б. предварительно тщательно очищена от пыли и примесей, которые могли бы «отравить» платиновый катализатор.

Можно предполагать, что присутствие платины вызывает распад молекулы NН 3 и образование нестойкого промежуточного соединения платины с водородом. При этом азот in statu nascendi подвергается окислению кислородом воздуха. Окисление NH 3 до HNО 3 протекает по следующим реакциям:

4NH 3 + 5О 2 = 4NO + 6Н 2 0;

охлажденный бесцветный газ NО, будучи смешан с новой порцией воздуха, самопроизвольно окисляется дальше с образованием NО 2 или N 2 О 4:

2NО + О 2 = 2NО 2 , или N 2 O 4 ;

растворение образовавшихся газов в воде в присутствии избытка воздуха или кислорода связано с дальнейшим окислением по реакции:

2NO 2 + О + Н 2 О = 2HNO 3 ,

после чего получается HNО 3 , крепостью примерно от 40 до 50%. Путем перегонки, полученной HNО 3 с крепкой серной кислотой, можно получить, наконец, концентрированную синтетическую азотную кислоту. По Оствальду, катализатор должен состоять из металлической платины, покрытой частью или вполне губчатой платиной или платиновой чернью.

Реакция должна протекать при едва начавшемся красном калении и при значительной скорости течения газовой смеси, состоящей из 10 и более частей воздуха на 1 ч. NH 3 . Медленное течение газовой смеси способствует полному распаду NH 3 до элементов. При платиновой контактной сетке в 2 см скорость течения газа д. б. 1-5 м/сек, т. е. время соприкосновения газа с платиной не должно превышать 1 / 100 сек. Оптимальные температуры лежат около 300°. Смесь газа предварительно нагревается. Чем больше скорость течения газовой смеси, тем больше и выход NО. Работая с применением очень густой платиновой сетки (катализатора) со смесью аммиака с воздухом, содержащей около 6,3% NH 3 , Нейман и Розе получили при температуре 450° следующие результаты (при контактной поверхности платины в 3,35 см 2):

Большее или меньшее содержание NH 3 также имеет большое значение для направления химического процесса, который может идти или по уравнению: 4NH 3 + 5О 2 = 4NO + 6Н 2 О (при содержании 14,38% NH 3), или по уравнению: 4NH 3 + 7О 2 = 4NО 2 + 6Н 2 О (при содержании в смеси 10,74% NH 3). С меньшим успехом, чем платина, м. б. применены и другие катализаторы (окись железа, висмута, церия, тория, хрома, ванадия, меди). Из них внимания заслуживает только применение окиси железа при температуре 700-800°, с выходом от 80 до 85% NH 3 .

Значительную роль при окислительном процессе перехода NH 3 в HNО 3 играет температура. Самая реакция окисления аммиака экзотермична: 4NH 3 + 5О 2 = 4NО + 6H 2 О + 215,6 Cal. Лишь первоначально необходимо подогреть контактный аппарат,-далее реакция идет за счет собственной теплоты. Техническая конструкция «конверторов» для окисления аммиака разных систем понятна из приведенных рисунков (фиг. 7-8).

Схема производства HNO 3 по принятому в настоящее время методу Франка-Каро приведена на фиг. 9.

На фиг. 10 представлена схема окисления NH 3 на фабрике Мейстера Люциуса и Брюннинга в Гехсте.

В современных установках окисление NH 3 до NО осуществляется с выходом до 90%, а последующее окисление и поглощение образовавшихся окислов азота водой - с выходом до 95%. Т. о., весь процесс дает выход связанного азота в 85-90%. Получение HNО 3 из селитры обходится в настоящее время (в пересчете на 100%-ную HNО 3) в 103 долл. за 1 т, по дуговому процессу 97 долл. 30 цент, за 1 т, в то время как 1 т HNО 3 , полученной окислением NH -3 обходится всего 85 долл. 80 цент. Само собою разумеется, что эти цифры м. б. только примерными и в значительной степени зависят от величины предприятия, стоимости электрической энергии и сырья, но все же они показывают, что контактному методу получения HNО 3 суждено занять в ближайшем будущем господствующее положение сравнительно с остальными методами.

См. также

Азотная кислота - бесцветную жидкость с едким запахом, плотностью 1, 52 г/см3 , температура кипения 84°С, при температуре -41°С затвердевает в бесцветное кристаллическое вещество. Обычно применяемая на практике, концентрированная азотная кислота содержит 65 - 70% HNO3 (максимальная плотность 1, 4 г/см3); с водой кислота смешивается в любых соотношениях. Существует также дымящая азотная кислота с концентрацией 97 - 99%.

Азотная кислота высокой концентрации выделяет на воздухе газы, которые в закрытой бутылке обнаруживаются в виде коричневых паров (оксиды азота). Эти газы очень ядовиты, так что нужно остерегаться их вдыхания. Азотная кислота окисляет многие органические вещества. Бумага и ткани разрушаются вследствие окисления образующих эти материалы веществ. Концентрированная азотная кислота вызывает сильные ожоги при длительном контакте и пожелтение кожи на несколько дней при кратком контакте. Пожелтение кожи свидетельствует о разрушении белка и выделении серы (качественная реакция на концентрированную азотную кислоту – жёлтое окрашивание из-за выделения элементной серы при действии кислоты на белок – ксантопротеиновая реакция). То есть – это ожог кожи.

Чтобы предотвратить ожог, следует работать с концентрированной азотной кислотой в резиновых перчатках. В то же время обращение с азотной кислотой менее опасно, чем, например, с серной, она быстро испаряется и не остаётся в неожиданных местах. Брызги азотной кислоты следует смывать большим количеством воды, а ещё лучше смачивать раствором соды.

Дымящая азотная кислота при хранении под действием теплоты и на свету частично разлагается:

4HNO3 = 2H2O + 4NO2 + O2.

Чем выше температура и чем концентрированнее кислота, тем быстрее идёт разложение. Поэтому хранят её в прохладном и тёмном месте. Выделяющийся диоксид азота растворяется в кислоте и придаёт ей бурую окраску.

Разбавленную кислоту легко приготовить, выливая концентрированную кислоту в воду.

Разбавленную азотную кислоту хранят и перевозят в таре из хромистой стали, концентрированную – в алюминиевой таре, т.к. концентрированная кислота пассивирует алюминий, железо и хром из-за образования нерастворимых плёнок оксидов:

2Al + 6HNO3 = Al2O3 + 6NO2 + 3H2O.

Небольшие количества хранят в стеклянных бутылках. Азотная кислота сильно разъедает резину. Поэтому бутылки должны быть с притёртыми или полиэтиленовыми пробками.

Применяют азотную кислоту в основном в виде водных растворов, является одной из составных частей царской водки, содержится в пробирных кислотах. В промышленности применяют для получения комбинированных азотных удобрений, для растворения руд и концентратов, в производстве серной кислоты, различных органических нитропродуктов, в ракетной технике как окислитель горючего и т. д.

Промышленное получение азотной кислоты

Современные промышленные способы получения азотной кислоты основаны на каталитическом окислении аммиака кислородом воздуха. При« описании свойств аммиака было указано, что он горит в кислороде, причём продуктами реакции являются вода и свободный азот. Но в присутствии катализаторов - окисление аммиака кислородом может протекать иначе.

Если пропускать смесь аммиака с воздухом над катализатором, то при 750 °С и определен-ном составе смеси происходит почти полное превращение

Образовавшийся NO легко переходит в NO2, который с водой в присутствии кислорода воздуха дает азотную кислоту.

В качестве катализаторов при окислении аммиака используют сплавы на основе платины.
Получаемая окислением аммиака азотная кислота имеет концентрацию, не превышающую 60%. При необходимости ее концен-трируют,
Промышленностью выпускается разбавленная азотная кислота концентрацией 55, 47 и 45%, а концентрированная-98 и 97%,

Применение азотной кислоты

Кислота азотная применяется в производство азотных и комбинированных удобрений (натриевой, аммиачной, кальциевой и калиевой селитры, нитрофоса, нитрофоски), различных сернокислых солей, взрывчатых веществ (тринитротолуола и др.), органических красителей.

В органическом синтезе широко применяется смесь концентрированной азотной кислоты и серной кислоты - «нитрующая смесь».

В металлургии азотная кислота применяется для растворения и травления металлов, а также для разделения золота и серебра. Также азотную кислоту применяют в химической промышленности, в производстве взрывчатых веществ, в производстве полупродуктов для получения синтетических красителей и других химикатов.

Кислота азотная техническая используется при никелировании, гальванизации и хромировании деталей, а ткаже в полиграфической промышленности. Широко используется кислота азотная в молочной, электротехнической промышленности.

Плотность растворов различной концентрации азотной кислоты

Плотность,

г/см 3

Концентрация

Плотность,
г/см 3

Концентрация

г/л.

г/л.

1, 000

0, 3296

3, 295

1, 285

46, 06

591, 9

1, 005

1, 255

12, 61

1, 290

46, 85

604, 3

1, 010

2, 164

21, 85

1, 295

47, 63

616, 8

1, 015

3, 073

31, 19

1, 300

48, 42

629, 5

1, 020

3, 982

40, 61

1, 305

49, 21

642, 1

1, 025

4, 883

50, 05

1, 310

50, 00

644, 7

1, 030

5, 784

59, 57

1, 315

50, 85

668, 5

1, 035

6, 661

68, 93

1, 320

51, 71

682, 4

1, 040

7, 530

78, 32

1, 325

52, 56

696, 3

1, 045

8, 398

87, 77

1, 330

53, 41

710, 1

1, 050

9, 259

97, 22

1, 335

54, 27

724, 0

1, 055

10, 12

106, 7

1, 340

55, 13

738, 5

1, 060

10, 97

116, 3

1, 345

56, 04

753, 6

1, 065

11, 81

125, 8

1, 350

56, 95

768, 7

1, 070

12, 65

135, 3

1, 355

57, 87

783, 8

1, 075

13, 48

145, 0

1, 360

58, 78

799, 0

1, 080

14, 31

154, 6

1, 365

59, 69

814, 7

1, 085

15, 13

164, 1

1, 370

60, 67

831, 1

1, 090

15, 95

173, 8

1, 375

61, 69

848, 1

1, 095

16, 76

183, 5

1, 380

62, 70

865, 1

1, 100

17, 58

193, 3

1, 385

63, 72

882, 8

1, 105

18, 39

203, 1

1, 390

64, 74

900, 4

1, 110

19, 19

213, 0

1, 395

65, 84

918, 1

1, 115

20, 00

223, 0

1, 400

66, 97

937, 6

1, 120

20, 79

232, 9

1, 405

68, 10

956, 6

1, 125

21, 59

242, 8

1, 410

69, 23

976, 0

1, 130

22, 38

252, 8

1, 415

70, 34

996, 2

1, 135

23, 16

262, 8

1, 420

71, 63

1017

1, 140

23, 94

272, 8

1, 425

72, 86

1038

1, 145

24, 71

282, 9

1, 430

74, 09

1059

1, 150

25, 48

292, 9

1, 435

74, 35

1081

1, 155

26, 24

303, 1

1, 440

76, 71

1105

1, 160

27, 00

313, 2

1, 445

78, 07

1128

1, 165

27, 26

323, 4

1, 450

79, 43

1152

1, 170

28, 51

333, 5

1, 455

80, 88

1177

1, 175

29, 25

343, 7

1, 460

82, 39

1203

1, 180

30, 00

354, 0

1, 465

83, 91

1229

1, 185

30, 74

364, 2

1, 470

8550

1257

1, 190

31, 47

374, 5

1, 475

87, 29

1287

1, 195

32, 21

385, 0

1, 480

89, 07

1318

1, 200

32, 94

395, 3

1, 485

91, 13

1353

1, 205

33, 68

405, 8

1, 490

93, 19

1393

1, 210

34, 41

416, 3

1, 495

95, 46

1427

1, 215

35, 16

427, 1

1, 500

96, 73

1450

1, 220

35, 93

438, 3

1, 501

96, 98

1456

1, 225

36, 70

449, 6

1, 502

97, 23

1461

1, 230

37, 48

460, 9

1, 503

97, 49

1465

1, 235

38, 25

472, 4

1, 504

97, 74

1470

1, 240

39, 02

483, 8

1, 505

97, 99

1474

1, 245

39, 80

495, 5

1, 506

98, 25

1479

1, 250

40, 58

505, 2

1, 507

98, 50

1485

1, 255

41, 36

519, 0

1, 508

98, 76

1490

1, 260

42, 14

530, 9

1, 509

99, 01

1494

1, 265

42, 92

542, 9

1, 510

99, 26

1499

1, 270

43, 70

555, 0

1, 511

99, 52

1503

1, 275

44, 48

567, 2

1, 512

99, 74

1508

1, 280

45, 27

579, 4

1, 513

100, 00

1513

: моногидрат (HNO 3 ·H 2 O) и тригидрат (HNO 3 ·3H 2 O).

Физические и физико-химические свойства

Фазовая диаграмма водного раствора азотной кислоты.

Азот в азотной кислоте четырёхвалентен , степень окисления +5. Азотная кислота — бесцветная, дымящая на воздухе жидкость, температура плавления −41,59 °C, кипения +82,6 °C с частичным разложением. Растворимость азотной кислоты в воде не ограничена. Водные растворы HNO 3 с массовой долей 0,95-0,98 называют «дымящей азотной кислотой», с массовой долей 0,6-0,7 — концентрированной азотной кислотой. С водой образует азеотропную смесь (массовая доля 68,4 %, d 20 = 1,41 г/см, T кип = 120,7 °C)

При кристаллизации из водных растворов азотная кислота образует кристаллогидраты:

  • моногидрат HNO 3 ·H 2 O, T пл = −37,62 °C
  • тригидрат HNO 3 ·3H 2 O, T пл = −18,47 °C

Твёрдая азотная кислота образует две кристаллические модификации:

  • моноклинная , пространственная группа P 2 1 /a, a = 1,623 нм, b = 0,857 нм, c = 0,631, β = 90°, Z = 16;

Моногидрат образует кристаллы ромбической сингонии , пространственная группа P na2, a = 0,631 нм, b = 0,869 нм, c = 0,544, Z = 4;

Плотность водных растворов азотной кислоты как функция её концентрации описывается уравнением

где d — плотность в г/см³, с — массовая доля кислоты. Данная формула плохо описывает поведение плотности при концентрации более 97 %.

Химические свойства

Высококонцентрированная HNO 3 имеет обычно бурую окраску вследствие происходящего на свету процесса разложения:

При нагревании азотная кислота распадается по той же реакции. Азотную кислоту можно перегонять (без разложения) только при пониженном давлении (указанная температура кипения при атмосферном давлении найдена экстраполяцией).

в) вытесняет слабые кислоты из их солей:

При кипении или под действием света азотная кислота частично разлагается:

Азотная кислота в любой концентрации проявляет свойства кислоты-окислителя, при этом азот восстанавливается до степени окисления от +4 до −3. Глубина восстановления зависит в первую очередь от природы восстановителя и от концентрации азотной кислоты. Как кислота-окислитель, HNO 3 взаимодействует:

Нитраты

Азотная кислота является сильной кислотой. Её соли — нитраты — получают действием HNO 3 на металлы, оксиды , гидроксиды или карбонаты . Все нитраты хорошо растворимы в воде. Нитрат-ион в воде не гидролизуется.

Соли азотной кислоты при нагревании необратимо разлагаются, причём состав продуктов разложения определяется катионом:

а) нитраты металлов, стоящих в ряду напряжений левее магния:

б) нитраты металлов, расположенных в ряду напряжений между магнием и медью :

в) нитраты металлов, расположенных в ряду напряжений правее :

Нитраты в водных растворах практически не проявляют окислительных свойств, но при высокой температуре в твердом состоянии являются сильными окислителями, например, при сплавлении твердых веществ:

Исторические сведения

Методика получения разбавленной азотной кислоты путём сухой перегонки селитры с квасцами и медным купоросом была, по видимому, впервые описана трактатах Джабира (Гебера в латинизированных переводах) в VIII веке . Этот метод с теми или иными модификациями, наиболее существенной из которых была замена медного купороса железным , применялся в европейской и арабской алхимии вплоть до XVII века .

В XVII веке Глаубер предложил метод получения летучих кислот реакцией их солей с концентрированной серной кислотой, в том числе и азотной кислоты из калийной селитры , что позволило ввести в химическую практику концентрированную азотную кислоту и изучить её свойства. Метод

Азотная кислота и ее свойства.

Чистая азотная кислота HNO 3 - бесцветная жидкость. На воздухе она, подобно концентрированной соляной кислоте, «дымит», так как пары ее образуют с влагой воздуха мелкие капельки тумана.

Азотная кислота не отличается прочностью. Уже под влиянием света она постепенно разлагается:

4HN0 3 = 4N0 2 + 0 2 + 2Н 2 0.

Чем выше температура и чем концентрированнее кислота, тем быстрее идет разложение. Выделяющийся диоксид азота растворяется в кислоте и придает ей бурую окраску.

Азотная кислота принадлежит к числу наиболее сильных кислот: в разбавленных растворах она полностью распадается на ионы Н+ и N0 _ .

Азотная кислота - один из энергичнейших окислителей. Многие неметаллы легко окисляются ею, превращаясь в соответствующие кислоты. Так, сера при кипячении с азотной кислотой постепенно окисляется в серную кислоту, фосфор -в фосфорную.

Азотная кислота действует почти на все металлы (см. разд. 11.3.2), превращая их в нитраты, а некоторые металлы - в оксиды.

Концентрированная HNO 3 пассивирует некоторые металлы.

Степень окисления азота в азотной кислоте равна +5. Выступая в качестве окислителя, HNO 3 может восстанавливаться до различных продуктов:

4 +3 +2 +1 0 -3

N0 2 N 2 0 3 NO N 2 О N 2 NH 4 N0 3

Какое из этих веществ образуется, т. е. насколько глубоко восстанавливается азотная кислота в том или ином случае, зависит от природы восстановителя и от условий реакции, прежде всего от концентрации кислоты. Чем выше концентрация HNO3, тем менее глубоко она восстанавливается. При реакциях с концентрированной кислотой чаще всего выделяется NO2. При взаимодействии разбавленной азотной кислоты с малоактивными металлами, например, с медью, выделяется N0. В случае более активных металлов - железа, цинка - образуется N2O. Сильно разбавленная азотная кислота взаимодействует с активными металлами - цинком, магнием, алюминием - с образованием иона аммония, дающего с кислотой нитрат аммония. Обычно одновременно образуются несколько продуктов.

Си + HN0 3(конц.) - Cu(N0 3) 2 + N0 2 + Н 2 0;

Си + HN0 3 (разбавл.) -^ Си(N0 3) 2 + N0 + Н 2 О;

Mg + HN0 3 (разбавл.) -> Mg(N0 3) 2 + N 2 0 + н 2 0 ;

Zn + HN0 3(очень разбавл.) - Zn(N0 3) 2 + NH 4 N0 3 + Н 2 0.

При действии азотной кислоты на металлы водород, как правило, не выделяется.

При окислении неметаллов концентрированная азотная кислота, как и в случае металлов, восстанавливается до N0 2 , например

S + 6HNO 3 = H 2 S0 4 + 6N0 2 + 2Н 2 0.

ЗР + 5HN0 3 + 2Н 2 0 = ЗН 3 РО 4 + 5N0

Приведенные схемы иллюстрируют наиболее типичные случаи взаимодействия азотной кислоты с металлами и неметаллами. Вообще же, окислительно-восстановительные реакции, идущие с участием HNO 3 , протекают сложно.

Смесь, состоящая из 1 объема азотной и 3-4 объемов концентрированной соляной кислоты, называется царской водкой. Царская водка растворяет не-которые металлы, не взаимодействующие с азотной кислотой, в том числе и «царя металлов» - золото. Действие ее объясняется тем, что азотная кислота окисляет соляную с выделением свободного хлора и образованием хлороксида азота (1П), или хлорида нитрозила, N0C1:

HN0 3 + ЗНС1 = С1 2 + 2Н 2 0 + N0C1.

Хлорид нитрозила является промежуточным продуктом реакции и разлага-ется:

2N0C1 = 2N0 + С1 2 .

Хлор в момент выделения состоит из атомов, что и обусловливает высокую окислительную способность царской водки. Реакции окисления золота и платины протекают в основном согласно следующим уравнениям:

Au + HN0 3 + ЗНС1 = AuCl 3 + NO + 2Н 2 0;

3Pt + 4HN0 3 + 12НС1 = 3PtCl 4 + 4N0 + 8Н 2 0.

На многие органические вещества азотная кислота действует так, что один или несколько атомов водорода в молекуле органического соединения замещаются нитрогруппами - NO 2 . Этот процесс называется нитрованием и имеет большое значение в органической химии.

Соли азотной кислоты называются нитратами. Все они хорошо растворяются в воде, а при нагревании разлагаются с выделением кислорода. При этом нитраты наиболее активных металлов переходят в нитриты:

2KN0 3 = 2KN0 2 +О 2

Промышленное получение азотной кислоты. Современные промышленные способы получения азотной кислоты основаны на каталитическом окислении аммиака кислородом воздуха. При описании свойств аммиака было указано, что он горит в кислороде, причем продуктами реакции являются вода и свободный азот. Но в присутствии катализаторов окисление аммиака кислородом может протекать иначе. Если пропускать смесь аммиака с воздухом над катализатором, то при 750 °С и определенном составе смеси происходит почти полное превращение NH 3 в N0:

4NH 3 (r) + 5О 2 (г) = 4NO(r) + 6Н 2 О(г), АН = -907 кДж.

Образовавшийся N0 легко переходит в NO 2 , который с водой в присутствии кислорода воздуха дает азотную кислоту.

В качестве катализаторов при окислении аммиака используют сплавы на основе платины.

Получаемая окислением аммиака азотная кислота имеет концентрацию, не превышающую 60%. При необходимости ее концентрируют.

Промышленностью выпускается разбавленная азотная кислота концентрацией 55, 47 и 45 %, а концентрированная - 98 и 97 %. Концентрированную кислоту перевозят в алюминиевых цистернах, разбавленную - в цистернах из кислотоупорной стали.

Билет 5

2. Роль железа в процессе жизнедеятельности организма.

Железо в организме. Железо присутствует в организмах всех животных и в растениях (в среднем около 0,02%); оно необходимо главным образом для кислородного обмена и окислительных процессов. Существуют организмы (так называемые концентраторы), способные накапливать его в больших количествах (например, железобактерии - до 17-20% Железа). Почти все Железо в организмах животных и растений связано с белками. Недостаток Железа вызывает задержку роста и явления хлороза растений, связанные с пониженным образованием хлорофилла. Вредное влияние на развитие растений оказывает и избыток Железа, вызывая, например, стерильность цветков риса и хлороз. В щелочных почвах образуются недоступные для усвоения корнями растений соединения Железа, и растения не получают его в достаточном количестве; в кислых почвах Железо переходит в растворимые соединения в избыточном количестве. При недостатке или избытке в почвах усвояемых соединений Железа заболевания растений могут наблюдаться на значительных территориях.

В организм животных и человека Железо поступает с пищей (наиболее богаты им печень, мясо, яйца, бобовые, хлеб, крупы, шпинат, свекла). В норме человек получает с рационом 60-110 мг Железа, что значительно превышает его суточную потребность. Всасывание поступившего с пищей Железа происходит в верхнем отделе тонких кишок, откуда оно в связанной с белками форме поступает в кровь и разносится с кровью к различным органам и тканям, где депонируется в виде Железо-белкового комплекса - ферритина. Основное депо Железа в организме - печень и селезенка. За счет ферритина происходит синтез всех железосодержащих соединений организма: в костном мозге синтезируется дыхательный пигмент гемоглобин, в мышцах - миоглобин, в различных тканях цитохромы и других железосодержащие ферменты. Выделяется Железо из организма главным образом через стенку толстых кишок (у человека около 6-10 мг в сутки) и в незначительной степени почками.


Опытным путём доказано, что в молекуле азотной кислоты между двумя атомами кислорода и атомом азота две химические связи абсолютно одинаковые – полуторные связи. Степень окисления азота +5, а валентность равна IV .

Физические свойства

Азотная кислота HNO 3 в чистом виде - бесцветная жид­кость с резким удушливым запахом, неограниченно растворимая в воде; t°пл.= -41°C; t°кип.= 82,6°С, r = 1,52 г/см 3 . В небольших количествах она образуется при грозовых разрядах и присутствует в дождевой воде.

Под действием света азотная кислота частично разлагается с выделением N О 2 и за c чет этого приобретает светло-бурый цвет:

N 2 + O 2 грозовые эл . разряды → 2NO

2NO + O 2 → 2NO 2

4Н N О 3 свет → 4 N О 2 (бурый газ) + 2Н 2 О + О 2

Азотная кислота высокой концентрации выделяет на воздухе газы, которые в закрытой бутылке обнаруживаются в виде коричневых паров (оксиды азота). Эти газы очень ядовиты, так что нужно остерегаться их вдыхания. Азотная кислота окисляет многие органические вещества. Бумага и ткани разрушаются вследствие окисления образующих эти материалы веществ. Концентрированная азотная кислота вызывает сильные ожоги при длительном контакте и пожелтение кожи на несколько дней при кратком контакте. Пожелтение кожи свидетельствует о разрушении белка и выделении серы (качественная реакция на концентрированную азотную кислоту – жёлтое окрашивание из-за выделения элементной серы при действии кислоты на белок – ксантопротеиновая реакция). То есть – это ожог кожи. Чтобы предотвратить ожог, следует работать с концентрированной азотной кислотой в резиновых перчатках.

Получение

1. Лабораторный способ

KNO 3 + H 2 SO 4 (конц) → KHSO 4 + HNO 3 ­ (при нагревании)

2. Промышленный способ

Осуществляется в три этапа :

a) Окисление аммиака на платиновом катализаторе до NO

4NH 3 + 5O 2 → 4NO + 6H 2 O (Условия: катализатор – Pt , t = 500˚С)

б) Окисление кислородом воздуха NO до NO 2

2NO + O 2 → 2NO 2

в) Поглощение NO 2 водой в присутствии избытка кислорода

4NO 2 + О 2 + 2H 2 O ↔ 4HNO 3

или3 NO 2 + H 2 O ↔ 2 HNO 3 + NO (без избытка кислорода)

Тренажёр "Получение азотной кислоты"

Применение

  • в производстве минеральных удобрений;
  • в военной промышленности;
  • в фотографии - подкисление некоторых тонирующих растворов;
  • в станковой графике - для травления печатных форм (офортных досок, цинкографических типографских форм и магниевых клише).
  • в производстве взрывчатых и отравляющих веществ

Вопросы для контроля:

№1. Степень окисления атома азота в молекуле азотной кислоты

a. +4

b. +3

c. +5

d. +2

№2. Атом азота в молекуле азотной кислоты имеет валентность равную -

a. II

b. V

c. IV

d. III

№3. Какими физическими свойствами характеризуют чистую азотную кислоту?

a. без цвета

b. не имеет запаха

c. имеет резкий раздражающий запах

d. дымящая жидкость

e. окрашена в жёлтый цвет

№4. Установите соответствие между исходными веществами и продуктами реакции:

a) NH 3 + O 2

1) NO 2

b) KNO 3 + H 2 SO 4

2) NO 2 + О 2 + H 2 O

c) HNO 3

3) NO + H 2 O

d) NO + O 2

4)KHSO 4 + HNO 3 ­

№5. Расставьте коэффициенты методом электронного баланса, покажите переход электронов, укажите процессы окисления (восстановления; окислитель (восстановитель):

NO 2 + О 2 + H 2 O ↔ HNO 3



← Вернуться

×
Вступай в сообщество «servizhome.ru»!
ВКонтакте:
Я уже подписан на сообщество «servizhome.ru»