Теория строения А. Основные положения теории химического строения А.М. Бутлерова

Подписаться
Вступай в сообщество «servizhome.ru»!
ВКонтакте:

Созданная А.М. Бутлеровым в 60-х годах XIX века теория химического строения органических соединений внесла необходимую ясность в причины многообразия органических соединений, вскрыла взаимосвязь между строением и свойствами этих веществ, позволила объяснить свойства уже известных и предсказать свойства ещё не открытых органических соединений.

Открытия в области органической химии (четырёхвалентность углерода, способность образования длинных цепочек) позволили Бутлерову в 1861 году сформулировать основные поколения теории:

1) Атомы в молекулах соединяются согласно их валентности (углерод-IV, кислород-II, водород-I), последовательность соединения атомов отражается структурными формулами.

2) Свойства веществ зависят не только от химического состава, но и от порядка соединения атомов в молекуле (химическое строение). Существуют изомеры , то есть вещества, имеющие одинаковый количественный и качественный состав, но разное строение, и, следовательно, разные свойства.

C 2 H 6 O: CH 3 CH 2 OH – этиловый спирт и CH 3 OCH 3 – диметиловый эфир

C 3 H 6 – пропен и циклопропан - CH 2 =CH−CH 3

3) Атомы взаимно влияют друг на друга, это следствие различной электроотрицательности атомов, образующих молекулы (O>N>C>H), и эти элементы оказывают различное влияние на смещение общих электронных пар.

4) По строению молекулы органического вещества можно предсказать его свойства, а по свойствам – определить строение.

Дальнейшее развитие ТСОС получила после установления строения атома, принятия концепции о типах химических связей, о видах гибридизации, открытие явления пространственной изомерии (стереохимия).


Билет №7 (2)

Электролиз как окислительно-восстановительный процесс. Электролиз расплавов и растворов на примере хлорида натрия. Практическое применение электролиза.

Электролиз - это окислительно-восстановительный процесс, протекающий на электродах при прохождении постоянного электрического тока через расплав или раствор электролита

Сущность электролиза состоит в осуществлении за счет электрической энергии хим. Реакции- восстановления на катоде и окисления на аноде.

Катод(-) отдает электроны катионам, а анод(+) принимает электроны от анионов.

Электролиз расплава NaCl

NaCl-―> Na + +Cl -

K(-): Na + +1e-―>Na 0 | 2 проц. восстановления

A(+) :2Cl-2e-―>Cl 2 0 | 1 проц. окисления

2Na + +2Cl - -―>2Na+Cl 2

Электролиз водного раствора NaCl

В электролизе раствора NaC| в воде участвуют ионы Na + и Cl - , а также молекулы воды. При прохождении тока катионы Na + движутся к катоду, а анионы Cl - - к аноду. Но на катоде вместо ионов Na восстанавливаться молекулы воды:

2H 2 O + 2e-―> H 2 +2OH -

а на аноде окисляются хлорид-ионы:

2Cl - -2e-―>Cl 2

В итоге на катоде-водород, на аноде-хлор, а в растворе накапливается NaOH

В ионной форме: 2H 2 O+2e-―>H 2 +2OH-

2Cl - -2e-―>Cl 2

электролиз

2H 2 O+2Cl - -―>H 2 +Cl 2 +2OH -

электролиз

В молекулярной форме: 2H 2 O+2NaCl-―> 2NaOH+H 2 +Cl 2

Применение электролиза:

1)Защита металлов от коррозии

2)Получение активных металлов (натрия, калия, щелочно-земельных и др.)

3)Очистка некоторых металлов от примесей (электрическое рафинирование)

Билет №8 (1)


Похожая информация:

  1. A) Теория познания - наука, изучающая формы, способы и приемы возникновения и закономерности развития знания, отношение его к действительности, критерии его истинности.

Основой создания теории химического строения органических соединений А.М. Бутлеровым послужило атомно-молекулярное учение (работы А.Авагадро и С.Канниццаро). Будет неправильным предполагать, что до ее создания в мире ничего не было известно об органических веществах и не предпринимались попытки обоснования строения органических соединений. К 1861 году (год создания А.М. Бутлеровым теории химического строения органических соединений) число известных органических соединений достигало сотен тысяч, а выделение органической химии как самостоятельной науки произошло еще в 1807 году (Й. Берцелиус).

Предпосылки теории строения органических соединений

Широкое изучение органических соединений началось в XVIII веке с работ А.Лавуазье, который показал, что вещества, получаемые из живых организмов, состоят из нескольких элементов – углерода, водорода, кислорода, азота, серы и фосфора. Огромное значение имело введение терминов «радикал» и «изомерия», а также формирование теории радикалов (Л. Гитон де Морво, А. Лавуазье, Ю. Либих, Ж. Дюма, Й. Берцелиус), успехи в синтезе органических соединений (мочевина, анилин, уксусная кислота, жиры, сахароподобные вещества и др.).

Термин «химическое строение», а также основы классической теории химического строения были впервые обнародованы А.М. Бутлеровым 19 сентября 1861 года в его докладе на Съезде немецких естествоиспытателей и врачей в Шпейере.

Основные положения теории строения органических соединений А.М. Бутлерова

1. Атомы, образующие молекулу органического вещества связаны между собой в определенном порядке, причем на связь с друг другом затрачивается по одной или несколько валентностей от каждого атома. Свободных валентностей нет.

Последовательность соединения атомов Бутлеров назвал «химическим строением». Графически связи между атомами обозначаются чертой или точкой (рис. 1).

Рис. 1. Химическое строение молекулы метана: А – структурная формула, Б – электронная формула

2. Свойства органических соединений зависят от химического строения молекул, т.е. свойства органических соединений зависят от порядка соединения атомов в молекуле. Изучив свойства можно изобразить вещество.

Рассмотрим пример: вещество имеют брутто-формулу C 2 H 6 O. Известно, что при взаимодействии этого вещества с натрием выделяется водород, а при действии на него кислоты образуется вода.

C 2 H 6 O + Na = C 2 H 5 ONa + H 2

C 2 H 6 O + HCl = C 2 H 5 Cl + H 2 O

Данному веществу может соответствовать две структурные формулы:

CH 3 -O-CH 3 – ацетон (диметилкетон) и CH 3 -CH 2 -OH – этиловый спирт (этанол),

исходя из химических свойств, характерных для этого вещества делаем вывод, что это этанол.

Изомеры – это вещества, обладающие одинаковым качественным и количественным составом, но различным химическим строением. Выделяют несколько типов изомерии: структурная (линейная, разветвленная, углеродного скелета), геометрическая (цис- и транс- изомерия, характерная для соединений с кратной двойной связью (рис. 2)), оптическая (зеркальная), стерео (пространственная, характерна для веществ, способных по разному располагаться в пространстве (рис. 3)).

Рис. 2. Пример геометрической изомерии

3. На химические свойства органических соединений оказывают влияние и другие атомы, присутствующие в молекуле. Такие группы атомов получили название функциональных групп, за счет того, что их наличие в молекуле вещества придает ему особые химические свойства. Например: -OH (гидроксо-группа), -SH (тио-группа), -CO (карбонильная группа), -COOH (карбоксильная группа). Причем химические свойства органического вещества в меньшей степени зависят от углеводородного скелета, чем от функциональной группы. Именно функциональные группы обеспечивают многообразие органических соединений, за счет чего их классифицируют (спирты, альдегиды, карбоновые кислоты и т.д. К числу функциональных групп иногда относят и углерод-углеродные связи (кратные двойные и тройные). Если в молекуле органического вещества несколько одинаковых функциональных групп, то его называют гомополифунцкиональным (CH 2 (OH)-CH(OH)-CH 2 (OH) – глицерин), если несколько, но разных – гетерополифункциональным (NH 2 -CH(R)-COOH – аминокислоты).


Рис.3. Пример стерео изомерии: а – циклогексан, форма «кресла», б – циклогексан, форма «ванна»

4. Валентность углерода в органических соединениях всегда равна четырем.

Подобно тому как в неорганической химии основополагающей теоретической базой являются Периодический закон и Периодическая система химических элементов Д. И. Менделеева, так в органической химии ведущей научной основой служит теория строения органических соединений Бутлерова-Кекуле-Купера.

Как и любая другая научная теория, теория строения органических соединений явилась результатом обобщения богатейшего фактологического материала, который накопила органическая химия, оформившаяся как наука в начале XIX в. Открывались все новые и новые соединения углерода, количество которых лавинообразно возрастало (табл. 1).

Таблица 1
Число органических соединений, известных в разные годы

Объяснить это многообразие органических соединений ученые начала XIX в. не могли. Еще больше вопросов вызывало явление изомерии.

Например, этиловый спирт и диметиловый эфир - изомеры: эти вещества имеют одинаковый состав С 2 Н 6 О, но разное строение, т. е. различный порядок соединения атомов в молекулах, а потому и разные свойства.

Уже известный вам Ф. Вёлер в одном из писем к Й. Я. Берцелиусу так описывал органическую химию: «Органическая химия может сейчас кого угодно свести с ума. Она кажется мне дремучим лесом, полным удивительных вещей, безграничной чащей, из которой нельзя выбраться, куда не осмеливаешься проникнуть...»

Большое влияние на развитие химии оказали работы английского ученого Э. Франкланда, который, опираясь на идеи атомистики, ввел понятие валентность (1853).

В молекуле водорода Н 2 образуется одна ковалентная химическая связь Н-Н, т. е. водород одновалентен. Валентность химического элемента можно выразить числом атомов водорода, которые присоединяет к себе или замещает один атом химического элемента. Например, сера в сероводороде и кислород в воде двухвалентны: H 2 S, или Н-S-Н, Н 2 O, или Н-О-Н, а азот в аммиаке трехвалентен:

В органической химии понятие «валентность» является аналогом понятия «степень окисления», с которым вы привыкли работать в курсе неорганической химии в основной школе. Однако это не одно и то же. Например, в молекуле азота N 2 степень окисления азота равна нулю, а валентность - трем:

В пероксиде водорода Н 2 O 2 степень окисления кислорода равна -1, а валентность - двум:

В ионе аммония NH + 4 степень окисления азота равна -3, а валентность - четырем:

Обычно по отношению к ионным соединениям (хлорид натрия NaCl и многие другие неорганические вещества с ионной связью) не используют термин «валентность» атомов, а рассматривают их степень окисления. Поэтому в неорганической химии, где большинство веществ имеют немолекулярное строение, предпочтительнее применять понятие «степень окисления», а в органической химии, где большинство соединений имеют молекулярное строение, как правило, используют понятие «валентность».

Теория химического строения - результат обобщения идей выдающихся ученых-органиков из трех европейских стран: немца Ф. Кекуле, англичанина А. Купера и русского А. Бутлерова.

В 1857 г. Ф. Кекуле отнес углерод к четырехвалентным элементам, а в 1858 г. он одновременно с А. Купером отметил, что атомы углерода способны соединяться друг с другом в различные цепи: линейные, разветвленные и замкнутые (циклические).

Работы Ф. Кекуле и А. Купера послужили основой для разработки научной теории, объясняющей явление изомерии, взаимосвязь состава, строения и свойств молекул органических соединений. Такую теорию создал русский ученый А. М. Бутлеров. Именно его пытливый ум «осмелился проникнуть» в «дремучий лес» органической химии и начать преобразование этой «безграничной чащи» в залитый солнечным светом регулярный парк с системой дорожек и аллей. Основные идеи этой теории впервые были высказаны А. М. Бутлеровым в 1861 г. на съезде немецких естествоиспытателей и врачей в г. Шпейере.

Кратко сформулировать основные положения и следствия теории строения органических соединений Бутлерова-Кекуле-Купера можно следующим образом.

1. Атомы в молекулах веществ соединены в определенной последовательности согласно их валентности. Углерод в органических соединениях всегда четырехвалентен, а его атомы способны соединяться друг с другом, образуя различные цепи (линейные, разветвленные и циклические).

Органические соединения можно расположить в ряды сходных по составу, строению и свойствам веществ - гомологические ряды.

    Бутлеров Александр Михайлович (1828-1886) , Русский химик, профессор Казанского университета (1857-1868), с 1869 по 1885 г. - профессор Петербургского университета. Академик Петербургской академии наук (с 1874 г.). Создатель теории химического строения органических соединений (1861). Предсказал и изучил изомерию многих органических соединений. Синтезировал многие вещества.

Например, метан СН 4 - родоначальник гомологического ряда предельных углеводородов (алканов). Его ближайший гомолог - этан С 2 Н 6 , или СН 3 -СН 3 . Следующие два члена гомологического ряда метана - пропан С 3 Н 8 , или СН 3 -СН 2 -СН 3 , и бутан С 4 Н 10 , или СН 3 -СН 2 -СН 2 -СН 3 , и т. д.

Нетрудно заметить, что для гомологических рядов можно вывести общую формулу ряда. Так, для алканов эта общая формула С n Н 2n + 2 .

2. Свойства веществ зависят не только от их качественного и количественного состава, но и от строения их молекул.

Это положение теории строения органических соединений объясняет явление изомерии. Очевидно, что для бутана С 4 Н 10 , помимо молекулы линейного строения СН 3 -СН 2 -СН 2 -СН 3 , возможно также и разветвленное строение:

Это уже совершенно новое вещество со своими индивидуальными свойствами, отличными от свойств бутана линейного строения.

Бутан, в молекуле которого атомы расположены в виде линейной цепочки, называют нормальным бутаном (н-бутаном), а бутан, цепь атомов углерода которого разветвлена, называют изобутаном.

Существует два основных типа изомерии - структурная и пространственная.

В соответствии с принятой классификацией различают три вида структурной изомерии.

Изомерия углеродного скелета. Соединения отличаются порядком расположения углерод-углеродных связей, например рассмотренные н-бутан и изобутан. Именно этот вид изомерии характерен для алканов.

Изомерия положения кратной связи (С=С, С=С) или функциональной группы (т. е. группы атомов, определяющих принадлежность соединения к тому или иному классу органических соединений), например:

Межклассовая изомерия . Изомеры этого вида изомерии относятся к разным классам органических соединений, например рассмотренные выше этиловый спирт (класс предельных одноатомных спиртов) и диметиловый эфир (класс простых эфиров).

Различают два вида пространственной изомерии: геометрическую и оптическую.

Геометрическая изомерия характерна, прежде всего, для соединений с двойной углерод-углеродной связью, так как по месту такой связи молекула имеет плоскостное строение (рис. 6).

Рис. 6.
Модель молекулы этилена

Например, для бутена-2, если одинаковые группы атомов у атомов углерода при двойной связи находятся по одну сторону от плоскости С=С-связи, то молекула является цисизомером, если по разные стороны - трансизомером.

Оптической изомерией обладают, например, вещества, молекулы которых имеют асимметрический, или хиральный, атом углерода, связанный с четырьмя различными заместителями. Оптические изомеры являются зеркальным изображением друг друга, подобно двум ладоням, и не совместимы. (Теперь вам, очевидно, стало понятным второе название этого вида изомерии: греч. хирос - рука - образец несимметричной фигуры.) Например, в виде двух оптических изомеров существует 2-оксипропановая (молочная) кислота, содержащая один асимметрический атом углерода.

У хиральных молекул возникают изомерные пары, в которых молекулы изомеров относятся по своей пространственной организации одна к другой так же, как соотносятся между собой предмет и его зеркальное отображение. Пара таких изомеров всегда обладает одинаковыми химическими и физическими свойствами, за исключением оптической активности: если один изомер вращает плоскость поляризованного света по часовой стрелке, то другой - обязательно против. Первый изомер называют правовращающим, а второй - левовращающим.

Значение оптической изомерии в организации жизни на нашей планете очень велико, так как оптические изомеры могут существенно отличаться как по своей биологической активности, так и по совместимости с другими природными соединениями.

3. Атомы в молекулах веществ влияют друг на друга. Взаимное влияние атомов в молекулах органических соединений вы рассмотрите при дальнейшем изучении курса.

Современная теория строения органических соединений основывается не только на химическом, но и на электронном и на пространственном строении веществ, которое подробно рассматривается на профильном уровне изучения химии.

В органической химии широко используют несколько видов химических формул.

Молекулярная формула отражает качественный состав соединения, т. е. показывает число атомов каждого из химических элементов, образующих молекулу вещества. Например, молекулярная формула пропана: С 3 Н 8 .

Структурная формула отражает порядок соединения атомов в молекуле согласно валентности. Структурная формула пропана такова:

Часто нет необходимости детально изображать химические связи между атомами углерода и водорода, поэтому в большинстве случаев используют сокращенные структурные формулы. Для пропана такую формулу записывают так: СН 3 -СН 2 -СН 3 .

Строение молекул органических соединений отражают с помощью различных моделей. Наиболее известны объемные (масштабные) и шаростержневые модели (рис. 7).

Рис. 7.
Модели молекулы этана:
1 - шаростержневая; 2 - масштабная

Новые слова и понятия

  1. Изомерия, изомеры.
  2. Валентность.
  3. Химическое строение.
  4. Теория строения органических соединений.
  5. Гомологический ряд и гомологическая разность.
  6. Формулы молекулярные и структурные.
  7. Модели молекул: объемные (масштабные) и шаростержневые.

Вопросы и задания

  1. Что такое валентность? Чем она отличается от степени окисления? Приведите примеры веществ, в которых значения степени окисления и валентности атомов численно одинаковы и различны,
  2. Определите валентность и степень окисления атомов в веществах, формулы которых Сl 2 , СО 2 , С 2 Н 6 , С 2 Н 4 .
  3. Что такое изомерия; изомеры?
  4. Что такое гомология; гомологи?
  5. Как, используя знания об изомерии и гомологии, объяснить многообразие соединений углерода?
  6. Что понимают под химическим строением молекул органических соединений? Сформулируйте положение теории строения, которое объясняет различие в свойствах изомеров, Сформулируйте положения теории строения, которые объясняют многообразие органических соединений.
  7. Какой вклад внес каждый из ученых - основоположников теории химического строения - в эту теорию? Почему ведущую роль в становление этой теории сыграл вклад русского химика?
  8. Возможно существование трех изомеров состава С 5 Н 12 , Запишите их полные и сокращенные структурные формулы,
  9. По представленной в конце параграфа модели молекулы вещества (см, рис. 7) составьте его молекулярную и сокращенную структурную формулы.
  10. Рассчитайте массовую долю углерода в молекулах первых четырех членов гомологического ряда алканов.

Химия и фармакология

Химическое строение вещества как порядок соединения атомов в молекулах. Взаимное влияние атомов и атомных групп в молекуле. При этом строго соблюдается четырехвалентность атомов углерода и одновалентность водородных атомов. Свойства веществ зависят не только от качественного и количественного состава но и от порядка соединения атомов в молекуле явление изомерии.

§1.3. Основные положения теории химического строения органических соединений А.М.Бутлерова. Химическое строение вещества как порядок соединения атомов в молекулах. Зависимость свойств веществ от химического строения молекул. Взаимное влияние атомов и атомных групп в молекуле.
К шестидесятым годам прошлого столетия в органической химии накопился огромный фактический материал, который требовал объяснения. На фоне беспрерывного накопления экспериментальных фактов особенно остро проявлялась недостаточность теоретических представлений органической химии. Теория отставала от практики, от эксперимента. Такое отставание болезненно отражалось на ходе экспериментальных исследований в лабораториях; химики проводили свои исследования взначительной мере наугад, вслепую, зачастую не понимая природы синтезированных ими веществ и сути реакций, которые приводили к их образованию. Органическая химия, по меткому выражению Вёлера, напоминала дремучий лес, полный чудесных вещей, огромную чащу без выхода, без конца. «Органическая химия, как дремучий лес, в который легко войти, но невозможно выйти». Так, видимо, было суждено, что именно Казань дала миру компас, с которым не страшно зайти в «Дремучий лес органической химии». И этот компас, которым пользуются до сих пор – Теория химического строения Бутлерова. С 60-х годов позапрошлого столетия и поныне любой в Мире учебник по органической химии начинается с постулатов теории Великого русского химика Александра Михайловича Бутлерова.
Основные положения теории химического строения А.М. Бутлерова
1-е положение
Атомы в молекулах соединены друг с другом в определенной последовательности согласно их валентностям . Последовательность межатомных связей в молекуле называется ее химическим строением и отражается одной структурной формулой (формулой строения).

Это положение относится к строению молекул всех веществ. В молекулах предельных углеводородов атомы углерода, соединяясь друг с другом, образуют цепи. При этом строго соблюдается четырехвалентность атомов углерода и одновалентность водородных атомов.

2-е положение. Свойства веществ зависят не только от качественного и количественного состава, но и от порядка соединения атомов в молекуле (явление изомерии).
Изучая строение молекул углеводородов, А. М. Бутлеров пришел к выводу, что у этих веществ, начиная с бутана (С
4 Н 10 ), возможен различный порядок соединения атомов при одном и том же составе молекул.Так, в бутане возможно двоякое расположение атомов углерода: в виде прямой (неразветвленной) и разветвленной цепи.

Эти вещества имеют одинаковую молекулярную формулу, но разные структурные формулы и разные свойства (температуру кипения). Следовательно, это разные вещества. Такие вещества назвали изомерами.

А явление, при котором может существовать несколько веществ, имеющих один и тот же состав и одну и ту же молекулярную массу, но различающихся строением молекул и свойствами, называют явлением изомерии. Причем с увеличением числа атомов углерода а молекулах углеводородов увеличивается число изомеров. Например, существует 75 изомеров (различных веществ), отвечающих формуле С 10 Н 22 , и 1858 изомеров с формулой С 14 Н 30 .

Для состава С 5 Н 12 могут существовать следующие изомеры (их три)-

3-е положение . По свойствам данного вещества можно определить строение его молекулы, а по строению - предвидеть свойства. Доказательство данного положения.Это положение можно доказать на примере неорганической химии.
Пример. Если данное вещество изменяет окраску фиолетового лакмуса на розовый цвет, взаимодействует с металлами, стоящими до водорода, с основными оксидами, основаниями, то мы можем предположить, что это вещество относится к классу кислот, т.е. в своем составе имеет атомы водорода и кислотный остаток. И, наоборот, если данное вещество относится к классу кислот, то проявляет вышеперечисленные свойства. Например: Н
2 S О 4 - серная кислота

4-е положение. Атомы и группы атомов в молекулах веществ взаимно влияют друг на друга.
Доказательство данного положения

Это положение можно доказать на примере неорганической химии.Для этого надо сравнить свойства водных растворов N Н 3 , НС1, Н 2 О (действие индикатора). Во всех трех случаях в состав веществ входят атомы водорода, но они соединены с разными атомами, которые оказывают различное влияние на атомы водорода, поэтому свойства веществ различны.
Теория Бутлерова явилась научным фундаментом органической химии и способствовала быстрому ее развитию. Опираясь на положения теории, А.М. Бутлеров дал объяснение явлению изомерии, предсказал существование различных изомеров и впервые получил некоторые из них.
Осенью 1850 года Бутлеров сдал экзамены на ученую степень магистра химии и немедленно приступил к докторской диссертации «Об эфирных маслах», которую защитил в начале следующего года.

17 февраля 1858 года Бутлеров сделал доклад в Парижском химическом обществе, где впервые изложил свои теоретические идеи о строении вещества.Его доклад вызвал всеобщий интерес и оживленные прения:«Способность атомов соединяться друг с другом различна. Особенно интересен в этом отношении углерод, который, по мнению Августа Кекуле, является четырехвалентным, — говорил в своем докладе Бутлеров — Если представить валентность в виде щупальцев, с помощью которых атомы связываются между собой, нельзя не заметить, что способ связи отражается на свойствах соответствующих соединений».

Подобных мыслей никто до сих пор не высказывал. Может быть, настало время, — продолжал Бутлеров, — когда наши исследования должны стать основой новой теории химического строения веществ. Эта теория будет отличаться точностью математических законов и позволит предвидеть свойства органических соединений».

Через несколько лет, во время второй заграничной командировки, Бутлеров представил на обсуждение созданную им теорию Сообщение он сделал на 36-м съезде немецких естествоиспытателей и врачей в Шпейере. Съезд состоялся в сентябре 1861 года. Он выступил с докладом перед химической секцией. Тема носила более чем скромное название- «Нечто о химическом строении тел».В докладе Бутлеров высказывает основные положения своей теории строения органических соединений.
Труды А.М. Бутлерова

Кабинет А.М. Бутлерова

Теория химического строения позволила объяснить многие факты, накопившиеся в органической химии в начале второй половины ХIХ в., доказала, что с помощью химических методов (синтеза, разложения и других реакций) можно установить порядок соединения атомов в молекулах (этим самым была доказана возможность познания строения вещества);

Внесла новое в атомно-молекулярное учение (порядок расположения атомов в молекулах, взаимное влияние атомов, зависимость свойств от строения молекул вещества). Теория рассматривала молекулы вещества как упорядоченную систему, наделенную динамикой взаимодействующих атомов. В связи с этим атомно-молекулярное учение получило свое дальнейшее развитие, что имело большое значение для науки химии;

Дала возможность предвидеть свойства органических соединений на основании строения, синтезировать новые вещества, придерживаясь плана;

Позволила объяснить многообразие органических соединений;

Дала мощный толчок синтезу органических соединений, развитию промышленности органического синтеза (синтез спиртов, эфиров, красителей, лекарственных веществ и др.).

Разработав теорию и подтвердив правильность ее синтезом новых соединений А.М. Бутлеров не считал теорию абсолютной и неизменной. Он утверждал, что она должна развиваться, и предвидел, что это развитие пойдет путем разрешения противоречий между теоретическими знаниями и возникающими новыми фактами.

Теория химического строения, как и предвидел А.М. Бутлеров, не осталась неизменной. Дальнейшее ее развитие шло главным образом в двух взаимосвязанных направлениях

Первое из них было предсказано самим А.М.Бутлеровым

Он считал,что наука в будущем сможет устанавливать не только порядок соединения атомов в молекуле,но и их пространственное расположение. Учение о пространственном строении молекул, называемое стереохимией (греч. «стереос» - пространственный), вошло в науку в 80-х годах прошлого столетия. Оно позволило объяснять и предсказывать новые факты, не вмещавшиеся в рамки прежних теоретических представлений.
Второе направление связано с применением в органической химии учения об электронном строении атомов, развитого в физике ХХ века. Это учение позволило понять природу химической связи атомов, выяснить сущность их взаимного влияния, объяснить причину проявления веществом тех или иных химических свойств.

Структурные формулы развернутые и краткие

Причины многообразия органических соединений

Атомы углерода образуют одинарные (простые), двойные и тройные связи:

Существуют гомологические ряды:

Изомеры:


PAGE \* MERGEFORMAT 1


А также другие работы, которые могут Вас заинтересовать

5908. РЕГУЛЯЦИЯ СИСТЕМЫ КРОВООБРАЩЕНИЯ 33.67 KB
В зависимости от скорости развития адаптивных процессов все механизмы регуляции гемодинамики делят на 3 группы: кратковременные (нервные и гуморальные); промежуточные во времени; длительного действия...
5909. Попечение Русской Православной Церкви о пожилых людях 160.47 KB
Актуальность исследуемой проблемы заключается в отсутствии систематического подхода, а также в неразработанности вопроса попечения Русской Православной Церкви о пожилых людях. Термин попечение был выбран не случайно, он включает полный ко...
5910. Безпека життєдіяльності. Курс лекцій 277 KB
Змістовний модуль 1. Методологічні основи безпеки життєдіяльності 1.1. Поняття та суть безпеки життєдіяльності 1.2. Поняття небезпеки 1.3. Класифікація небезпек Поняття та суть безпеки життєдіяльності Безпеку життєдіяльності зазвичай розглядаю...
5911. Основи педагогіки вищої школи. Лекції 1.06 MB
Предмет, задачі, основні категорії та методи педагогіки вищої школи. Основи дидактики вищої школи. Принципи та методи навчання у вищому навчальному закладі. Форми організації навчання у вищій школі.
5912. Основи музеєзнавства. Курс лекцій 335 KB
Лекция 1 Сущность и значение музея и музейного дела Понятие о музееведении как науке Музей как социокультурное явление Музей как учреждение культуры Классификация музеев Понятие о музееведении как науке Наука о музейном де...
5913. Технології у виробничій діяльності. Конспект лекцій 3.02 MB
Проектування як складова сучасного виробництва та життєдіяльності людини Лекція Загальні основи проектування у виробничій діяльність людини. Основні ознаки проектної діяльності. Види проектів. Основні поняття: проект, проектування...
5914. Основи термодинаміки. Курс лекцій 3.72 MB
Основні поняття та закони термодинаміки Теплотехніка - наука, яка вивчає процеси одержання та використання теплоти в різних виробництвах, а також машини та апарати, які використовуються для сіх цілей. Технічна термодинаміка - вив...
5915. Безпека життєдіяльності та охорона праці. Лекції 497.94 KB
Тема - Правові та організаційні засади охорони праці Законодавчо-нормативна база України з питань охорони праці. Основні принципи державної політики України у галузі охорони праці. Нормативно-правові акти України про охорону праці. Соц...
5916. Національна економіка. Курс лекцій 586.5 KB
Національна економіка: загальне і особливе Національна економіка як соціально-економічна система країни. Основні цілі національної економіки. Фактори функціонування національної економіки. Національна економіка як соціаль...

Химия - это наука, которая дает нам все то разнообразие материалов и предметов быта, которым мы, не задумываясь, пользуемся каждый день. Но чтобы прийти к открытию такого многообразия соединений, которое известно сегодня, многим химикам пришлось пройти сложный научный путь.

Огромный труд, многочисленные удачные и безуспешные эксперименты, колоссальная теоретическая база знаний - все это привело к формированию различных областей промышленной химии, позволило синтезировать и использовать современные материалы: резины, пластики, пластмассы, смолы, сплавы, различные стекла, силиконы и так далее.

Одним из самых известных, заслуженных ученых-химиков, внесших неоценимый вклад в развитие именно органической химии, был русский человек Бутлеров А. М. Его труды, заслуги и результаты работ мы и рассмотрим кратко в данной статье.

Краткая биография

Дата рождения ученого - сентябрь 1828 года, число в разных источниках неодинаковое. Он был сыном подполковника Михаила Бутлерова, мать потерял достаточно рано. Все детство прожил в родовом имении деда, в деревне Подлесная Шентала (ныне район республики Татарстан).

Учился в разных местах: сначала в закрытой частной школе, затем в гимназии. Позже поступил в Казанский университет на отделение физики и математики. Однако несмотря на это больше всего интересовался химией. Будущий автор теории строения органических соединений остался по окончании учебы на месте в качестве преподавателя.

1851 год - время защиты первой диссертационной работы ученого по теме "Окисление органических соединений". После блестящего выступления ему предоставили возможность управления всей химией в своем университете.

Скончался ученый в 1886 году там, где провел детство, в родовом имении деда. В фамильной местной часовне он и был захоронен.

Вклад ученого в развитие химических знаний

Теория строения органических соединений Бутлерова - это, безусловно, его основной труд. Однако не единственный. Именно этот ученый первым создал русскую школу химиков.

Причем из ее стен вышли такие ученые, которые в дальнейшем имели большой вес в развитии всей науки. Это следующие люди:

  • Марковников;
  • Зайцев;
  • Кондаков;
  • Фаворский;
  • Коновалов;
  • Львов и другие.

Работы по органической химии

Таких трудов можно назвать множество. Ведь Бутлеров практически все свободное время проводил в лаборатории своего университета, осуществляя различные эксперименты, делая выводы и заключения. Именно так и родилась теория органических соединений.

Есть несколько особенно емких работ ученого:

  • им был создан доклад на конференцию на тему "О химическом строении вещества";
  • диссертационный труд "Об эфирных маслах";
  • первая научная работа "Окисление органических соединений".

Перед ее формулировкой и созданием автор теории строения органических соединений долго изучал работы других ученых из разных стран, исследовал их труды, в том числе и экспериментальные. Только потом, обобщив и систематизировав полученные знания, он отразил все выводы в положениях своей именной теории.

Теория строения органических соединений А. М. Бутлерова

XIX век знаменуется бурным развитием практически всех наук, в том числе и химии. В частности, продолжают копиться обширные открытия по углероду и его соединениям, поражают всех своим многообразием. Однако никто не осмеливается систематизировать и упорядочить весь этот фактический материал, привести к общему знаменателю и выявить единые закономерности, на которых все построено.

Первым это сделал Бутлеров А. М. Именно ему принадлежит гениальная теория химического строения органических соединений, о положениях которой он рассказал массово на немецкой конференции химиков. Это стало началом новой эпохи в развитии науки, органическая химия встала на

Сам ученый шел к этому постепенно. Он провел множество опытов и предсказал существование веществ с заданными свойствами, открыл некоторые типы реакций и увидел за ними будущее. Много изучал труды своих коллег и их открытия. Только на фоне этого путем тщательного и кропотливого труда ему удалось-таки создать свой шедевр. И теперь теория строения органических соединений в данном - практически то же самое, что и периодическая система в неорганической.

Открытия ученого перед созданием теории

Какие были сделаны открытия и даны теоретические обоснования ученым перед тем, как появилась теория строения органических соединений А. М. Бутлерова?

  1. Отечественный гений первым синтезировал такие органические вещества, как уротропин, формальдегид, йодистый метилен и другие.
  2. Синтезировал из неорганики сахароподобное вещество (третичный спирт), тем самым нанеся очередной удар по теории витализма.
  3. Предсказал будущее за реакциями полимеризации, назвав их лучшими и перспективными.
  4. Изомерия объяснена была впервые только им.

Конечно, это только основные вехи его работ. На самом деле, многолетний кропотливый труд ученого можно описывать долго. Однако самой значимой на сегодня стала все-таки теория строения органических соединений, о положениях которой и поговорим дальше.

Первое положение теории

В 1861 году великий русский ученый на съезде химиков в городе Шпейере делится с коллегами своими взглядами на причины строения и многообразия органических соединений, выражая все это в форме положений теории.

Самый первый пункт следующий: все атомы в пределах одной молекулы соединены в строгой последовательности, которая определяется их валентностью. При этом атом углерода проявляет показатель валентности, равный четырем. Кислород имеет значение данного показателя, равное двум, водород - единице.

Подобную особенность он предложил называть химическим Позже были приняты обозначения выражения его на бумаге при помощи графических полных структурных, сокращенных и молекулярных формул.

Сюда же относится и явление соединения углеродных частиц друг с другом в бесконечные цепи разного строения (линейные, циклические, разветвленные).

В общем, теория строения органических соединений Бутлерова своим первым положением определила значимость валентности и единой формулы для каждого соединения, отражающей свойства и поведение вещества во время реакций.

Второе положение теории

В данном пункте было дано объяснение многообразию органических соединений в мире. Опираясь на соединения углеродов в цепи, ученый высказал мысль о том, что в мире присутствуют неодинаковые соединения, имеющие различные свойства, но при этом совершенно идентичные по молекулярному составу. Другими словами, существует явление изомерии.

Этим положением теория строения органических соединений А. М. Бутлерова не просто пояснила суть изомеров и изомерии, но и сам ученый практическим опытным путем все подтвердил.

Так, например, он синтезировал изомер бутана - изобутан. Затем предсказал для пентана существование уже не одного, а трех изомеров, исходя из строения соединения. И синтезировал их все, доказав свою правоту.

Раскрытие третьего положения

Следующий пункт теории говорит о том, что все атомы и молекулы в пределах одного соединения способны влиять на свойства друг на друга. От этого и будет зависеть характер поведения вещества в реакциях разных типов, проявляемые химические и другие свойства.

Таким образом, на основании этого положения выделяют несколько отличающихся видом и строением функциональной определяющей группы.

Теория строения органических соединений А. М. Бутлерова кратко излагается практически во всех учебных пособиях по органической химии. Ведь именно она - основа данного раздела, объяснение всех закономерностей, на которых построены молекулы.

Значение теории для современности

Безусловно, оно велико. Данная теория позволила:

  1. объединить и систематизировать весь фактический материал, накопившийся к моменту ее создания;
  2. объяснить закономерности строения, свойств различных соединений;
  3. дать полное пояснение причинам такого большого многообразия соединений в химии;
  4. дала старт для многочисленных синтезов новых веществ, базирующихся на положениях теории;
  5. позволила продвинуться взглядам, развиться атомно-молекулярному учению.

Поэтому сказать, что автор теории строения органических соединений, фото которого можно увидеть ниже, сделал многое,- это не сказать ничего. Бутлерова по праву можно считать отцом органической химии, родоначальником ее теоретических основ.

Его научное видение мира, гениальность мышления, способность предвидеть результат сыграли свою роль в конечном счете. Этот человек обладал колоссальной работоспособностью, терпением и неустанно экспериментировал, синтезировал, тренировался. Ошибался, но всегда извлекал урок и делал правильные перспективные выводы.

Только такой набор качеств и деловая хватка, упорство позволили добиться желаемого эффекта.

Изучение органической химии в школе

В курсе среднего образования на изучение основ органики отводится не так много времени. Всего одна четверть 9 класса и весь год 10 ступени (по программе Габриэляна О. С.). Однако этого времени достаточно, чтобы ребята смогли изучить все основные классы соединений, особенности их строения и номенклатуры, практическую значимость.

Основа же для начала освоения курса - теория строения органических соединений А. М. Бутлерова. 10 класс посвящается полному рассмотрению ее положений, а в дальнейшем - теоретическому и практическому подтверждению их при изучении каждого класса веществ.



← Вернуться

×
Вступай в сообщество «servizhome.ru»!
ВКонтакте:
Я уже подписан на сообщество «servizhome.ru»