Химия как определить валентность химических элементов. Валентность. Определение валентности

Подписаться
Вступай в сообщество «servizhome.ru»!
ВКонтакте:

Первый камень преткновения изучающих химию. Большой ошибкой является подход, когда учащийся не пытается понять валентность, ожидая, что знания об этом потом приложатся сами собой. Но этот подход неверный, так как без понимания этого мы упираемся в тупик неспособности составить даже простейшую формулу.

Что такое «валентность» элементов?

Валентность - слово взятое учеными из латинского языка, что в переводе значит сила и возможность. Конечно, название неслучайно и может нам очень помочь в понимании сути термина. Ведь валентность характеризует атом с точки зрения его способности образовывать связи с другими атомами. Говоря иначе, валентность можно рассматривать, как возможность атома образовывать связи, благодаря которым появляются молекулы.

Обозначают валентность элемента всегда только римскими цифрами. Посмотреть ее значение для разных атомов можно в специальной таблице.

Какие бывают характеристики у валентности элементов?

Все вещества, которые обладают валентностью, характеризуются тем, что она у них или постоянна (во всех связях), либо переменная. Постоянная валентность - характеристика очень небольшой группы веществ (водорода, фтора, натрия, калия, кислорода и др. Намного больше в мире атомов, которые обладают переменной валентностью. В разных реакциях, взаимодействуя с разными атомами, они становятся разновалентными. Например, азот в соединении NH3 имеет валентность - III, так как связан с тремя атомами, а в природе он бывает с валентность от одного до четырех. Еще раз повторю, что разная валентность - более распространенное явление.

Влияние валентности элементов в химических реакциях.

Даже того как ученые узнали, что атом — это не мельчайшая частица в мире, они уже оперировали этим понятием. Они понимали, что есть внутренний фактор, который влияет на протекание химической реакции различных веществ. Из-за того, что ученые по-разному видели строение молекулы, понятие «валентность элемента » пережило несколько метаморфоз.

Валентность вещества определяется количеством внешних электронов атома. Каким количеством электронов атом обладает, столько максимально соединений он способен совершить. Таким образом «валентность» подразумевает собою число электронных пар атомов.

Хотя электронная теория появилась намного позже, после «разделения» атома на более мелкие частицы, до этого ученые все равно вполне успешно определяли валентность в большинстве случаев. Удавалось им это благодаря химическому анализу веществ.

Это была тяжелая работа: прежде всего, требовалось определить массу элемента в чистом виде. Далее, с помощью химического анализа, ученые определяли каков состав соединения, и только потом могли высчитать, сколько атомов содержит в себе молекула вещества.

Этот метод все еще используется, но не является универсальным. Так удобно определять элемент в простом соединении веществ. Например, с одновалентным водородом, или двухвалентным кислородом.

Но уже при работе с кислотами метод не особо удачный. Нет, мы можем частично использовать его, например, при определении валентности соединений кислотных остатков.

Выглядит это так: используя знание, что валентность кислорода всегда равна двум, мы можем с легкостью высчитать валентность всего кислотного остатка. Например, в H 2 SO 3 валентность SO 3 - I, в HСlO 3 валентность СlO 3 - I.

Валентность элементов в формулах.

Как мы уже говорили выше, понятие «валентность элементов » связанно с электронной структурой атома. Но это не единственный вид связи, которые существуют в природе. Химики знакомы еще с ионными, кристаллическими и другими формами структуры вещества. Для таких структур валентность уже не столь актуальна, но вот работая с формулами молекулярных реакций, мы обязательно должны ее учитывать.

Для того, чтоб сделать формулу мы должны расставить все индексы, которые уравновешивают количество атомов, вступающие в реакцию. Только зная валентность веществ, мы можем правильно расставить индексы. И наоборот, зная молекулярную формулу и имея индексы, можно узнать валентность элементов, что входят в состав вещества.

Для произведения подобных расчетов важно помнить, что валентности обоих элементов, вступивших в реакцию, будут равны, а значит, для поиска необходимо найти наименьшее общее кратное.

Например, возьмем, оксид железа. В химической связи у нас участвуют железо и кислород. В данной реакции у железа валентность равна III, а кислорода - II. Путем легких вычислений определяем, что наименьшее общее кратное - 6. А значит формула имеет вид Fe 2 O 3 .

Необычные способы определения валентности элементов.

Есть и более нестандартные, но интересные способы определения валентности вещества. Если хорошо знать свойства элемента, то определить валентность можно даже визуально. Например, медь. Ее оксиды будут красными и черными, а гидроксиды - желтыми и синими.

Наглядность.

Для того, чтоб валентность элемента была более понятна рекомендуют писать структурные формулы . Создавая их, мы пишем условные обозначения атомов, а потом рисуем черточки, опираясь на валентность. Там каждая черточка обозначает связи каждого из элементов и получается очень наглядно.

Для того чтобы научиться составлять химические формулы необходимо выяснить закономерности, согласно которым атомы химических элементов соединяются между собой в определенных соотношениях. Для этого сравним качествен-ный и количественный состав соединений, формулы кото-рых HCl, H 2 O, NH 3 , CH 4 (рис. 12.1)

По качественному составу эти вещества схожи:в состав каждой из молекул входят атомы водорода. Тем не менее их количественный состав неодинаков. Атомы хлора, кислорода, азота, углерода соединены соответственно с одним, двумя, тремя и четырьмя атомами водорода

Эту закономерность подметил еще в начале XI в. Дж. Дальтон. Со временем И. Я. Берцелиус обнаружил, что наиболь-шее количество атомов, соединенных с атомом химического элемента, не превышает определенной величины. В 1858 г. Э. Франкленд назвал «соединительной силой» способность атомов связывать или замещать определенное число других атомов Термин «валентность» (от лат. valentia — «сила») предложил в 1868 г. немецкий химик К. Г. Вихельхауз.

Валентность — общее свойство атомов. Она характе-ризует способность атомов химически (валентными си-лами) взаимодействовать друг с другом.

Валентность многих химических элементов определили на основе экспериментальных данных о количественном и качественном составе веществ. За единицу валентности бы-ла принята валентностьатома водорода. Если атом хими-ческого элемента соединен с двумя одновалентными атома-ми, то его валентность равна двум. Если он соединен с тремя одновалентными атомами, то он — трехвалентен и т. д.

Наи-высшее значение валентности химических элементов — VIII .

Валентность обозначают римскими цифрами. Обозначим валентность в формулах рассмотренных соединений:

Также ученые обнаружили, что немало элементов в раз-ных соединениях проявляют разные значения валентности. То есть существуют химические элементы с постоянной и переменной валентностью.

Можно ли определить валентность по положению хими-ческого элемента в периодической системе? Максимальное значение валентности элемента совпадает с номером группы периодической системы, в которой он размещен. Тем не менее бывают и исключения — азот, кислород, фтор, медь и некото-рые другие элементы. Запомни : номер группы обозначен римской цифрой над соответствующим вертикальным столби-ком периодической системы.


Таблица. Химические элементы с постоянной валентностью

Элемент

Валентность

Элемент

Валентность

Водород (Н)

Кальций (Са)

Натрий (Na)

Барий (Ва)

Кислород(O)

Бериллий(Be)

Алюминий (Al)

Магний (Mg)

Таблица. Химические элементы с переменной валентностью

Элемент

Валентность

Элемент

Валентность

Железо (Fe)

Марганец (Mg)

II, III, VI Материал с сайта

Серебро (Ag)

Фосфор (P)

Золото (Au)

Мышьяк (As)

Углерод (C)

Свинец (Pb)

Кремний (Si)

На этой странице материал по темам:

Выберите рубрику Книги Математика Физика Контроль и управления доступом Пожарная безопасность Полезное Поставщики оборудования Cредства измерений (КИП) Измерение влажности — поставщики в РФ. Измерение давления. Измерение расходов. Расходомеры. Измерение температуры Измерение уровней. Уровнемеры. Бестраншейные технологии Канализационные системы. Поставщики насосов в РФ. Ремонт насосов. Трубопроводная арматура. Затворы поворотные (дисковые затворы). Обратные клапаны. Регулирующая арматура. Фильтры сетчатые, грязевики, магнито-механические фильтры. Шаровые краны. Трубы и элементы трубопроводов. Уплотнения резьб, фланцев и т.д. Электродвигатели, электроприводы… Руководство Алфавиты, номиналы, единицы, коды… Алфавиты, в т.ч. греческий и латинский. Символы. Коды. Альфа, бета, гамма, дельта, эпсилон… Номиналы электрических сетей. Перевод единиц измерения Децибел. Сон. Фон. Единицы измерения чего? Единицы измерения давления и вакуума. Перевод единиц измерения давления и вакуума. Единицы измерения длины. Перевод единиц измерения длины (линейного размера, расстояний). Единицы измерения объема. Перевод единиц измерения объема. Единицы измерения плотности. Перевод единиц измерения плотности. Единицы измерения площади. Перевод единиц измерения площади. Единицы измерения твердости. Перевод единиц измерения твердости. Единицы измерения температуры. Перевод единиц температур в шкалах Кельвина (Kelvin) / Цельсия (Celsius) / Фаренгейта (Fahrenheit) / Ранкина (Rankine) / Делисле (Delisle) / Ньютона (Newton) / Реамюрa Единицы измерения углов ("угловых размеров"). Перевод единиц измерения угловой скорости и углового ускорения. Стандартные ошибки измерений Газы различные как рабочие среды. Азот N2 (хладагент R728) Аммиак (холодильный агент R717). Антифризы. Водород H^2 (хладагент R702) Водяной пар. Воздух (Атмосфера) Газ природный — натуральный газ. Биогаз — канализационный газ. Сжиженный газ. ШФЛУ. LNG. Пропан-бутан. Кислород O2 (хладагент R732) Масла и смазки Метан CH4 (хладагент R50) Свойства воды. Угарный газ CO. Монооксид углерода. Углекислый газ CO2. (Холодильный агент R744). Хлор Cl2 Хлороводород HCl, он же — Cоляная кислота. Холодильные агенты (хладагенты). Хладагент (холодильный агент) R11 — Фтортрихлорметан (CFCI3) Хладагент (Холодильный агент) R12 — Дифтордихлорметан (CF2CCl2) Хладагент (Холодильный агент) R125 — Пентафторэтан (CF2HCF3). Хладагент (Холодильный агент) R134а — 1,1,1,2-Тетрафторэтан (CF3CFH2). Хладагент (Холодильный агент) R22 — Дифторхлорметан (CF2ClH) Хладагент (Холодильный агент) R32 — Дифторметан (CH2F2). Хладагент (Холодильный агент) R407С — R-32 (23%)/ R-125 (25%)/ R-134a (52%)/ Проценты по массе. другие Материалы — тепловые свойства Абразивы — зернистость, мелкость, шлифовальное оборудование. Грунты, земля, песок и другие породы. Показатели разрыхления, усадки и плотности грунтов и пород. Усадка и разрыхление, нагрузки. Углы откоса, отвала. Высоты уступов, отвалов. Древесина. Пиломатериалы. Лесоматериалы. Бревна. Дрова… Керамика. Клеи и клеевые соединения Лед и снег (водяной лед) Металлы Алюминий и сплавы алюминия Медь, бронзы и латуни Бронза Латунь Медь (и классификация медных сплавов) Никель и сплавы Соответствие марок сплавов Стали и сплавы Cправочные таблицы весов металлопроката и труб. +/-5% Вес трубы. Вес металла. Механические свойства сталей. Чугун Минералы. Асбест. Продукты питания и пищевое сырье. Свойства и пр. Ссылка на другой раздел проекта. Резины, пластики, эластомеры, полимеры. Подробное описание Эластомеров PU, ТPU, X-PU, H-PU, XH-PU, S-PU, XS-PU, T-PU, G-PU (CPU), NBR, H-NBR, FPM, EPDM, MVQ, TFE/P, POM, PA-6, TPFE-1, TPFE-2, TPFE-3, TPFE-4, TPFE-5 (PTFE модифицированный), Сопротивление материалов. Сопромат. Строительные материалы. Физические, механические и теплотехнические свойства. Бетон. Бетонный раствор. Раствор. Строительная арматура. Стальная и прочая. Таблицы применимости материалов. Химическая стойкость. Температурная применимость. Коррозионная стойкость. Уплотнительные материалы — герметики соединений. PTFE (фторопласт-4) и производные материалы. Лента ФУМ. Анаэробные клеи Герметики невысыхающие (незастывающие). Герметики силиконовые (кремнийорганические). Графит, асбест, парониты и производные материалы Паронит. Терморасширенный графит (ТРГ, ТМГ), композиции. Свойства. Применение. Производство. Лен сантехнический Уплотнители резиновых эластомеров Утеплители и теплоизоляционные материалы. (ссылка на раздел проекта) Инженерные приемы и понятия Взрывозащита. Защита от воздействия окружающей среды. Коррозия. Климатические исполнения (Таблицы совместимости материалов) Классы давления, температуры, герметичности Падение (потеря) давления. — Инженерное понятие. Противопожарная защита. Пожары. Теория автоматического управления (регулирования). ТАУ Математический справочник Арифметическая, Геометрическая прогрессии и суммы некоторых числовых рядов. Геометрические фигуры. Свойства, формулы: периметры, площади, объемы, длины. Треугольники, Прямоугольники и т.д. Градусы в радианы. Плоские фигуры. Свойства, стороны, углы, признаки, периметры, равенства, подобия, хорды, секторы, площади и т.д. Площади неправильных фигур, объемы неправильных тел. Средняя величина сигнала. Формулы и способы расчета площади. Графики. Построение графиков. Чтение графиков. Интегральное и дифференциальное исчисление. Табличные производные и интегралы. Таблица производных. Таблица интегралов. Таблица первообразных. Найти производную. Найти интеграл. Диффуры. Комплексные числа. Мнимая единица. Линейная алгебра. (Вектора, матрицы) Математика для самых маленьких. Детский сад — 7 класс. Математическая логика. Решение уравнений. Квадратные и биквадратные уравнения. Формулы. Методы. Решение дифференциальных уравнений Примеры решений обыкновенных дифференциальных уравнений порядка выше первого. Примеры решений простейших = решаемых аналитически обыкновенных дифференциальных уравнений первого порядка. Системы координат. Прямоугольная декартова, полярная, цилиндрическая и сферическая. Двухмерные и трехмерные. Системы счисления. Числа и цифры (действительные, комплексные, ….). Таблицы систем счисления. Степенные ряды Тейлора, Маклорена (=Макларена) и периодический ряд Фурье. Разложение функций в ряды. Таблицы логарифмов и основные формулы Таблицы численных значений Таблицы Брадиса. Теория вероятностей и статистика Тригонометрические функции, формулы и графики. sin, cos, tg, ctg….Значения тригонометрических функций. Формулы приведения тригонометрических функций. Тригонометрические тождества. Численные методы Оборудование — стандарты, размеры Бытовая техника, домашнее оборудование. Водосточные и водосливные системы. Емкости, баки, резервуары, танки. КИПиА Контрольно-измерительные приборы и автоматика. Измерение температуры. Конвейеры, ленточные транспортеры. Контейнеры (ссылка) Крепеж. Лабораторное оборудование. Насосы и насосные станции Насосы для жидкостей и пульп. Инженерный жаргон. Словарик. Просеивание. Фильтрация. Сепарация частиц через сетки и сита. Прочность примерная веревок, тросов, шнуров, канатов из различных пластиков. Резинотехнические изделия. Сочленения и присоединения. Диаметры условные, номинальные, Ду, DN, NPS и NB. Метрические и дюймовые диаметры. SDR. Шпонки и шпоночные пазы. Стандарты коммуникации. Сигналы в системах автоматизации (КИПиА) Аналоговые входные и выходные сигналы приборов, датчиков, расходомеров и устройств автоматизации. Интерфейсы подключения. Протоколы связи (коммуникации) Телефонная связь. Трубопроводная арматура. Краны, клапаны, задвижки…. Строительные длины. Фланцы и резьбы. Стандарты. Присоединительные размеры. Резьбы. Обозначения, размеры, использование, типы… (справочная ссылка) Соединения ("гигиенические", "асептические") трубопроводов в пищевой, молочной и фармацевтической промышленности. Трубы, трубопроводы. Диаметры труб и другие характеристики. Выбор диаметра трубопровода. Скорости потока. Расходы. Прочность. Таблицы выбора, Падение давления. Трубы медные. Диаметры труб и другие характеристики. Трубы поливинилхлоридные (ПВХ). Диаметры труб и другие характеристики. Трубы полиэтиленовые. Диаметры труб и другие характеристики. Трубы полиэтиленовые ПНД. Диаметры труб и другие характеристики. Трубы стальные (в т.ч. нержавеющие). Диаметры труб и другие характеристики. Труба стальная. Труба нержавеющая. Трубы из нержавеющей стали. Диаметры труб и другие характеристики. Труба нержавеющая. Трубы из углеродистой стали. Диаметры труб и другие характеристики. Труба стальная. Фитинги. Фланцы по ГОСТ, DIN (EN 1092-1) и ANSI (ASME). Соединение фланцев. Фланцевые соединения. Фланцевое соединение. Элементы трубопроводов. Электрические лампы Электрические разъемы и провода (кабели) Электродвигатели. Электромоторы. Электрокоммутационные устройства. (Ссылка на раздел) Стандарты личной жизни инженеров География для инженеров. Расстояния, маршруты, карты….. Инженеры в быту. Семья, дети, отдых, одежда и жилье. Детям инженеров. Инженеры в офисах. Инженеры и другие люди. Социализация инженеров. Курьезы. Отдыхающие инженеры. Это нас потрясло. Инженеры и еда. Рецепты, полезности. Трюки для ресторанов. Международная торговля для инженеров. Учимся думать барыжным образом. Транспорт и путешествия. Личные автомобили, велосипеды…. Физика и химия человека. Экономика для инженеров. Бормотология финансистов — человеческим языком. Технологические понятия и чертежи Бумага писчая, чертежная, офисная и конверты. Стандартные размеры фотографий. Вентиляция и кондиционирование. Водоснабжение и канализация Горячее водоснабжение (ГВС). Питьевое водоснабжение Сточная вода. Холодное водоснабжение Гальваническая промышленность Охлаждение Паровые линии / системы. Конденсатные линии / системы. Паропроводы. Конденсатопроводы. Пищевая промышленность Поставка природного газа Сварочные металлы Символы и обозначения оборудования на чертежах и схемах. Условные графические изображения в проектах отопления, вентиляции, кондиционирования воздуха и теплохолодоснабжения, согласно ANSI/ASHRAE Standard 134-2005. Стерилизация оборудования и материалов Теплоснабжение Электронная промышленность Электроснабжение Физический справочник Алфавиты. Принятые обозначения. Основные физические константы. Влажность абсолютная, относительная и удельная. Влажность воздуха. Психрометрические таблицы. Диаграммы Рамзина. Время Вязкость, Число Рейнольдса (Re). Единицы измерения вязкости. Газы. Свойства газов. Индивидуальные газовые постоянные. Давление и Вакуум Вакуум Длина, расстояние, линейный размер Звук. Ультразвук. Коэффициенты звукопоглощения (ссылка на другой раздел) Климат. Климатические данные. Природные данные. СНиП 23-01-99. Строительная климатология. (Статистика климатических данных) СНИП 23-01-99 .Таблица 3 — Средняя месячная и годовая температура воздуха, °С. Бывший СССР. СНИП 23-01-99 Таблица 1. Климатические параметры холодного периода года. РФ. СНИП 23-01-99 Таблица 2. Климатические параметры теплого периода года. Бывший СССР. СНИП 23-01-99 Таблица 2. Климатические параметры теплого периода года. РФ. СНИП 23-01-99 Таблица 3. Средняя месячная и годовая температура воздуха, °С. РФ. СНиП 23-01-99. Таблица 5а* — Среднее месячное и годовое парциальное давление водяного пара, гПа = 10^2 Па. РФ. СНиП 23-01-99. Таблица 1. Климатические параметры холодного времени года. Бывший СССР. Плотности. Веса. Удельный вес. Насыпная плотность. Поверхностное натяжение. Растворимость. Растворимость газов и твердых веществ. Свет и цвет. Коэффициенты отражения, поглощения и преломления Цветовой алфавит:) — Обозначения (кодировки) цвета (цветов). Свойства криогенных материалов и сред. Таблицы. Коэффициенты трения для различных материалов. Тепловые величины, включая температуры кипения, плавления, пламени и т.д …… дополнительная информация см.: Коэффициенты (показатели) адиабаты. Конвекционный и полный теплообмен. Коэффициенты теплового линейного расширения, теплового объемного расширения. Температуры, кипения, плавления, прочие… Перевод единиц измерения температуры. Воспламеняемость. Температура размягчения. Температуры кипения Температуры плавления Теплопроводность. Коэффициенты теплопроводности. Термодинамика. Удельная теплота парообразования (конденсации). Энтальпия парообразования. Удельная теплота сгорания (теплотворная способность). Потребность в кислороде. Электрические и магнитные величины Дипольные моменты электрические. Диэлектрическая проницаемость. Электрическая постоянная. Длины электромагнитных волн (справочник другого раздела) Напряженности магнитного поля Понятия и формулы для электричества и магнетизма. Электростатика. Пьезоэлектрические модули. Электрическая прочность материалов Электрический ток Электрическое сопротивление и проводимость. Электронные потенциалы Химический справочник "Химический алфавит (словарь)" — названия, сокращения, приставки, обозначения веществ и соединений. Водные растворы и смеси для обработки металлов. Водные растворы для нанесения и удаления металлических покрытий Водные растворы для очистки от нагара (асфальтосмолистого нагара, нагара двигателей внутреннего сгорания…) Водные растворы для пассивирования. Водные растворы для травления — удаления окислов с поверхности Водные растворы для фосфатирования Водные растворы и смеси для химического оксидирования и окрашивания металлов. Водные растворы и смеси для химического полирования Обезжиривающие водные растворы и органические растворители Водородный показатель pH. Таблицы показателей pH. Горение и взрывы. Окисление и восстановление. Классы, категории, обозначения опасности (токсичности) химических веществ Периодическая система химических элементов Д.И.Менделеева. Таблица Менделеева. Плотность органических растворителей (г/см3)в зависимости от температуры. 0-100 °С. Свойства растворов. Константы диссоциации, кислотности, основности. Растворимость. Смеси. Термические константы веществ. Энтальпии. Энтропии. Энергии Гиббса… (ссылка на химический справочник проекта) Электротехника Регуляторы Системы гарантированного и бесперебойного электроснабжения. Системы диспетчеризации и управления Структурированные кабельные системы Центры обработки данных

В этой статье рассмотрим способы и поймем, как определить валентность элементов таблицы Менделеева.

В химии принято, что валентность химических элементов можно узнать по группе (колонке) в таблице Менделеева . В действительности не всегда валентность элемента соответствует номеру группы, но в большинстве случаев определенная валентность по такому методу даст правильный результат часто элементы, в зависимости от разных факторов, имеют не одну валентность.

За единицу валентности принята валентность атома водорода, равная 1, то есть водород одновалентен. Поэтому валентность элемента указывает на то, со сколькими атомами водорода соединён один атом рассматриваемого элемента. Например, HCl, где хлор - одновалентен; H2O, где кислород - двухвалентен; NH3, где азот - трёхвалентен.

Как определить валентность по таблице Менделеева.

Таблица Менделеева содержит в себе химические элементы, которые размещены в ней по определенным принципам и законам. Каждый элемент стоит на месте, который определяется его характеристиками и свойствами и каждый элемент имеет свой номер. Горизонтальные линии называются периодами, которые возрастают от первой строки вниз. Если период состоит из двух рядов (что указано сбоку нумерацией), то такой период называется большим. Если он имеет только один ряд, то называется малым.

Кроме того, в таблице есть группы, которых всего восемь. Элементы размещаются в столбцах по вертикали. Здесь их размещение неравномерно - с одной стороны больше элементов (главная группа), с другой - меньше (побочная группа).

Валентностью называют способность атома образовывать некоторое количество химических связей с атомами других элементов. по таблице Менделеева поможет понять знание видов валентности.

Для элементов побочных подгрупп (а к ним относятся только металлы) валентность нужно запоминать, тем более что в большинстве случае она равна I, II, реже III. Также придется заучить валентности химических элементов, которые имеют более двух значений. Или постоянно держать под рукой таблицу валентности элементов .

Алгоритм определения валентности по формулам химических элементов.

1. Записать формулу химического соединения.

2. Обозначить известную валентность элементов.

3. Найти наименьшее общее кратное валентности и индекса.

4. Найти соотношение наименьшего общего кратного к количеству атомов второго элемента. Это и есть искомая валентность.

5. Сделать проверку путём перемножения валентности и индекса каждого элемента. Их произведения должны быть равны.

Пример: определим валентность элементов сульфида водорода.

1. Запишем формулу:

2. Обозначим известную валентность:

3. Найдём наименьшее общее кратное:

4. Найдём соотношение наименьшего общего кратного к количеству атомов серы :

5. Сделаем проверку:

Таблица характерных значений валентностей некоторых атомов химических соединений.

Элементы

Валентность

Примеры соединений

H 2 , HF, Li 2 O, NaCl, KBr

O, Mg, Ca, Sr, Ba, Zn

H 2 O, MgCl 2 , CaH 2 , SrBr 2 , BaO, ZnCl 2

CO 2 , CH4, SiO 2 , SiCl 4

CrCl 2 , CrCl 3 , CrO 3

H 2 S, SO 2 , SO3

NH 3 , NH 4 Cl, HNO 3

PH 3 , P 2 O 5 , H 3 PO 4

SnCl 2 , SnCl 4 , PbO, PbO 2

HCl, ClF 3 , BrF 5 , IF 7

Из материалов урока вы узнаете, что постоянство состава вещества объясняется наличием у атомов химических элементов определенных валентных возможностей; познакомитесь с понятием «валентность атомов химических элементов»; научитесь определять валентность элемента по формуле вещества, если известна валентность другого элемента.

Тема: Первоначальные химические представления

Урок: Валентность химических элементов

Состав большинства веществ постоянен. Например, молекула воды всегда содержит 2 атома водорода и 1 атом кислорода – Н 2 О. Возникает вопрос: почему вещества имеют постоянный состав?

Проанализируем состав предложенных веществ: Н 2 О, NaH, NH 3 , CH 4 , HCl. Все они состоят из атомов двух химических элементов, один из которых водород. На один атом химического элемента может приходиться 1,2,3,4 атома водорода. Но ни в одном веществе не будет на один атом водорода приходиться несколько атомов другого химического элемента. Таким образом, атом водорода может присоединять к себе минимальное количество атомов другого элемента, а точнее, только один.

Свойство атомов химического элемента присоединять к себе определенное число атомов других элементов называется валентностью.

Некоторые химические элементы имеют постоянные значения валентности (например, водород(I) и кислород(II)), другие могут проявлять несколько значений валентности (например, железо(II,III), сера(II,IV,VI), углерод(II,IV)), их называют элементами с переменной валентностью . Значения валентности некоторых химических элементов приведены в учебнике.

Зная валентности химических элементов, можно объяснить, почему вещество имеет именно такую химическую формулу. Например, формула воды H 2 O. Обозначим валентные возможности химического элемента с помощью черточек. Водород имеет валентность I, а кислород – II: Н- и -О-. Каждый атом может полностью использовать свои валентные возможности, если на один атом кислорода будет приходиться два атома водорода. Последовательность соединения атомов в молекуле воды можно представить в виде формулы: Н-О-Н.

Формула, в которой показана последовательность соединения атомов в молекуле, называется графической (или структурной ).

Рис. 1. Графическая формула воды

Зная формулу вещества, состоящего из атомов двух химических элементов, и валентность одного из них, можно определить валентность другого элемента.

Пример 1. Определим валентность углерода в веществе СН 4 . Зная, что валентность водорода всегда равна I, а углерод присоединил к себе 4 атома водорода, можно утверждать, что валентность углерода равна IV. Валентность атомов обозначается римской цифрой над знаком элемента: .

Пример 2. Определим валентность фосфорав соединении Р 2 О 5 . Для этого необходимо выполнить следующие действия:

1. над знаком кислорода записать значение его валентности – II (кислород имеет постоянное значение валентности);

2. умножив валентность кислорода на число атомов кислорода в молекуле, найти общее число единиц валентности – 2·5=10;

3. разделить полученное общее число единиц валентностей на число атомов фосфора в молекуле – 10:2=5.

Таким образом, валентность фосфора в данном соединении равна V – .

1. Емельянова Е.О., Иодко А.Г. Организация познавательной деятельности учащихся на уроках химии в 8-9 классах. Опорные конспекты с практическими заданиями, тестами: Часть I. – М.: Школьная Пресса, 2002. (с.33)

2. Ушакова О.В. Рабочая тетрадь по химии: 8-й кл.: к учебнику П.А. Оржековского и др. «Химия. 8 класс» / О.В. Ушакова, П.И. Беспалов, П.А. Оржековский; под. ред. проф. П.А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006. (с. 36-38)

3. Химия: 8-й класс: учеб. для общеобр. учреждений / П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. М.: АСТ: Астрель, 2005.(§16)

4. Химия: неорг. химия: учеб. для 8 кл. общеобразоват. учреждений / Г.Е. Рудзитис, Ф.Г. Фельдман. – М.: Просвещение, ОАО «Московские учебники», 2009. (§§11,12)

5. Энциклопедия для детей. Том 17. Химия / Глав. ред.В.А. Володин, вед. науч. ред. И. Леенсон. – М.: Аванта+, 2003.

Дополнительные веб-ресурсы

1. Единая коллекция цифровых образовательных ресурсов ().

2. Электронная версия журнала «Химия и жизнь» ().

Домашнее задание

1. с.84 № 2 из учебника «Химия: 8-й класс» (П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. М.: АСТ: Астрель, 2005).

2. с. 37-38 №№ 2,4,5,6 из Рабочей тетради по химии: 8-й кл.: к учебнику П.А. Оржековского и др. «Химия. 8 класс» / О.В. Ушакова, П.И. Беспалов, П.А. Оржековский; под. ред. проф. П.А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006.



← Вернуться

×
Вступай в сообщество «servizhome.ru»!
ВКонтакте:
Я уже подписан на сообщество «servizhome.ru»