Виды осадков и способы их образования. Как рассчитывают количество осадков? Среднегодовое количество осадков определение

Подписаться
Вступай в сообщество «servizhome.ru»!
ВКонтакте:

Исходные данные:

Река Сура, пункт г.Пенза, площадь водосбора F = 15400 км 2 , залесенность 27%, заболоченность 1%. Среднемноголетнее количество осадков х 0 =666 мм.

Таблица 1. Среднемесячные и среднегодовые расходы и модули стока.

Период наблюдений (годы) с 1963 по 1972 год.

Сентябрь

М л/с · км 2

М а л/с · км 2

Бассейн-аналог - река Сура,с.Кадышево

Средняя многолетняя величина годового стока (норма) М о а = 3,7 л/с · км 2 , С v = 0,28

Многолетнее: U бр = 1500 млн. м 3 , Р = 80%, r = 0.

1. Определить среднюю многолетнюю величину (норму) годового стока при наличии данных наблюдений.

У нас имеются исходные данные: среднегодовые расходы воды,при этом для уменьшения объёма расчётов период наблюдений был сокращён до 10 лет.

Нормой гидрологических величин называется среднее арифметическое значение характеристик гидрологического режима за многолетний период такой продолжительности, при увеличении которой полученное среднее значение существенно не меняется.

При наличии длительных (50 - 80 лет) наблюдений и неизмененных физико-географических и хозяйственных условий, а также, если период наблюдений включает не менее двух полных циклов колебаний водности реки, величина среднего многолетнего стока вычисляется по формуле:

где Qi - средний годовой стока за i-й год;

n - число лет наблюдений.

Определяем среднюю многолетнюю величину годовых расходов реки Сура, пункт г.Пенза по данным

Напомним, что расход воды - это объём воды, протекающей через живое сечение потока в единицу времени.

Полученную норму в виде среднего многолетнего расхода воды требуется выразить через другие характеристики стока : модуль, слой, объём и коэффициент стока.

· Модуль стока - количество воды, стекающее с единицы площади водосбора в единицу времени.

Средний многолетний модуль стока вычисляем по соотношению:

л/с · км 2 , (2)

где F - площадь водосбора, км 2 (приложение 1).

· Объём стока - объём воды, стекающей с водосбора за какой-либо интервал времени.

Вычисляем средний многолетний объём стока за год:

где Т - число секунд в году, равное 31,54 · 106 с.

· Слой стока - количество воды, стекающее с водосбора за какой-либо интервал времени, равное толщине слоя, равномерно распределённого по площади этого водосбора. Слой стока выражается в мм.

Средний многолетний слой стока вычисляем по зависимости:

мм/год. (4)

· Коэффициент стока - отношение величины (объёмы или слоя) стока к количеству выпавших на площадь водосбора осадков, обусловивших возникновение стока.

Средний многолетний коэффициент стока:

где х 0 - средняя многолетняя величина осадков в год, мм. Оценка репрезентативности (достаточности) ряда наблюдений определяется величиной относительной средней квадратической ошибки средней многолетней величины (нормы) годового стока, вычисляемой по формуле:

где С v - коэффициент изменчивости (вариации) годового стока; длина ряда считается достаточной для определения Q 0 , если? 510%. Величина среднего стока при этом называется нормой стока.

Определить коэффициент изменчивости (вариации) Сv годового стока.

Коэффициент изменчивости С v характеризует отклонения стока за отдельные годы от нормы стока; он равен:

где? Q - среднеквадратическое отклонение годовых расходов от нормы стока.

Если n < 30, то

Если сток за отдельные годы выразить в виде модульных коэффициентов,

а при n < 30

Составляем таблицу для подсчёта С v годового стока реки Сура пункт г.Пенза

Данные для подсчёта С v

Годовые расходы Qi , м3/с

Коэффициент изменчивости С v годового стока реки Сура, пункт г.Пенза равен:

Относительная средняя квадратическая ошибка средней многолетней величины годового стока реки Сура за период с 1963 по 1972гг. (10 лет) равна:

Относительная средняя квадратическая ошибка коэффициента изменчивости С v при его определении методом моментов равна:

В рассматриваемом примере

Длина ряда считается достаточной для определения Q 0 и C v , если, а. Величина среднего годового стока при этом условии называется нормой стока.

Вывод : В нашем примере находится в пределах допустимого, а больше допустимой ошибки. Значит, ряд наблюдений недостаточный, необходимо удлинить его.

2. Определить норму стока при недостатке данных методом гидрологической аналогии.

Река-аналог выбирается по:

ь сходству климатических характеристик;

ь синхронности колебаний стока во времени;

ь однородности рельефа, почвогрунтов, гидрогеологических условий, близкой степени покрытости водосбора лесами и болотами;

ь соотношению площадей водосборов, которые не должны отличаться более чем в 10 раз;

ь отсутствию факторов, искажающих сток (строительство плотин, изъятие и сбросы воды).

Река-аналог должна иметь многолетний период гидрометрических наблюдений для точного определения нормы стока и не менее 6 лет параллельных наблюдений с изучаемой рекой.

Строим на миллиметровке график связи модулей исследуемой реки и реки-аналога. За годы параллельных наблюдений наносим точки в виде кружочков диаметром 1мм, справа записываем порядковый номер года. График строим в виде прямой линии усредняющей точки. Зависимости считаются удовлетворительными, если отклонения большей части точек от средней линии не превышают 15%. Затем, зная норму стока реки-аналога М о а = 3,7 л/с · км 2 , определяем норму стока, выраженную через модуль изучаемой реки, и вычисляем норму стока через расход.

По графику связи среднегодовых модулей стока р.Сура, пункт г.Пенза и р.Сура, с.Кадышево М о = 2,9 л/с · км 2 .

Коэффициент изменчивости годового стока вычисляем по формуле

где Cv - коэффициент изменчивости стока в расчётном створе;

C vа - в створе реки-аналога;

М 0а - среднемноголетняя величина годового стока реки-аналога;

А - тангенс угла наклона графика связи.

В рассматриваем примере:

Окончательно принимаем:

М 0 = 2,9 л/с · км 2 ,

Q 0 = 44,66 м 3 /с,

3. Построить и проверить кривую обеспеченности годового стока.

Для характеристики возможных колебаний стока за длительный период и определения расчётных расходов в гидрологии применяют аналитические кривые обеспеченности: биноминальную кривую обеспеченности и кривую трехпараметрического гамма-распределения. Они определяются следующими параметрами:

ь - средней величиной,

ь С v - коэффициентом изменчивости (вариации),

ь С s - коэффициентом асимметрии.

В работе требуется построить кривую обеспеченности годового стока, воспользовавшись кривой трёхпараметрического гамма-распределения. Для этого необходимо рассчитать три параметра:

ь Q 0 - среднюю многолетнюю величину (норму) годового стока,

ь С v - коэффициент изменчивости (вариации) годового стока,

ь С s - коэффициент асимметрии годового стока.

Используя результаты расчётов первой части работы для р.Сура, пункт г. Пенза, имеем Q 0 = 44,66 м 3 /с, С v = 0,35.

Коэффициент асимметрии С s характеризует несимметричность гидрологического ряда и определяется путём подбора, исходя из условия наилучшего соответствия аналитической кривой с точками фактических наблюдений; для рек, расположенных в равнинных условиях, при расчёте годового стока наилучшие результаты дает соотношение С s = 2С v . Поэтому понимаем для р.Сура, пункт г.Пенза: С s = 2С v = 2 · 0,35 = 0,70 с последующей проверкой.

Ординаты кривой определяем в зависимости от коэффициента С v (в примере С v =0,35) по таблицам, составленным С.Н. Крицким и М.Ф. Менкелем для С s = 2С v Для повышения точности кривой необходимо учитывать сотые доли С v и провести интерполяцию между соседними столбцами цифр (таблица 2).

§ для Р = 0,01

§ для Р = 0,1

§ для Р = 1

§ для Р = 5

§ для Р = 10

§ для Р = 25

§ для Р = 50

§ для Р = 75

§ для Р = 80

§ для Р = 90

§ для Р = 95

§ для Р = 99

Таблица 2

Обеспеченность, Р %

Ординаты кривой

Обеспеченностью гидрологической величины называется вероятность превышения рассматриваемого значения гидрологической величины среди совокупности всех возможных её значений.

По данным таблицы 2 на миллиметровке форматом 203288 мм 2 строим теоретическую кривую обеспеченности, откладывая по оси абсцисс Р (1 см - 5%), а по оси ординат - К р. Построенная кривая в верхней и нижней частях имеет большую кривизну, что затрудняет пользование ею. Кривая обеспеченности на клетчатке вероятностей (рис.2) имеет более плавный вид и удобна в использовании.

Построив кривую обеспеченности на клетчатке вероятностей, проверяем её данные фактических наблюдений. Для этого модульные коэффициенты годовых расходов (из табл.1, графа 4) располагаем по убыванию в таблице 3 и для каждого из них вычисляем его фактическую обеспеченность по формуле:

Р = m / (n + 1) · 100%, (12)

где Р - обеспеченность члена ряда, расположенного в порядке убывания;

m - порядковый номер члена ряда;

n - число членов ряда.

Таблица 3.

Модульные коэффициенты по убыванию К

Фактическая обеспеченность

Годы соответствующие К

Вывод: Как видно на рис.2, нанесённые точки усредняют теоретическую кривую; значит, кривая построена правильно и соотношение С s = 2C v соответствует действительности. В противном случае необходимо изменить соотношение С s к C v и вновь построить теоретическую кривую обеспеченности.

4. Рассчитать внутригодовое распределение стока методом компоновки для целей орошения с расчётной вероятностью превышения Р = 80%. Для расчёта используем исходные данные среднемесячные расходы воды (приложение 1). Расчёт делится на две части: межсезонное распределение, имеющее наиболее важное значение; внутрисезонное распределение (по месяцам и декадам), устанавливаемое с некоторой схематизацией. Межсезонное распределение. В зависимости от типа внутригодового распределения стока год делится на два периода: многоводный и маловодный (межень). В зависимости от цели использования один из них назначается лимитирующим. Лимитирующий - это наиболее напряжённый с точки зрения водохозяйственного использования период (сезон). Для целей осушения лимитирующим периодом является многоводный; Для целей орошения, энергетики - маловодный. В период включается один или два сезона. На реках с весенним половодьем для целей орошения выделяются: многоводный период (он же сезон) - весна; и маловодный (лимитирующий) период, включающий в себя сезоны - лето - осень и зима, причём лимитирующим сезоном при орошении является лето - осень (при энергетическом использовании - зима).

Расчёт выполняется по гидрологическим годам, т.е. по годам, начинающимся с многоводного сезона. Сроки сезонов назначаются едиными для всех лет наблюдений с округлением их до целого месяца. Продолжительность многоводного сезона назначается так, чтобы в границах сезона помещалось половодье как в годы с наиболее ранним сроком наступления, так и с наиболее поздним сроком окончания.

В задании продолжительность сезона, можно принять следующий:

  • · весна (апрель, май, июнь);
  • · лето - осень (июль, август, сентябрь, октябрь, ноябрь);
  • · зима (декабрь и январь, февраль, март следующего года).

Величина стока за отдельные сезоны и периоды определяется суммой среднемесячных расходов (таблица 4). В последнем году к расходу за декабрь прибавляются расходы за три месяца (I, II, III) первого года.

При расчёте по методу компоновки внутригодовое распределение стока принимается из условия равенства вероятности превышения стока за год, стока за лимитирующий период и внутри его за лимитирующий сезон. Поэтому необходимо определить расходы заданной проектом обеспеченности (в задании Р = 80%) для года, лимитирующих периода и сезона. Следовательно, требуется рассчитать параметры кривых обеспеченности (Q o , C v и C s) для лимитирующих периода и сезона (для годового стока параметры вычислены в первой части задания). Вычисления производятся методом моментов в табл.4 по схеме, изложенной выше для годового стока (см. табл.1).

Таблица 4. Расчёт внутригодового распределения стока методом компоновки (межсезонное распределение). река Сура, пункт г.Пенза по данным с 1963 по 1972 гг. (10 лет).

Расходы за лимитирующий сезон лето - осень

Сток лето - осень

Расходы за сезон весна

Весеннийсток

§ Параметры кривой обеспеченности для годового стока.

гидрологический сток орошение

; С s = 2С v = 2 · 0,27= 0,54.

Определяем ординату кривых трехпараметрического гамма-распределения для С v годового стока:

§ Параметры кривой обеспеченности для лимитирующего периода.

С s = 2С v = 2 · 0,18 = 0,36

Определяем ординату кривых трехпараметрического гамма-распределения для С v меженного стока:

§ Параметры кривой обеспеченности для лимитирующего сезона.

; С s = 2С v = 2 · 0,26 = 0,52

Определяем ординату кривых трехпараметрического гамма-распределения для Сv стока лета - осени:

Определяем расчетные расходы по формулам:

годового стока Q рас год = · 12 · Q o , (13)

Q рас год = 0,70 · 12 · 44,66 = 375,144 м 3 /с;

лимитирующего периода Q рас меж = · Q меж, (14)

Q рас.меж = 0,85 · 222,39 = 189,03 м 3 /с;

лимитирующего сезона Q рас ло = · Q ло, (15)

Q рас ло = 0,77 · 121,14 = 93,28 м 3 /с.

Где,- ординаты кривых трехпараметрического гамма-распределения, снятые с таблицы соответственно для С v годового стока, С v меженного стока и С v для лета - осени.

Одним из основных условий метода компоновки, является равенство:

Q рас год = ? Q рас сез.

Однако это равенство нарушится, если расчётный сток за нелимитирующие сезоны определять также по кривым обеспеченности (ввиду различия параметров кривых).

Поэтому расчётный сток за нелимитирующий период (в задании - за весну) определяем по разности:

Q рас вес = Q рас год - Q рас меж (16)

Q рас вес = 375,14-189,03 = 186,11 м 3 /с.

А за нелимитирующий сезон (в задании - зима) определяем по разности:

Q рас зим = Q рас меж - Q рас ло (17)

Q рас зим = 189,03 - 93,28 = 95,75 м 3 /с.

Внутрисезонное распределение - принимается осредненным по каждой из трех групп водности:

  • · Многоводная группа, включающая годы с обеспеченностью стока за сезон Р
  • · Средняя по водности 33
  • · Маловодная Р > 66%.

Для выделения лет, входящих в отдельные группы водности, необходимо суммарные расходы за сезоны расположить по убыванию и подсчитать их фактическую обеспеченность (пример - табл.4). Так как расчетная обеспеченность (Р=80%) соответствует маловодной группе, дальнейший расчет можно производить для лет, входящих в маловодную группу (табл.5).

Для этого в графу «Суммарный сток» выписать расходы по сезонам, соответствующие обеспеченностям Р > 66%, а в графу «Годы» - записать годы, соответствующие этим расходам.

Среднемесячные расходы внутри сезона расположить в убывающем порядке с указанием календарных месяцев, к которым они относятся (табл.5). Таким образом, первым окажется расход за наиболее многоводный месяц, последним - за маловодный месяц.

Для всех лет произвести суммирование расходов отдельно за сезон и за каждый месяц. Принимая сумму расходов за сезон за 100%, определить процент каждого месяца А%, входящего в сезон, а в графу «Месяц» записать наименование того месяца, который повторяется наиболее часто. Если повторений нет, выписать любой из встречающихся, но так, чтобы каждый месяц, входящий в сезон, имел свой процент от сезона.

Затем, умножая расчётный расход за сезон, определённый в части межсезонного распределения стока (табл.4.), на процентную долю каждого месяца А% (табл.5), вычислить расчётный расход каждого месяца. Например:

По данным табл.5 графы «Расчетные расходы по месяцам» на миллиметровке построить расчётный гидрограф Р - 80% изучаемой реки (рис.3).

Таблица 5. Вычисление внутрисезонного распределения стока. р. Сура, пункт г.Пенза.

Суммарный сток

Среднемесячные расходы по убыванию

За весенний сезон

За летнее - осенний сезон

За зимний сезон

Расчетные расходы по месяцам

Примечание. Чтобы получить объёмы стока в млн.м 3 , следует расходы умножить: а) для 31-дневного месяца на коэффициент 2,68; б) для 30-дневнего месяца - 2,59; в) для 28-дневнего месяца - 2,42.

5. Определить расчетный максимальный расход талых вод Р = 1% при отсутствии данных гидрометрических наблюдений.

Определяют расчетный максимальный расход талых вод Р = 1% при отсутствии данных гидрометрических наблюдений по формуле:

  • § Q p - расчетный мгновенный максимальный расход талых вод заданной обеспеченности Р, м 3 /с;
  • § М р - модуль максимального расчетного расхода заданной обеспеченности Р, м 3 /с·км 2 ;
  • § h p - расчетный слой половодья, см;
  • § F - площадь водосбора, км 2 ;
  • § n - показатель степени редукции зависимости
  • § К о - параметр дружности половодья;
  • § ? 1 и? 2 - коэффициенты, учитывающие снижение максимальных расходов рек, зарегулированных озерами (водохранилищами) и в залесенных и заболоченных бассейнах;
  • § ? - коэффициент, учитывающий неравенство статистических параметров слоя стока и максимальных расходов при Р = 1%; ? = 1;
  • § F 1 - дополнительная площадь водосбора, учитывающая снижение редукции, км 2 , принимается по приложению 3.

Параметр К о определяется по данным рек - аналогов, в контрольной работе К о выписывается из приложения 3. Параметр n 1 зависит от природной зоны, определяется из приложения 3.

Расчетный слой стока половодья вычисляется по формуле:

h p =К р ·, (20)

  • § К р - ордината аналитической кривой трехпараметрического гамма-распределения заданной вероятности превышения, определяется по приложению 2 в зависимости от С v = 0,26 ,при C s =2C v =2 · 0,26 = 0,52 с точностью до сотых интерполяций между соседними столбцами;
  • § - средний слой половодья, устанавливается по рекам - аналогам или интерполяцией, в контрольной работе - по приложению 3.

Коэффициент?, учитывающий снижение максимального стока рек, зарегулированных проточными озерами, следует определять по формуле:

1/(1+Сfоз), (21)

  • § С - коэффициент, принимаемый в зависимости от величины среднего многолетнего слоя весеннего стока;
  • § f оз - средневзвешенная озерность.

Так как в расчетных водосборах нет проточных озер, а расположенная вне главного русла f оз < 2%, принимаем? = 1. Коэффициент? 1 , учитывающий снижение максимальных расходов воды в залесенных водосборах, определяется по формуле:

  • § n 2 - коэффициент редукции принимается по приложению 3.
  • § ? 1 - коэффициент, зависит от природной зоны, расположения леса на водосборе и общей залесенности f л в %, выписывается по приложению 3.

Коэффициент? 2 , учитывающий снижение максимального расхода воды заболоченных бассейнов, определяется по формуле:

  • § ? - коэффициент, зависящий от типа болот, определяется по приложению 3;
  • § f ? - относительная площадь болот и заболоченных лесов и лугов в бассейне, %.

По приложению 3, определяем F 1 = 2 км 2 ; = 80 мм; С v = 0,40; n 1 = 0,25; ? = 1, К о =0,022; ? 1 = 1,20; n 2 = 0,20; ? = 0,8;

По приложению 2, определяем: К р = 2,51;

h p = К р ·= 2,51 · 80 = 200 мм;

На территории Кирова в течение всего года активно развиваются циклонические процессы и переносится большое количество влаги с Атлантики. Годовое количество осадков здесь составляет 650 мм/год.

Количество осадков за холодный период (ноябрь - март) составляет 209 мм/год, за холодный период (апрель - октябрь) - 441 мм/год. Минимум осадков приходится на март (29 мм/мес.), максимум - на июль (84 мм/мес.) (рис. 3.1, прил., табл. 7) .

Рис. 3.1.

На территории Магадана годовое количество осадков составляет 527 мм/год. Количество осадков за холодный период (ноябрь - март) составляет 115 мм/год, за холодный период (апрель - октябрь) - 412 мм/год. Зимой здесь господствую сухие и холодные континентальные воздушные массы, дающие небольшое количество осадков, а летом - влажный тихоокеанский воздух умеренных широт, увеличивающий количество осадков. Минимум осадков приходится на март (12 мм/мес.), максимум - на июль (83 мм/мес.) (рис. 3.2, прил., табл. 9) .


Рис. 3.2.

Вид выпавших осадков определяется температурными условиями. При отрицательной температуре выпадает в основном снег, при положительной преобладают дожди, а при температуре близкой к 0 єС, выпадают смешанные осадки - либо мокрый снег, либо снег с дождем. При увеличении континентальности климата доля смешанных осадков уменьшается, что обусловлено уменьшением продолжительности переходных сезонов .

На территории Кирова преобладают жидкие осадки (41 %). Доля твердых осадков составляет 39 %, смешанных - 20 %. Преобладание жидких осадков объясняется положительной среднегодовой температурой (прил., табл. 8) .

На территории Магадана преобладают твердые осадки (50 %). Доля жидких осадков составляет 40 %, смешанных - 10 %. Преобладание твердых осадков объясняется отрицательной среднегодовой температурой (прил., табл. 10) .

Суточный максимум осадков

Важной характеристикой режима увлажнения является суточный максимум осадков, являющийся результатом выпадения ливней, охватывающих небольшую площадь.

На территории Кирова наибольшее значение максимума суточных осадков приходится на июль, наименьшее - на январь. Годовое число дней с осадками > 0,1 мм составляет 200. Годовое число дней с осадками > 10 мм составляет 0,6.

В Магадане наибольшее значение максимума суточных осадков приходится на август, наименьшее - на февраль. Годовое число дней с осадками > 0,1 мм составляет 100. Годовое число дней с осадками > 10 мм составляет 2 .

Интенсивность осадков

Интенсивность осадков представляет собой количество осадков за единицу времени. В Кирове интенсивность осадков составляет 0,3 мм/ч, в Магадане - 0,6 мм/ч. Небольшая интенсивность осадков в Кирове обусловлена расположением внутри материка. Продвигаясь в глубь территории западные воздушные массы иссушаются, что приводит к уменьшению количества осадков и, следовательно, к уменьшению их интенсивности. Увеличение интенсивности осадков в Магадане объясняется мощным увлажняющим влиянием Тихого океана.

На территории Кирова максимум интенсивности осадков приходится на лето, минимум - на зиму. В Магадане годовой ход интенсивности осадков отличается от Кирова. Здесь наблюдается смещение максимума к осени, а минимума - к весне. Подобный вид кривой годового хода интенсивности осадков объясняется формированием осадков непосредственно над прилегающей акваторией Охотского моря в зоне интенсивной циклонической деятельности, где влагонесущий поток направлен в сторону материка.

Среднегодовая продолжительность осадков в Кирове составляет 2000 ч., в Магадане - 1500 ч .

Годовое количество осадков . Образование осадков и их количество на любой территории зависит от трех основных условий: влагосодержания воздушной массы, ее температуры и возможности восхождения. Эти факторы, действуя совместно, создают довольно сложную картину географического распределения осадков.
На территории Русской равнины наибольшее количество осадков (600–700 мм/год) выпадает в полосе 50–65°, с. ш. В этих широтах в течение всего года активно развиваются циклонические процессы, и переносится наибольшее количество влаги с Атлантики. Кроме того, увеличению осадков способствует наличие цепи возвышенностей (Среднерусская, Смоленско-Московская, Валдайская, Северные Увалы). К северу и к югу от этой зоны количество осадков постепенно уменьшается. На Кольском полуострове, в Архангельской области, Республике Коми и Республике Карелия годовое количество осадков составляет 400–550 мм/год. На арктическом побережье оно уменьшается до 350–370 мм/год. «Островами» повышенного количества осадков на севере Европейской части России являются Хибины (800–1000 мм/год) и Тиманский кряж (600–630 мм/год). К югу от зоны повышенного количества осадков, т.е. южнее 50° с. ш., четко прослеживается уменьшение осадков с северо-запада на юго-восток. Если на Окско-Донской равнине годовое количество осадков составляет 520–580 мм/год, то в нижнем течении Волги оно уменьшается до 200–350 мм/год.

Урал, разделяющий Русскую и Западно-Сибирскую равнины, создает меридионально вытянутую полосу повышенных сумм осадков на подветренной стороне и на вершине хребта. На Северном Урале выпадает осадков 800–900 мм/год, на Среднем и Южном Урале – 600–700 мм/год. На некотором расстоянии за хребтом проходит полоса меньшего количества осадков.

Аналогично широтному распределению осадков на Русской равнине, на территории Западной Сибири на широтах 60–65° с.ш. располагается зона повышенного количества осадков. Однако, она уже чем на Европейской части России и осадков здесь выпадает меньше, так как воздушные потоки с Атлантики теряют над Уралом часть своей влаги. В среднем течении реки Обь, в районе Ханты-Мансийска годовое количество осадков составляет 550–600 мм/год. К югу и северу от этой полосы количество осадков уменьшается. На арктическом побережье Западной Сибири годовые суммы осадков не превышают 300–350 мм/год. Практически столько же осадков выпадает на юге Западной Сибири. Однако, по сравнению с Русской равниной, область малых сумм осадков здесь значительно сдвинута к северу. На одной и той же широте (55° с.ш.) в Смоленске за год выпадает 690 мм осадков, а в Омске практически в два раза меньше – 368 мм/год.

На территории Среднесибирского плоскогорья наблюдается постепенное уменьшение осадков с запада на восток. Наибольшее количество осадков здесь выпадает на плато Путорана и на Енисейском кряже (500–600 мм/год). К востоку, включая долину реки Лена и низовья реки Алдан, количество осадков заметно уменьшается, особенно в холодный период. В обширной котловине, расположенной в центре Центрально- Якутской низменности, закрытой плоскогорьем от западных ветров, осадки составляют всего 250–300 мм/год, что характерно для степных и полупустынных районов. Уменьшение осадков прослеживается и к югу, вплоть до Забайкалья. Саяны, горы Прибайкалья и, частично, Забайкалья достаточно интенсивно увлажняются осадками из воздушных масс, поступающих с акватории Тихого океана, особенно летом и осенью. Годовые суммы осадков составляют здесь 500–550 мм. На северо-востоке Сибири чередование горных хребтов, плато, межгорных котловин и низменностей создает чрезвычайно пеструю картину распределения осадков. Наибольшее количество осадков в этом районе выпадает на западных склонах Верхоянского хребта (350–450мм/год). В районе Колымской низменности и на побережьях и Восточно-Сибирского годовые суммы осадков не превышают 200–250 мм. Очень сухими являются и межгорные котловины, разделяющие Верхоянский хребет, хребет Черского и Момский хребет.


Далее на восток, по мере приближения к окраинным морям Тихого океана, годовое количество осадков возрастает. Зимой на материковой части господствуют сухие и холодные континентальные воздушные массы, а летом – влажный тихоокеанский воздух умеренных широт. Минимальные суммы осадков в этом районе (200–250 мм/год) отмечаются на побережье . На побережьях Берингова и годовые суммы осадков возрастают до 550–600 мм/год. Однако, надо отметить, что здесь даже на небольшом расстоянии количество осадков может значительно различаться. На восточных склонах прибрежных хребтов, которые являются наветренными для влажного летнего муссона (хребты Джугджур, Колымский, Корякский), количество осадков составляет 600–700 мм/год. Менее увлажненными являются их западные склоны, где годовое количество осадков не превышает 300–400 мм. На восточных склонах Буреинского хребта выпадает 750–850 мм осадков в год. Западнее, в долине реки Зея, где влияние летнего муссона уже менее ощутимо, годовое количество осадков постепенно уменьшается до 550–650 мм/год. В Приморском крае определяющее влияние на географическое распределение осадков оказывает хребет Сихотэ- Алинь. В этом регионе наиболее интенсивные осадки выпадают на побережье и склонах Сихотэ-Алиня (850–950 мм/год). Большое количество осадков приносят сюда летом частые южные циклоны и . В центральной части Сихотэ-Алиня, в закрытых долинах и котловинах, количество осадков уменьшается на 150–200 мм/год по отношению к открытым вершинам и склонам. В направлении озера Ханка количество осадков сокращается до 550–600 мм/год. Частные циклоны, высокое влагосодержание воздуха и гористый рельеф острова Сахалин и Курильских островов делают этот регион одним из самых увлажненных в России. На Сахалине годовое количество осадков постепенно уменьшается с юга (900–1000 мм/год) на север и к долине реки Поронай (350–650 мм/год). На Курильских островах оно повсюду превышает –1000 мм/год.

Годовой ход количества осадков иллюстрируется картами сумм осадков в центральные месяцы календарных сезонов. На севере Европейской части России минимальное месячное количество осадков обычно приходится на февраль –март. Непосредственно на побережье арктических морей минимум осадков чаще наступает в марте–апреле. Максимальное количество осадков на севере Европейской части России выпадает в августе на арктическом побережье, и в сентябре – в предгорьях Урала. Осенью суммы осадков на береговой полосе больше, чем в удалении от неё. В течение остальной части года вблизи крупных водоёмов количество осадков уменьшается. Аналогичный годовой ход осадков, но на фоне большего количества осадков, наблюдается и на северо-западе России, правда, летний максимум в августе выражен более четко. В центре Европейской части России минимум осадков приходится на февраль–март. Максимальное количество осадков здесь чаще приходится на июль.

В Поволжье годовой ход осадков выражен слабо, количество осадков мало меняется от месяца к месяцу. Небольшой рост осадков заметен лишь в июле. На нижней Волге и Северном Кавказе наблюдается тенденция к появлению двух максимумов осадков в течение года: в мае–июне и в ноябре–декабре. Эти максимумы близки по величине и почти не меняются от года к году.

На Черноморском побережье Кавказа четко выражен зимний максимум осадков. Он почти в два раза превышает летний. На северо западном побережье максимальное количество осадков выпадает осенью (сентябрь–ноябрь), минимальное – в весенне-летний период.

На Урале годовой ход осадков заметно меняется, как при движении с севера на юг, так и с запада на восток. На западных склонах Урала максимальное количество осадков выпадает в июле. При этом весь период с июня по сентябрь характеризуется значительным количеством осадков (более 50 мм в месяц). За Уралом максимум также приходится на июль. Однако на фоне общего уменьшения осадков в ‘тени’ Урала он выражен более четко. Минимум осадков повсюду в этом районе наблюдается в феврале–марте, причем за Уралом количество осадков в эти месяцы составляет лишь 10–20% от летнего максимума.

Аналогичная форма годового хода осадков (четко выраженный максимум в июле и минимум – в феврале–марте) сохраняется и на равнинной части Западной Сибири. На западных склонах Алтая и Кузнецкого Алатау максимум осадков приходится на осень (октябрь–ноябрь). Однако значительное количество осадков выпадает и летом. Внутри горной страны максимальное количество осадков выпадает в июле–августе, а минимальное – в январе–феврале. Годовой ход осадков в этих горных системах отличается резкостью перехода от малых зимних осадков к значительным летним осадкам, что вообще свойственно континентальному климату.

В Восточной Сибири, на побережьях арктических морей максимальное количество осадков выпадает в августе–сентябре. При движении на юг время наступления максимума постепенно смещается на июль. На берегах озера Байкал заметно появление второго, меньшего по величине, максимума в ноябре. Минимальное количество осадков на всей территории Восточной Сибири приходится на февраль–март. Сходная форма годового хода количества осадков с максимумом в июле наблюдается во внутренних районах северо-восточной Азии. На побережье максимум осадков приходится на август.

В районах Дальнего Востока, где господствует муссонная циркуляция, годовой ход осадков также отличается значительной неравномерностью. На материке максимальное количество осадков выпадает в августе, часто составляя более 100 мм в месяц. Минимум осадков в этом районе чаще всего наблюдается в январе–феврале. При этом он не превышает 8–10 мм в месяц. На острове Сахалин максимальное количество осадков выпадает в сентябре. Однако в некоторых случаях наблюдается и второй, зимний, максимум осадков, преимущественно в декабре. Минимум осадков приходится на февраль.

Очень разнообразны формы годового хода осадков на Камчатке. Внутренние районы полуострова имеют максимум осадков в июле–августе, минимум – в марте. Прибрежные районы характеризуются двухвершинной формой годового хода, причём осенне-зимний максимум, в ноябре–декабре, значительно превышает весенний, в марте–апреле. Минимальное количество осадков здесь выпадает в феврале. Аналогичная форма годового хода количества осадков наблюдается и на Курильских островах.

Таким образом, наибольшая амплитуда годового хода осадков на территории России (30% от годового количества осадков) наблюдается в Забайкалье, на Среднесибирском плоскогорье, в Центральной Якутии, а также в прибрежных районах Дальнего Востока. Наиболее ровный годовой ход осадков наблюдается в средней полосе Европейской части России (50–60° с.ш.), его амплитуда не превышает 5–10%.


Буду благодарен, если Вы поделитесь этой статьей в социальных сетях:

Дождь, снег или град - со всеми этими понятиями мы знакомы с самого детства. К каждому из них у нас особое отношение. Так, дождь навевает грусть и унылые мысли, снег, наоборот, веселит и поднимает настроение. А вот град, к примеру, мало кто любит, так как он способен нанести огромный ущерб сельскому хозяйству и серьезные травмы тем, кто окажется в это время на улице.

Мы давно научились тому, как по внешним признакам определить приближение тех или иных осадков. Так, если с утра на улице очень серо и облачно, возможны осадки в виде затяжного дождя. Обычно такой дождь не очень сильный, но может продолжаться целый день. Если же на горизонте появились густые и тяжелые облака - возможны осадки в виде снега. Легкие облачка в виде перышек предвещают сильный ливневый дождь.

Следует отметить, что все виды осадков - это результат очень сложных и весьма длительных процессов в земной атмосфере. Так, чтобы образовался обычный дождь, необходимо взаимодействие трех составляющих: солнца, поверхности Земли и атмосферы.

Атмосферные осадки - это...

Атмосферные осадки - это вода в жидком либо в твердом состоянии, выпадающая из атмосферы. Осадки могут либо выпадать на поверхность Земли непосредственно или оседать на ней или на любых других предметах.

Количество выпадаемых осадков на конкретной территории можно измерить. Измеряют их толщиной слоя воды в миллиметрах. При этом твердые виды осадков предварительно растапливают. Среднее количество осадков в год на планете - 1000 мм. В выпадает не более 200-300 мм, а самое сухое место на планете - это где зафиксированное годовое количество выпадаемых осадков - около 3 мм.

Процесс образования

Как они образуются, различные виды осадков? Схема их образования - одна, и она основана на непрерывном Рассмотрим этот процесс более детально.

Начинается все с того, что Солнце начинает прогревать Под действием нагревания водные массы, которые содержатся в океанах, морях, реках, преобразуются в смешиваясь с воздухом. Процессы парообразования происходят в течение всего дня, постоянно, в большей или меньшей степени. Объемы парообразования зависят от широты местности, а также от интенсивности солнечного излучения.

Далее влажный воздух нагревается и начинает, по незыблемым законам физики, подниматься вверх. Поднявшись на определенную высоту, он охлаждается, а влага, находящаяся в нем, постепенно превращается в капли воды или в кристаллики льда. Этот процесс называется конденсацией, и именно из таких водных частиц состоят облака, которыми мы любуемся в небе.

Капли в тучах растут и укрупняются, принимая в себя все большее количество влаги. В итоге они становятся настолько тяжелыми, что уже не могут удерживаться в атмосфере, и падают вниз. Так и рождаются атмосферные осадки, виды которых зависят от конкретных метеоусловий на определенной местности.

Выпавшая на поверхность Земли вода со временем стекает ручьями в реки и моря. Затем природный цикл в повторяется снова и снова.

Атмосферные осадки: виды осадков

Как уже здесь упоминалось, существует огромное количество разновидностей атмосферных осадков. Метеорологи выделяют несколько десятков.

Все виды осадков можно разделить на три основные группы:

  • моросящие;
  • обложные;
  • ливневые.

Осадки также могут быть жидкими (дождь, морось, туман) или твердыми (снег, град, иней).

Дождь

Это разновидность жидких осадков в виде капель воды, выпадающих на землю под действием силы тяжести. Размеры капель могут быть разными: от 0,5 до 5 миллиметров в диаметре. Капли дождя, падая на водную поверхность, оставляют на воде расходящиеся круги идеально круглой формы.

В зависимости от интенсивности, дождь может быть моросящим, обложным или ливневым. Также выделяют такой вид осадков, как дождь со снегом.

Это особый вид атмосферных осадков, которые бывают при минусовых температурах воздуха. Не следует путать их с градом. Ледяной дождь представляет собой капли в виде небольших замерзших шариков, внутри которых находится вода. Падая на землю, такие шарики разбиваются, а вода из них вытекает, приводя к образованию опасного гололеда.

Если интенсивность дождя слишком высокая (около 100 мм в час), то его называют ливнем. Ливни образуются на холодных атмосферных фронтах, в пределах неустойчивых масс воздуха. Как правило, они наблюдается на очень небольших по площади территориях.

Снег

Эти твердые осадки выпадают при минусовой температуре воздуха и имеют вид снежных кристалликов, в просторечии именуемых снежинками.

Во время снега значительно снижается видимость, при сильном снегопаде она может составлять менее 1 километра. Во время сильных морозов слабый снег может наблюдаться даже при безоблачном небе. Отдельно выделяется такая разновидность снега, как мокрый снег - это осадки, выпадающие при небольших плюсовых температурах.

Град

Эта разновидность твердых атмосферных осадков образуется на больших высотах (не менее 5 километров), где температура воздуха всегда ниже - 15 о.

Как получается град? Он формируется из капель воды, которые то опускаются, то резко поднимаются в вихрях холодного воздуха. Таким образом образуются крупные ледяные шарики. Размер их зависит от того, настолько долго происходили эти процессы в атмосфере. Бывали случаи, когда на землю выпадали градины весом до 1-2 килограмм!

Градина по своей внутренней структуре очень напоминает луковицу: она состоит из нескольких слоев льда. Можно даже сосчитать их, подобно тому, как считают кольца на спиленных деревьях, и определить, сколько раз капли осуществляли стремительные вертикальные путешествия в атмосфере.

Стоит отметить, что град - это настоящая беда для сельского хозяйства, ведь он запросто может уничтожить все растения на плантации. К тому же определить приближение града заранее практически невозможно. Он начинается моментально и бывает, как правило, в летний сезон года.

Теперь вы знаете, как образуются атмосферные осадки. Виды осадков могут быть самыми разными, что и делает нашу природу прекрасной и неповторимой. Все процессы, проходящие в ней - простые, и в то же время гениальные.

Мы уже не раз говорили об атмосферных осадках, их количестве и видах. Но хорошо бы разобраться в этом вопросе поподробнее – он очень важен!

Всю воду, выпадающую из облаков в виде дождя, снега или любом другом, называют атмосферными осадками. Их количество измеряют в миллиметрах толщины того слоя воды, который они образовали бы на поверхности земли, если бы не растекались, не просачивались и не испарялись. Количество это измеряют за какой–нибудь определённый отрезок времени – за сутки, месяц или год.

Для измерения количества осадков используют дождемеры – резервуары (обычно металлические бочки), в которые собираются осадки, выпадающие на определенную площадь (например, с помощью воронки площадью в один квадратный метр). В конце периода наблюдений измеряют количество воды, скопившейся в резервуаре, и пересчитывают его в единицы толщины соответствующего слоя.

Прибор для измерения выпавших осадков

Например, если накопилось 200 литров воды, это означает, что толщина слоя составит 200.000 кубических сантиметров/10.000 квадратных сантиметров = 20 сантиметров = 200 миллиметров.

Но ведь вода и из бочки может испариться? Конечно, особенно в жаркую погоду. И если наш дождемер установлен где–то вдали от жилья, и метеорологи приезжают к нему только раз в месяц – узнать, сколько же осадков выпало в этом месте, – они что же, ошибаются? Нет, и чтобы не ошибаться, они придумали занятный способ. В бочку наливают немного масла (например, машинного). Оно легче воды и поэтому при попадании воды в бочку растекается по ее поверхности, образуя тонкую пленку. И масляная пленка ничтожно маленькой толщины прячет воду под собой.

А почему осадки бывают разными?

При некоторых условиях водяной пар в воздухе начинает превращаться в воду – конденсироваться. При этом появляются маленькие капельки воды, еще настолько легкие, что не падают на землю, но уже такие большие, что их можно разглядеть. Появляется туман или облака. Дальше события могут развиваться по–разному.

Обычно дождевые капли имеют размер около одного миллиметра, реже – до пяти миллиметров. Это происходит потому, что крупные капли в полете дробятся на более мелкие. Образование же крупных капель связано не с процессом конденсации пара, а с процессом слипания мелких облачных капелек. Кроме того, если в облаке одновременно появляются капельки воды и кристаллики льда, происходит рост кристаллов (снежинок) при одновременном испарении капель.

Если воздух под облаком имеет температуру ниже (ГС, снежинки достигают земной поверхности. В теплом воздухе они тают, превращаясь в дождевые капли. В горах часто можно наблюдать, как в долинах идет дождь, а вершины одновременно покрываются снегом.

С этим явлением связано важное географическое понятие – снеговая линия (или граница). Так называют высотный уровень, выше которого температуры настолько низки, что накопление снега и других твердых осадков преобладает над испарением и таянием. Существование снеговой линии определяет высоту пбявления ледников в горах. Над экватором она располагается на высоте около 4 600 метров ттяд уровнем моря (и только высокие горы, вроде Килиманджаро, достигают ее), в Арктике опускается до 200–500 метров (и ледники образуются даже на совсем невысоких горах – таких, как Бырранга), а в Антарктике – снижается до уровня моря (и образуются шельфовые ледники, как в море Росса).

Один из самых опасных видов осадков – переохлажденный дождь. Он наблюдается обычно при наступлении теплого атмосферного фронта в холодное время Года. Сначала в слоистых облаках над фронтом образуются снежинки. Попадая в теплый воздух, они тают, а образовавшиеся капли Попадают в холодные приземные слои воздуха. Если температура здесь не очень низкая, они достигают земли, не замерзнув. Но, попав на холодные мостовые, ветви, провода и т.п., намерзают на них коркой гололеда. Если же воздух под фронтом очень холодный, капли замерзают в полете, образуя крупу (ледяные шарики меньше пяти миллиметров в диаметре) или град (шарики больше пяти миллиметров). Градины же могут достигать размеров апельсина, а самые крупные из измеренных, выпавшие 3 сентября 1970 года в штате Канзас, весили до 750 граммов и имели окружность до 0,5 метра! В Индии, в районе Нью–Дели, в апреле 1888 года градом были убиты 246 человек.



← Вернуться

×
Вступай в сообщество «servizhome.ru»!
ВКонтакте:
Я уже подписан на сообщество «servizhome.ru»