Обратные тригонометрические. Обратные тригонометрические функции

Подписаться
Вступай в сообщество «servizhome.ru»!
ВКонтакте:

Уроки 32-33. Обратные тригонометрические функции

09.07.2015 5917 0

Цель: рассмотреть обратные тригонометрические функции, их использование для записи решений тригонометрических уравнений.

I. Сообщение темы и цели уроков

II. Изучение нового материала

1. Обратные тригонометрические функции

Рассмотрение этой темы начнем со следующего примера.

Пример 1

Решим уравнение: a ) sin x = 1/2; б) sin x = а.

а) На оси ординат отложим значение 1/2 и построим углы x 1 и х2, для которых sin x = 1/2. При этом х1 + х2 = π, откуда х2 = π – x 1 . По таблице значений тригонометрических функций найдем величину х1 = π/6, тогда Учтем периодичность функции синуса и запишем решения данного уравнения: где k ∈ Z .

б) Очевидно, что алгоритм решения уравнения sin х = а такой же, как и в предыдущем пункте. Разумеется, теперь по оси ординат откладывается величина а. Возникает необходимость каким-то образом обозначить угол х1. Условились такой угол обозначать символом arcsin а. Тогда решения данного уравнения можно записать в виде Эти две формулы можно объединить в одну: при этом

Аналогичным образом вводятся и остальные обратные тригонометрические функции.

Очень часто бывает необходимо определить величину угла по известному значению его тригонометрической функции. Такая задача является многозначной - существует бесчисленное множество углов, тригонометрические функции которых равны одному и тому же значению. Поэтому, исходя из монотонности тригонометрических функций, для однозначного определения углов вводят следующие обратные тригонометрические функции.

Арксинус числа a (arcsin , синус которого равен а, т. е.

Арккосинус числа a (arccos а) - такой угол а из промежутка , косинус которого равен а, т. е.

Арктангенс числа a (arctg а) - такой угол а из промежутка тангенс которого равен а, т. е. tg а = а.

Арккотангенс числа a (arcctg а) - такой угол а из промежутка (0; π), котангенс которого равен а, т. е. ctg а = а.

Пример 2

Найдем:

Учитывая определения обратных тригонометрических функций получим:


Пример 3

Вычислим

Пусть угол а = arcsin 3/5, тогда по определению sin a = 3/5 и . Следовательно, надо найти cos а. Используя основное тригонометрическое тождество, получим: Учтено, что и cos a ≥ 0. Итак,

Свойства функции

Функция

у = arcsin х

у = arccos х

у = arctg х

у = arcctg х

Область определения

х ∈ [-1; 1]

х ∈ [-1; 1]

х ∈ (-∞; +∞)

х ∈ (-∞ +∞)

Область значений

y ∈ [ -π/2 ; π /2 ]

y ∈

y ∈ (-π/2 ; π /2 )

y ∈ (0; π)

Четность

Нечетная

Ни четная, ни нечетная

Нечетная

Ни четная, ни нечетная

Нули функции (y = 0)

При х = 0

При х = 1

При х = 0

у ≠ 0

Промежутки знакопостоянства

у > 0 при х ∈ (0; 1],

у < 0 при х ∈ [-1; 0)

у > 0 при х ∈ [-1; 1)

у > 0 при х ∈ (0; +∞),

у < 0 при х ∈ (-∞; 0)

у > 0 при x ∈ (-∞; +∞)

Монотонность

Возрастает

Убывает

Возрастает

Убывает

Связь с тригонометрической функцией

sin у = х

cos у = х

tg у = х

ctg у = х

График



Приведем еще ряд типичных примеров, связанных с определениями и основными свойствами обратных тригонометрических функций.

Пример 4

Найдем область определения функции

Для того чтобы функция у была определена, необходимо выполнение неравенства которое эквивалентно системе неравенств Решением первого неравенства является промежуток х (-∞; +∞), второго - Этот промежуток и является решением системы неравенств, а следовательно, и областью определения функции

Пример 5

Найдем область изменения функции

Рассмотрим поведение функции z = 2х - х2 (см. рисунок).

Видно, что z ∈ (-∞; 1]. Учитывая, что аргумент z функции арккотангенса меняется в указанных пределах, из данных таблицы получим, что Таким образом, область изменения

Пример 6

Докажем, что функция у = arctg х нечетная. Пусть Тогда tg а = -х или х = - tg а = tg (- a ), причем Следовательно, - a = arctg х или а = - arctg х. Таким образом, видим, что т. е. у(х) - функция нечетная.

Пример 7

Выразим через все обратные тригонометрические функции

Пусть Очевидно, что Тогда Так как

Введем угол Так как то

Аналогично поэтому и

Итак,

Пример 8

Построим график функции у = cos (arcsin х).

Обозначим а = arcsin x , тогда Учтем, что х = sin а и у = cos а, т. е. x 2 + у2 = 1, и ограничения на х (х [-1; 1]) и у (у ≥ 0). Тогда графиком функции у = cos (arcsin х) является полуокружность.

Пример 9

Построим график функции у = arccos (cos x ).

Так как функция cos х изменяется на отрезке [-1; 1], то функция у определена на всей числовой оси и изменяется на отрезке . Будем иметь в виду, что у = arccos (cos x ) = х на отрезке ; функция у является четной и периодической с периодом 2π. Учитывая, что этими свойствами обладает функция cos x , теперь легко построить график.


Отметим некоторые полезные равенства:

Пример 10

Найдем наименьшее и наибольшее значения функции Обозначим тогда Получим функцию Эта функция имеет минимум в точке z = π/4, и он равен Наибольшее значение функции достигается в точке z = -π/2, и оно равно Таким образом, и

Пример 11

Решим уравнение

Учтем, что Тогда уравнение имеет вид: или откуда По определению арктангенса получим:

2. Решение простейших тригонометрических уравнений

Аналогично примеру 1 можно получить решения простейших тригонометрических уравнений.

Уравнение

Решение

tgx = а

ctg х = а

Пример 12

Решим уравнение

Так как функция синус нечетная, то запишем уравнение в виде Решения этого уравнения: откуда находим

Пример 13

Решим уравнение

По приведенной формуле запишем решения уравнения: и найдем

Заметим, что в частных случаях (а = 0; ±1) при решении уравнений sin х = а и cos х = а проще и удобнее использовать не общие формулы, а записывать решения на основании единичной окружности:

для уравнения sin х = 1 решения

для уравнения sin х = 0 решения х = π k ;

для уравнения sin х = -1 решения

для уравнения cos х = 1 решения х = 2π k ;

для уравнения cos х = 0 решения

для уравнения cos х = -1 решения

Пример 14

Решим уравнение

Так как в данном примере имеется частный случай уравнения, то по соответствующей формуле запишем решение: откуда найдем

III. Контрольные вопросы (фронтальный опрос)

1. Дайте определение и перечислите основные свойства обратных тригонометрических функций.

2. Приведите графики обратных тригонометрических функций.

3. Решение простейших тригонометрических уравнений.

IV. Задание на уроках

§ 15, № 3 (а, б); 4 (в, г); 7 (а); 8 (а); 12 (б); 13 (а); 15 (в); 16 (а); 18 (а, б); 19 (в); 21;

§ 16, № 4 (а, б); 7 (а); 8 (б); 16 (а, б); 18 (а); 19 (в, г);

§ 17, № 3 (а, б); 4 (в, г); 5 (а, б); 7 (в, г); 9 (б); 10 (а, в).

V. Задание на дом

§ 15, № 3 (в, г); 4 (а, б); 7 (в); 8 (б); 12 (а); 13 (б); 15 (г); 16 (б); 18 (в, г); 19 (г); 22;

§ 16, № 4 (в, г); 7 (б); 8 (а); 16 (в, г); 18 (б); 19 (а, б);

§ 17, № 3 (в, г); 4 (а, б); 5 (в, г); 7 (а, б); 9 (г); 10 (б, г).

VI. Творческие задания

1. Найдите область определения функции:


Ответы :

2. Найдите область значений функции:

Ответы:

3. Постройте график функции:


VII. Подведение итогов уроков

Обратные тригонометрические функции имеют широкое применение в математическом анализе. Однако у большинства старшеклассников задачи, связанные с данным видом функций, вызывают значительные затруднения. В основном это связано с тем, что во многих учебниках и учебных пособиях задачам такого вида уделяется слишком мало внимания. И если с задачами на вычисление значений обратных тригонометрических функций учащиеся хоть как-то справляются, то уравнения и неравенства, содержащие такие функции, в большинстве своем ставят ребят в тупик. На самом деле, в этом нет ничего удивительного, ведь практически ни в одном учебнике не объясняется методика решения даже самых простейших уравнений и неравенств, содержащих обратные тригонометрические функции.

Рассмотрим несколько уравнений и неравенств, содержащих обратные тригонометрические функции, и решим их с подробным объяснением.

Пример 1.

Решить уравнение: 3arccos (2x + 3) = 5π/2.

Решение.

Выразим из уравнения обратную тригонометрическую функцию, получим:

arccos (2x + 3) = 5π/6. Теперь воспользуемся определением арккосинуса.

Арккосинусом некоторого числа a, принадлежащего отрезку от -1 до 1, является такой угол y из отрезка от 0 до π, что его косинус и равен числу x. Поэтому можно записать так:

2x + 3 = cos 5π/6.

Распишем правую часть полученного уравнения по формуле приведения:

2x + 3 = cos (π – π/6).

2x + 3 = -cos π/6;

2x + 3 = -√3/2;

2x = -3 – √3/2.

Приведем правую часть к общему знаменателю.

2x = -(6 + √3) / 2;

x = -(6 + √3) / 4.

Ответ: -(6 + √3) / 4 .

Пример 2.

Решить уравнение: cos (arccos (4x – 9)) = x 2 – 5x + 5.

Решение.

Так как cos (arcсos x) = x при x принадлежащем [-1; 1], то данное уравнение равносильно системе:

{4x – 9 = x 2 – 5x + 5,
{-1 ≤ 4x – 9 ≤ 1.

Решим уравнение, входящее в систему.

4x – 9 = x 2 – 5x + 5.

Оно квадратное, поэтому получим, что

x 2 – 9x + 14 = 0;

D = 81 – 4 · 14 = 25;

x 1 = (9 + 5) / 2 = 7;

x 2 = (9 – 5) / 2 = 2.

Решим двойное неравенство, входящее в систему.

1 ≤ 4x – 9 ≤ 1. Прибавим ко всем частям 9, будем иметь:

8 ≤ 4x ≤ 10. Разделим каждое число на 4, получим:

2 ≤ x ≤ 2,5.

Теперь объединим полученные ответы. Легко видеть, что корень x = 7 не удовлетворяет ответу неравенства. Поэтому единственным решением уравнения будет x = 2.

Ответ: 2.

Пример 3.

Решить уравнение: tg (arctg (0,5 – x)) = x 2 – 4x + 2,5 .

Решение.

Так как tg (arctg x) = x при всех действительных числах, то данное уравнение равносильно уравнению:

0,5 – x = x 2 – 4x + 2,5.

Решим полученное квадратное уравнение с помощью дискриминанта, предварительно приведя его в стандартный вид.

x 2 – 3x + 2 = 0;

D = 9 – 4 · 2 = 1;

x 1 = (3 + 1) / 2 = 2;

x 2 = (3 – 1) / 2 = 1.

Ответ: 1; 2 .

Пример 4.

Решить уравнение: arcctg (2x – 1) = arcctg (x 2 /2 + x/2) .

Решение.

Так как arcctg f(x) = arcctg g(x) тогда и только тогда, когда f(x) = g(x), то

2x – 1 = x 2 /2 + x/2. Решим полученное квадратное уравнение:

4x – 2 = x 2 + x;

x 2 – 3x + 2 = 0.

По теореме Виета получим, что

x = 1 или x = 2.

Ответ: 1; 2.

Пример 5.

Решить уравнение: arcsin (2x – 15) = arcsin (x 2 – 6x – 8) .

Решение.

Так как уравнение вида arcsin f(x) = arcsin g(x) равносильно системе

{f(x) = g(x),
{f(x) € [-1; 1],

то исходное уравнение равносильно системе:

{2x – 15 = x 2 – 6x + 8,
{-1 ≤ 2x – 15 ≤ 1.

Решим полученную систему:

{x 2 – 8x + 7 = 0,
{14 ≤ 2x ≤ 16.

Из первого уравнения по теореме Виета имеем, что x = 1 или x = 7. Решая второе неравенство системы, получаем, что 7 ≤ x ≤ 8. Поэтому в окончательный ответ подходит только корень x = 7.

Ответ: 7 .

Пример 6.

Решить уравнение: (arccos x) 2 – 6 arccos x + 8 = 0.

Решение.

Пусть arccos x = t, тогда t принадлежит отрезку и уравнение принимает вид:

t 2 – 6t + 8 = 0. Решим полученное квадратное уравнение по теореме Виета, получим, что t = 2 или t = 4.

Так как t = 4 не принадлежит отрезку , то получим, что t = 2, т.е. arccos x = 2, а значит x = cos 2.

Ответ: cos 2.

Пример 7.

Решить уравнение: (arcsin x) 2 + (arccos x) 2 = 5π 2 /36 .

Решение.

Воспользуемся равенством arcsin x + arccos x = π/2 и запишем уравнение в виде

(arcsin x) 2 + (π/2 – arcsin x) 2 = 5π 2 /36.

Пусть arcsin x = t, тогда t принадлежит отрезку [-π/2; π/2] и уравнение принимает вид:

t 2 + (π/2 – t) 2 = 5π 2 /36.

Решим полученное уравнение:

t 2 + π 2 /4 – πt + t 2 = 5π 2 /36;

2t 2 – πt + 9π 2 /36 – 5π 2 /36 = 0;

2t 2 – πt + 4π 2 /36 = 0;

2t 2 – πt + π 2 /9 = 0. Умножим каждое слагаемое на 9, чтобы избавиться от дробей в уравнении, получим:

18t 2 – 9πt + π 2 = 0.

Найдем дискриминант и решим полученное уравнение:

D = (-9π) 2 – 4 · 18 · π 2 = 9π 2 .

t = (9π – 3π) / 2 · 18 или t = (9π + 3π) / 2 · 18;

t = 6π/36 или t = 12π/36.

После сокращения имеем:

t = π/6 или t = π/3. Тогда

arcsin x = π/6 или arcsin x = π/3.

Таким образом, x = sin π/6 или x = sin π/3. То есть x = 1/2 или x =√3/2.

Ответ: 1/2; √3/2.

Пример 8.

Найти значение выражения 5nx 0 , где n – количество корней, а x 0 – отрицательный корень уравнения 2 arcsin x = - π – (x + 1) 2 .

Решение.

Так как -π/2 ≤ arcsin x ≤ π/2, то -π ≤ 2 arcsin x ≤ π. Кроме того, (x + 1) 2 ≥ 0 при всех действительных x,
тогда -(x + 1) 2 ≤ 0 и -π – (x + 1) 2 ≤ -π.

Таким образом, уравнение может иметь решение, если обе его части одновременно равны –π , т.е. уравнение равносильно системе:

{2 arcsin x = -π,
{-π – (x + 1) 2 = -π.

Решим полученную систему уравнений:

{arcsin x = -π/2,
{(x + 1) 2 = 0.

Из второго уравнения имеем, что x = -1, соответственно n = 1, тогда 5nx 0 = 5 · 1 · (-1) = -5.

Ответ: -5.

Как показывает практика, умение решать уравнения с обратными тригонометрическими функциями является необходимым условием успешной сдачи экзаменов. Именно поэтому тренировка в решении таких задач просто необходима и является обязательной при подготовке к ЕГЭ.

Остались вопросы? Не знаете, как решать уравнения?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Функции sin, cos, tg и ctg всегда сопровождаются арксинусом, арккосинусом, арктангенсом и арккотангенсом. Одно является следствием другого, а пары функций одинаково важны для работы с тригонометрическими выражениями.

Рассмотрим рисунок единичной окружности, на котором графически отображено значений тригонометрических функций.

Если вычислить arcs OA, arcos OC, arctg DE и arcctg MK, то все они будут равны значению угла α. Формулы, приведенные ниже, отражают взаимосвязь основных тригонометрических функций и соответствующих им арков.

Чтобы больше понять о свойствах арксинуса, необходимо рассмотреть его функцию. График имеет вид асимметричной кривой, проходящей через центр координат.

Свойства арксинуса:

Если сопоставить графики sin и arcsin , у двух тригонометрических функций можно найти общие закономерности.

Арккосинус

Arccos числа а — это значение угла α, косинус которого равен а.

Кривая y = arcos x зеркально отображает график arcsin x, с той лишь разницей, что проходит через точку π/2 на оси OY.

Рассмотрим функцию арккосинуса более подробно:

  1. Функция определена на отрезке [-1; 1].
  2. ОДЗ для arccos — .
  3. График целиком расположен в I и II четвертях, а сама функция не является ни четной, ни нечетной.
  4. Y = 0 при x = 1.
  5. Кривая убывает на всей своей протяженности. Некоторые свойства арккосинуса совпадают с функцией косинуса.

Некоторые свойства арккосинуса совпадают с функцией косинуса.

Возможно, школьникам покажется излишним такое «подробное» изучение «арков». Однако, в противном случае, некоторые элементарные типовые задания ЕГЭ могут ввести учащихся в тупик.

Задание 1. Укажите функции изображенные на рисунке.

Ответ: рис. 1 – 4, рис.2 — 1.

В данном примере упор сделан на мелочах. Обычно ученики очень невнимательно относятся к построению графиков и внешнему виду функций. Действительно, зачем запоминать вид кривой, если ее всегда можно построить по расчетным точкам. Не стоит забывать, что в условиях теста время, затраченное на рисунок для простого задания, потребуется для решения более сложных заданий.

Арктангенс

Arctg числа a – это такое значение угла α, что его тангенс равен а.

Если рассмотреть график арктангенса, можно выделить следующие свойства:

  1. График бесконечен и определен на промежутке (- ∞; + ∞).
  2. Арктангенс нечетная функция, следовательно, arctg (- x) = — arctg x.
  3. Y = 0 при x = 0.
  4. Кривая возрастает на всей области определения.

Приведем краткий сравнительный анализ tg x и arctg x в виде таблицы.

Арккотангенс

Arcctg числа a — принимает такое значение α из интервала (0; π), что его котангенс равен а.

Свойства функции арккотангенса:

  1. Интервал определения функции – бесконечность.
  2. Область допустимых значений – промежуток (0; π).
  3. F(x) не является ни четной, ни нечетной.
  4. На всем своем протяжении график функции убывает.

Сопоставить ctg x и arctg x очень просто, нужно лишь сделать два рисунка и описать поведение кривых.

Задание 2. Соотнести график и форму записи функции.

Если рассуждать логически, из графиков видно, что обе функции возрастающие. Следовательно, оба рисунка отображают некую функцию arctg. Из свойств арктангенса известно, что y=0 при x = 0,

Ответ: рис. 1 – 1, рис. 2 – 4.

Тригонометрические тождества arcsin, arcos, arctg и arcctg

Ранее нами уже была выявлена взаимосвязь между арками и основными функциями тригонометрии. Данная зависимость может быть выражена рядом формул, позволяющих выразить, например, синус аргумента, через его арксинус, арккосинус или наоборот. Знание подобных тождеств бывает полезным при решении конкретных примеров.

Также существуют соотношения для arctg и arcctg:

Еще одна полезная пара формул, устанавливает значение для суммы значений arcsin и arcos, а также arcctg и arcctg одного и того же угла.

Примеры решения задач

Задания по тригонометрии можно условно разделить на четыре группы: вычислить числовое значение конкретного выражения, построить график данной функции, найти ее область определения или ОДЗ и выполнить аналитические преображения для решения примера.

При решении первого типа задач необходимо придерживаться следующего плана действий:

При работе с графиками функций главное – это знание их свойств и внешнего вида кривой. Для решения тригонометрических уравнений и неравенств необходимы таблицы тождеств. Чем больше формул помнит школьник, тем проще найти ответ задания.

Допустим в ЕГЭ необходимо найти ответ для уравнения типа:

Если правильно преобразовать выражение и привести к нужному виду, то решить его очень просто и быстро. Для начала, перенесем arcsin x в правую часть равенства.

Если вспомнить формулу arcsin (sin α) = α , то можно свести поиск ответов к решению системы из двух уравнений:

Ограничение на модель x возникло, опять таки из свойств arcsin: ОДЗ для x [-1; 1]. При а ≠0, часть сиcтемы представляет собой квадратное уравнение с корнями x1 = 1 и x2 = — 1/a. При a = 0, x будет равен 1.

Даны определения обратных тригонометрических функций и их графики. А также формулы, связывающие обратные тригонометрические функции, формулы сумм и разностей.

Определение обратных тригонометрических функций

Поскольку тригонометрические функции периодичны, то обратные к ним функции не однозначны. Так, уравнение y = sin x , при заданном , имеет бесконечно много корней. Действительно, в силу периодичности синуса, если x такой корень, то и x + 2πn (где n целое) тоже будет корнем уравнения. Таким образом, обратные тригонометрические функции многозначны . Чтобы с ними было проще работать, вводят понятие их главных значений. Рассмотрим, например, синус: y = sin x . Если ограничить аргумент x интервалом , то на нем функция y = sin x монотонно возрастает. Поэтому она имеет однозначную обратную функцию, которую называют арксинусом: x = arcsin y .

Если особо не оговорено, то под обратными тригонометрическими функциями имеют в виду их главные значения, которые определяются следующими определениями.

Арксинус (y = arcsin x ) - это функция, обратная к синусу (x = sin y

Арккосинус (y = arccos x ) - это функция, обратная к косинусу (x = cos y ), имеющая область определения и множество значений .

Арктангенс (y = arctg x ) - это функция, обратная к тангенсу (x = tg y ), имеющая область определения и множество значений .

Арккотангенс (y = arcctg x ) - это функция, обратная к котангенсу (x = ctg y ), имеющая область определения и множество значений .

Графики обратных тригонометрических функций

Графики обратных тригонометрических функций получаются из графиков тригонометрических функций зеркальным отражением относительно прямой y = x . См. разделы Синус, косинус , Тангенс, котангенс .

y = arcsin x


y = arccos x


y = arctg x


y = arcctg x

Основные формулы

Здесь следует особо обратить внимание на интервалы, для которых справедливы формулы.

arcsin(sin x) = x при
sin(arcsin x) = x
arccos(cos x) = x при
cos(arccos x) = x

arctg(tg x) = x при
tg(arctg x) = x
arcctg(ctg x) = x при
ctg(arcctg x) = x

Формулы, связывающие обратные тригонометрические функции

Формулы суммы и разности


при или

при и

при и


при или

при и

при и


при

при


при

при

Функция, обратная косинусу

Областью значений функции y=cos x (см. рис. 2) является отрезок. На отрезке функция непрерывна и монотонно убывает.

Рис. 2

Значит, на отрезке определена функция, обратная функции y=cos x. Эту обратную функцию называют арккосинусом и обозначают y=arccos x .

Определение

Aрккосинусом числа а, если |а|1, называют угол, косинус которого принадлежит отрезку; его обозначают arccos а.

Таким образом, arccos а есть угол, удовлетворяющий следующим двум условиям: сos (arccos a)=a, |а|1; 0? arccos a ?р.

Например, arccos, так как cos и; arccos, так как cosи.

Функция y = arccos x (рис. 3) определена на отрезке, областью ее значений является отрезок. На отрезке функция y=arccos x непрерывна и монотонно убывает от р до 0 (поскольку y=cos х - непрерывная и монотонно убывающая функция на отрезке); на концах отрезка она достигает своих экстремальных значений: arccos(-1)= р, arccos 1= 0. Отметим, что arccos 0 = . График функции y = arccos x (см. рис. 3) симметричен графику функции y = cos x относительно прямой y=x .

Рис. 3

Покажем, что имеет место равенство arccos(-x) = р-arccos x.

В самом деле, по определению 0 ? arcсos х? р. Умножая на (-1) все части последнего двойного неравенства, получаем - р? arcсos х? 0. Прибавляя р ко всем частям последнего неравенства, находим, что 0? р-arccos х? р.

Таким образом, значения углов arccos(-х) и р - arccos х принадлежат одному и тому же отрезку. Поскольку на отрезке косинус монотонно убывает, то на нем не может быть двух различных углов, имеющих равные косинусы. Найдем косинусы углов arccos(-х) и р-arccos х. По определению cos (arccos x) = - x, по формулам приведения и по определению имеем: cos (р - - arccos х) = - cos (arccos х)= - х. Итак, косинусы углов равны, значит, равны и сами углы.

Функция, обратная синусу

Рассмотрим функцию y=sin х (рис. 6), которая на отрезке [-р/2;р/2] возрастающая, непрерывная и принимает значения из отрезка [-1; 1]. Значит, на отрезке [- р/2; р/2] определена функция, обратная функции y=sin x.

Рис. 6

Эту обратную функцию называют арксинусом и обозначают y=arcsin x. Введем определение арксинуса числа а .

Арксинусом числа а, если называют угол (или дугу), синус которого равен числу а и который принадлежит отрезку [-р/2; р/2]; его обозначают arcsin а.

Таким образом, arcsin а есть угол, удовлетворяющий следующим условиям: sin (arcsin a)=a, |a| ?1; -р/2 ? arcsin а? р/2. Например, так как sin и [- р/2; р/2]; arcsin , так как sin = и [- р/2; р/2].

Функция y=arcsin х (рис. 7) определена на отрезке [- 1; 1], областью ее значений является отрезок [-р/2;р/2]. На отрезке [- 1; 1] функция y=arcsin x непрерывна и монотонно возрастает от -р/2 до р/2 (это следует из того, что функция y=sin x на отрезке [-р/2; р/2] непрерывна и монотонно возрастает). Наибольшее значение она принимает при x =1: arcsin 1 = р/2, а наименьшее - при х = -1: arcsin (-1) = -р/2. При х = 0 функция равна нулю: arcsin 0 = 0 .

Покажем, что функция y = arcsin x является нечетной, т.е. arcsin (-х) = - arcsin х при любом х [- 1; 1].

Действительно, по определению, если |x| ?1, имеем: - р/2 ? arcsin x ? ? р/2. Таким образом, углы arcsin (-х) и - arcsin х принадлежат одному и тому же отрезку [- р/2; р/2].

Найдем синусы этих углов: sin (arcsin(-х)) = - х (по определению); поскольку функция y=sin x нечетная, то sin (-arcsin х)= - sin (arcsin x)= - х. Итак, синусы углов, принадлежащих одному и тому же промежутку [-р/2; р/2], равны, значит, равны и сами углы, т.е. arcsin (-х)= - arcsin х. Значит, функция y=arcsin x - нечетная. График функции y=arcsin x симметричен относительно начала координат.

Покажем, что arcsin (sin x) = х для любого х [-р/2; р/2].

Действительно, по определению -р/2 ? arcsin (sin x) ? р/2, а по условию -р/2 ? x ? р/2. Значит, углы х и arcsin (sin x) принадлежат одному и тому же промежутку монотонности функции y=sin x. Если синусы таких углов равны, то равны и сами углы. Найдем синусы этих углов: для угла х имеем sin x, для угла arcsin (sin x) имеем sin (arcsin(sin x)) = sin x. Получили, что синусы углов равны, следовательно, и углы равны, т.е. arcsin (sin x) = х. .

Рис. 7

Рис. 8

График функции arcsin (sin|x|) получается обычными преобразованиями, связанными с модулем, из графика y=arcsin (sin x) (изображен штриховой линией на рис. 8). Искомый график y=arcsin (sin |x-/4|) получается из него сдвигом на /4 вправо вдоль оси абсцисс (изображен сплошной линией на рис. 8)

Функция, обратная тангенсу

Функция y=tg x на промежутке принимает все числовые значения: E (tg x)=. На этом промежутке она непрерывна и монотонно возрастает. Значит, на промежуткеопределена функция, обратная функции y = tg x. Эту обратную функцию называют арктангенсом и обозначают y = arctg x .

Арктангенсом числа а называют угол из промежутка, тангенс которого равен а. Таким образом, arctg a есть угол, удовлетворяющий следующим условиям: tg (arctg a) = a и 0 ? arctg a ? р.

Итак, любому числу х всегда соответствует единственное значение функции y = arctg x (рис. 9) .

Очевидно, что D (arctg x) = , E (arctg x) = .

Функция y = arctg x является возрастающей, поскольку функция y = tg x возрастает на промежутке. Нетрудно доказать, что arctg(-x) = - arctgx, т.е. что арктангенс - нечетная функция.

Рис. 9

График функции y = arctg x симметричен графику функции y = tg x относительно прямой y = x, график y = arctg x проходит через начало координат (ибо arctg 0 = 0) и симметричен относительно начала координат (как график нечетной функции).

Можно доказать, что arctg (tg x) = x, если x.

Функция, обратная котангенсу

Функция y = ctg x на промежутке принимает все числовые значения из промежутка. Область ее значений совпадает с множеством всех действительных чисел. В промежутке функция y = ctg x непрерывна и монотонно возрастает. Значит, на этом промежутке определена функция, обратная функции y = ctg x. Функцию, обратную котангенсу, называют арккотангенсом и обозначают y = arcctg x .

Арккотангенсом числа а называют угол, принадлежащий промежутку, котангенс которого равен а.

Таким образом, аrcctg a есть угол, удовлетворяющий следующим условиям: ctg (arcctg a)=a и 0 ? arcctg a ? р.

Из определения обратной функции и определения арктангенса следует, что D (arcctg x) = , E (arcctg x) = . Арккотангенс является убывающей функцией, поскольку функция y = ctg x убывает в промежутке.

График функции y = arcctg x не пересекает ось Ох, так как y > 0 R. При х = 0 y = arcctg 0 =.

График функции y = arcctg x изображен на рисунке 11.

Рис. 11

Отметим, что для всех действительных значений х верно тождество: arcctg(-x) = р-arcctg x.



← Вернуться

×
Вступай в сообщество «servizhome.ru»!
ВКонтакте:
Я уже подписан на сообщество «servizhome.ru»