В арифметической прогрессии сумма первых шести. Сумма арифметической прогрессии

Подписаться
Вступай в сообщество «servizhome.ru»!
ВКонтакте:

Понятие числовой последовательности подразумевает соответствие каждому натуральному числу некоторого действительного значения. Такой ряд чисел может быть как произвольным, так и обладать определенными свойствами – прогрессия. В последнем случае каждый последующий элемент (член) последовательности можно вычислить с помощью предыдущего.

Арифметическая прогрессия – последовательность числовых значений, в которой ее соседние члены разнятся между собой на одинаковое число (подобным свойством обладают все элементы ряда, начиная со 2-ого). Данное число – разница между предыдущим и последующим членом – постоянно и называется разностью прогрессии.

Разность прогрессии: определение

Рассмотрим последовательность, состоящую из j значений A = a(1), a(2), a(3), a(4) … a(j), j принадлежит множеству натуральных чисел N. Арифметическая прогрессия, согласно своего определения, – последовательность, в которой a(3) – a(2) = a(4) – a(3) = a(5) – a(4) = … = a(j) – a(j-1) = d. Величина d – искомая разность данной прогрессии.

d = a(j) – a(j-1).

Выделяют:

  • Возрастающую прогрессию, в таком случае d > 0. Пример: 4, 8, 12, 16, 20, …
  • Убывающую прогрессию, тогда d < 0. Пример: 18, 13, 8, 3, -2, …

Разность прогрессии и ее произвольные элементы

Если известны 2 произвольных члена прогрессии (i-ый, k-ый), то установить разность для данной последовательности можно на базе соотношения:

a(i) = a(k) + (i – k)*d, значит d = (a(i) – a(k))/(i-k).

Разность прогрессии и ее первый член

Данное выражение поможет определить неизвестную величину лишь в случаях, когда известен номер элемента последовательности.

Разность прогрессии и ее сумма

Сумма прогрессии – это сумма ее членов. Для вычисления суммарного значения ее первых j элементов воспользуйтесь соответствующей формулой:

S(j) =((a(1) + a(j))/2)*j, но т.к. a(j) = a(1) + d(j – 1), то S(j) = ((a(1) + a(1) + d(j – 1))/2)*j=((2a(1) + d(– 1))/2)*j.

Тип урока: изучение нового материала.

Цели урока:

  • расширение и углубление представлений учащихся о задачах, решаемых с использованием арифметической прогрессии; организация поисковой деятельности учащихся при выводе формулы суммы первых n членов арифметической прогрессии;
  • развитие умений самостоятельно приобретать новые знания, использовать для достижения поставленной задачи уже полученные знания;
  • выработка желания и потребности обобщать полученные факты, развитие самостоятельности.

Задачи:

  • обобщить и систематизировать имеющиеся знания по теме “Арифметическая прогрессия”;
  • вывести формулы для вычисления суммы n первых членов арифметической прогрессии;
  • научить применять полученные формулы при решении различных задач;
  • обратить внимание учащихся на порядок действий при нахождении значения числового выражения.

Оборудование:

  • карточки с заданиями для работы в группах и парах;
  • оценочный лист;
  • презентация “Арифметическая прогрессия”.

I. Актуализация опорных знаний.

1. Самостоятельная работа в парах.

1-й вариант:

Дайте определение арифметической прогрессии. Запишите рекуррентную формулу, с помощью которой задается арифметическая прогрессия. Приветите пример арифметической прогрессии и укажите её разность.

2-й вариант:

Запишите формулу n-го члена арифметической прогрессии. Найдите 100-й член арифметической прогрессии {a n }: 2, 5, 8 …
В это время два ученика на обратной стороне доски готовят ответы на эти же вопросы.
Учащиеся оценивают работу партнера, сверяя с доской. (Листочки с ответами сдают).

2. Игровой момент.

Задание 1.

Учитель. Я задумала некоторую арифметическую прогрессию. Задайте мне только два вопроса, чтобы после ответов вы быстро смогли бы назвать 7-й член этой прогрессии. (1, 3, 5, 7, 9, 11, 13, 15…)

Вопросы учащихся.

  1. Чему равен шестой член прогрессии и чему равна разность?
  2. Чему равен восьмой член прогрессии и чему равна разность?

Если вопросов больше не последует, то учитель может стимулировать их – “запрет” на d (разность), то есть не разрешается спрашивать чему равна разность. Можно задать вопросы: чему равен 6-й член прогрессии и чему равен 8-й член прогрессии?

Задание 2.

На доске записано 20 чисел: 1, 4, 7 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58.

Учитель стоит спиной к доске. Ученики называют номер числа, а учитель мгновенно называет само число. Объясните, как мне это удается?

Учитель помнит формулу n-го члена a n = 3n – 2 и, подставляя задаваемые значения n, находит соответствующие значения a n .

II. Постановка учебной задачи.

Предлагаю решить старинную задачу, относящуюся ко II-му тысячелетию до нашей эры, найденную в египетских папирусах.

Задача: “Пусть тебе сказано: раздели 10 мер ячменя между 10 человеками, разность между каждым человеком и его соседом равняется 1/8 меры”.

  • Как эта задача связана с темой арифметическая прогрессия? (Каждый следующий получает на 1/8 меры больше, значит разность d=1/8, 10 человек, значит n=10.)
  • А что, по-вашему мнению, означает число 10 мер? (Сумма всех членов прогрессии.)
  • Что ещё необходимо знать, чтобы было легко и просто разделить ячмень согласно условию задачи? (Первый член прогрессии.)

Задача урока – получение зависимости суммы членов прогрессии от их числа, первого члена и разности, и проверка того, верно ли в древности решали поставленную задачу.

Прежде чем сделать вывод формулы, посмотрим, как решали задачу древние египтяне.

А решали её следующим образом:

1) 10 мер: 10 = 1 мера – средняя доля;
2) 1 мера ∙ = 2 меры – удвоенная средняя доля.
Удвоенная средняя доля – это сумма долей 5-го и 6-го человек.
3) 2 меры – 1/8 меры = 1 7/8 меры – удвоенная доля пятого человека.
4) 1 7/8: 2 = 5/16 – доля пятого; и так далее можно найти долю каждого предыдущего и последующего человека.

Получим последовательность:

III. Решение поставленной задачи.

1. Работа в группах

I-я группа: Найти сумму 20 последовательных натуральных чисел: S 20 =(20+1)∙10 =210.

В общем виде

II-я группа: Найти сумму натуральных чисел от 1 до 100 (Легенда о маленьком Гауссе).

S 100 = (1+100)∙50 = 5050

Вывод:

III-я группа: Найти сумму натуральных чисел от 1 до 21.

Решение: 1+21=2+20=3+19=4+18…

Вывод:

IV-я группа: Найти сумму натуральных чисел от 1 до 101.

Вывод:

Этот метод решения рассмотренных задач называется “Метод Гаусса”.

2. Каждая группа представляет решение задачи на доске.

3. Обобщение предложенных решений для произвольной арифметической прогрессии:

a 1 , a 2 , a 3 ,…, a n-2 , a n-1 , a n .
S n =a 1 + a 2 + a 3 + a 4 +…+ a n-3 + a n-2 + a n-1 + a n .

Найдем эту сумму рассуждая аналогично:

4. Решили мы поставленную задачу? (Да.)

IV. Первичное осмысление и применение полученных формул при решении задач.

1. Проверка решения старинной задачи по формуле.

2. Применение формулы при решении различных задач.

3. Упражнения на формирование умения применения формулы при решении задач.

А) №613

Дано: (а n) – арифметическая прогрессия;

(а n): 1, 2, 3, …, 1500

Найти: S 1500

Решение: , а 1 = 1, а 1500 = 1500,

Б) Дано: (а n) – арифметическая прогрессия;
(а n): 1, 2, 3, …
S n = 210

Найти: n
Решение:

V. Самостоятельная работа с взаимопроверкой.

Денис поступил на работу курьером. В первый месяц его зарплата составила 200 рублей, в каждый последующий она повышалась на 30 рублей. Сколько всего он заработал за год?

Дано: (а n) – арифметическая прогрессия;
а 1 = 200, d=30, n=12
Найти: S 12
Решение:

Ответ: 4380 рублей получил Денис за год.

VI. Инструктаж по домашнему заданию.

  1. п. 4.3 – выучить вывод формулы .
  2. №№ 585, 623 .
  3. Составить задачу, которая решалась бы с использованием формулы суммы n первых членов арифметической прогрессии.

VII. Подведение итогов урока.

1. Оценочный лист

2. Продолжи предложения

  • Сегодня на уроке я узнал …
  • Изученные формулы …
  • Я считаю что …

3. Сможешь ли ты найти сумму чисел от 1 до 500? Каким методом будешь решать эту задачу?

Список литературы.

1. Алгебра, 9-й класс. Учебник для общеобразовательных учреждений. Под ред. Г.В. Дорофеева. М.: “Просвещение”, 2009.

В чём главная суть формулы?

Эта формула позволяет найти любой ПО ЕГО НОМЕРУ "n" .

Разумеется, надо знать ещё первый член a 1 и разность прогрессии d , ну так без этих параметров конкретную прогрессию и не запишешь.

Заучить (или зашпаргалить) эту формулу мало. Надо усвоить её суть и поприменять формулу в различных задачках. Да ещё и не забыть в нужный момент, да...) Как не забыть - я не знаю. А вот как вспомнить, при необходимости, - точно подскажу. Тем, кто урок до конца осилит.)

Итак, разберёмся с формулой n-го члена арифметической прогрессии.

Что такое формула вообще - мы себе представляем.) Что такое арифметическая прогрессия, номер члена, разность прогресии - доступно изложено в предыдущем уроке. Загляните, кстати, если не читали. Там всё просто. Осталось разобраться, что такое n-й член.

Прогрессию в общем виде можно записать в виде ряда чисел:

a 1 , a 2 , a 3 , a 4 , a 5 , .....

a 1 - обозначает первый член арифметической прогрессии, a 3 - третий член, a 4 - четвёртый, и так далее. Если нас интересует пятый член, скажем, мы работаем с a 5 , если сто двадцатый - с a 120 .

А как обозначить в общем виде любой член арифметической прогрессии, с любым номером? Очень просто! Вот так:

a n

Это и есть n-й член арифметической прогрессии. Под буквой n скрываются сразу все номера членов: 1, 2, 3, 4, и так далее.

И что нам даёт такая запись? Подумаешь, вместо цифры буковку записали...

Эта запись даёт нам мощный инструмент для работы с арифметической прогрессией. Используя обозначение a n , мы можем быстро найти любой член любой арифметической прогрессии. И ещё кучу задач по прогрессии решить. Сами дальше увидите.

В формуле n-го члена арифметической прогрессии:

a n = a 1 + (n-1)d

a 1 - первый член арифметической прогрессии;

n - номер члена.

Формула связывает ключевые параметры любой прогрессии: a n ; a 1 ; d и n . Вокруг этих параметров и крутятся все задачки по прогрессии.

Формула n-го члена может использоваться и для записи конкретной прогрессии. Например, в задаче может быть сказано, что прогрессия задана условием:

a n = 5 + (n-1)·2.

Такая задачка может и в тупик поставить... Нет ни ряда, ни разности... Но, сравнивая условие с формулой, легко сообразить, что в этой прогрессии a 1 =5, а d=2.

А бывает ещё злее!) Если взять то же условие: a n = 5 + (n-1)·2, да раскрыть скобки и привести подобные? Получим новую формулу:

a n = 3 + 2n.

Это Только не общая, а для конкретной прогрессии. Вот здесь и таится подводный камень. Некоторые думают, что первый член - это тройка. Хотя реально первый член - пятёрка... Чуть ниже мы поработаем с такой видоизменённой формулой.

В задачах на прогрессию встречается ещё одно обозначение - a n+1 . Это, как вы догадались, "эн плюс первый" член прогрессии. Смысл его прост и безобиден.) Это член прогрессии, номер которого больше номера n на единичку. Например, если в какой-нибудь задаче мы берём за a n пятый член, то a n+1 будет шестым членом. И тому подобное.

Чаще всего обозначение a n+1 встречается в рекуррентных формулах. Не пугайтесь этого страшного слова!) Это просто способ выражения члена арифметической прогрессии через предыдущий. Допустим, нам дана арифметическая прогрессия вот в таком виде, с помощью рекуррентной формулы:

a n+1 = a n +3

a 2 = a 1 + 3 = 5+3 = 8

a 3 = a 2 + 3 = 8+3 = 11

Четвёртый - через третий, пятый - через четвёртый, и так далее. А как посчитать сразу, скажем двадцатый член, a 20 ? А никак!) Пока 19-й член не узнаем, 20-й не посчитать. В этом и есть принципиальное отличие рекуррентной формулы от формулы n-го члена. Рекуррентная работает только через предыдущий член, а формула n-го члена - через первый и позволяет сразу находить любой член по его номеру. Не просчитывая весь ряд чисел по порядочку.

В арифметической прогрессии рекуррентную формулу легко превратить в обычную. Посчитать пару последовательных членов, вычислить разность d, найти, если надо, первый член a 1 , записать формулу в обычном виде, да и работать с ней. В ГИА подобные задания частенько встречаются.

Применение формулы n-го члена арифметической прогрессии.

Для начала рассмотрим прямое применение формулы. В конце предыдущего урока была задачка:

Дана арифметическая прогрессия (a n). Найти a 121 , если a 1 =3, а d=1/6.

Эту задачку можно безо всяких формул решить, просто исходя из смысла арифметической прогрессии. Прибавлять, да прибавлять... Часок-другой.)

А по формуле решение займёт меньше минуты. Можете засекать время.) Решаем.

В условиях приведены все данные для использования формулы: a 1 =3, d=1/6. Остаётся сообразить, чему равно n. Не вопрос! Нам надо найти a 121 . Вот и пишем:

Прошу обратить внимание! Вместо индекса n появилось конкретное число: 121. Что вполне логично.) Нас интересует член арифметической прогрессии номер сто двадцать один. Вот это и будет наше n. Именно это значение n = 121 мы и подставим дальше в формулу, в скобки. Подставляем все числа в формулу и считаем:

a 121 = 3 + (121-1)·1/6 = 3+20 = 23

Вот и все дела. Так же быстро можно было бы найти и пятьсот десятый член, и тысяча третий, любой. Ставим вместо n нужный номер в индексе у буквы "a" и в скобках, да и считаем.

Напомню суть: эта формула позволяет найти любой член арифметической прогрессии ПО ЕГО НОМЕРУ "n" .

Решим задание похитрее. Пусть нам попалась такая задачка:

Найдите первый член арифметической прогрессии (a n), если a 17 =-2; d=-0,5.

Если возникли затруднения, подскажу первый шаг. Запишите формулу n-го члена арифметической прогрессии! Да-да. Руками запишите, прямо в тетрадке:

a n = a 1 + (n-1)d

А теперь, глядя на буквы формулы, соображаем, какие данные у нас есть, а чего не хватает? Имеется d=-0,5, имеется семнадцатый член... Всё? Если считаете, что всё, то задачу не решите, да...

У нас ещё имеется номер n ! В условии a 17 =-2 спрятаны два параметра. Это и значение семнадцатого члена (-2), и его номер (17). Т.е. n=17. Эта "мелочь" часто проскакивает мимо головы, а без неё, (без "мелочи", а не головы!) задачу не решить. Хотя... и без головы тоже.)

Теперь можно просто тупо подставить наши данные в формулу:

a 17 = a 1 + (17-1)·(-0,5)

Ах да, a 17 нам известно, это -2. Ну ладно, подставим:

-2 = a 1 + (17-1)·(-0,5)

Вот, в сущности, и всё. Осталось выразить первый член арифметической прогрессии из формулы, да посчитать. Получится ответ: a 1 = 6.

Такой приём - запись формулы и простая подстановка известных данных - здорово помогает в простых заданиях. Ну, надо, конечно, уметь выражать переменную из формулы, а что делать!? Без этого умения математику можно вообще не изучать...

Ещё одна популярная задачка:

Найдите разность арифметической прогрессии (a n), если a 1 =2; a 15 =12.

Что делаем? Вы удивитесь, пишем формулу!)

a n = a 1 + (n-1)d

Соображаем, что нам известно: a 1 =2; a 15 =12; и (специально выделю!) n=15. Смело подставляем в формулу:

12=2 + (15-1)d

Считаем арифметику.)

12=2 + 14d

d =10/14 = 5/7

Это правильный ответ.

Так, задачи на a n , a 1 и d порешали. Осталось научиться номер находить:

Число 99 является членом арифметической прогрессии (a n), где a 1 =12; d=3. Найти номер этого члена.

Подставляем в формулу n-го члена известные нам величины:

a n = 12 + (n-1)·3

На первый взгляд, здесь две неизвестные величины: a n и n. Но a n - это какой-то член прогрессии с номером n ... И этот член прогрессии мы знаем! Это 99. Мы не знаем его номер n, так этот номер и требуется найти. Подставляем член прогрессии 99 в формулу:

99 = 12 + (n-1)·3

Выражаем из формулы n , считаем. Получим ответ: n=30.

А теперь задачка на ту же тему, но более творческая):

Определите, будет ли число 117 членом арифметической прогрессии (a n):

-3,6; -2,4; -1,2 ...

Опять пишем формулу. Что, нет никаких параметров? Гм... А глазки нам зачем дадены?) Первый член прогрессии видим? Видим. Это -3,6. Можно смело записать: a 1 =-3,6. Разность d можно из ряда определить? Легко, если знаете, что такое разность арифметической прогрессии:

d = -2,4 - (-3,6) = 1,2

Так, самое простое сделали. Осталось разобраться с неизвестным номером n и непонятным числом 117. В предыдущей задачке хоть было известно, что дан именно член прогрессии. А здесь и того не знаем... Как быть!? Ну, как быть, как быть... Включить творческие способности!)

Мы предположим, что 117 - это, всё-таки, член нашей прогрессии. С неизвестным номером n . И, точно как в предыдущей задаче, попробуем найти этот номер. Т.е. пишем формулу (да-да!)) и подставляем наши числа:

117 = -3,6 + (n-1)·1,2

Опять выражаем из формулы n , считаем и получаем:

Опаньки! Номер получился дробный! Сто один с половиной. А дробных номеров в прогрессиях не бывает. Какой вывод сделаем? Да! Число 117 не является членом нашей прогрессии. Оно находится где-то между сто первым и сто вторым членом. Если бы номер получился натуральным, т.е. положительным целым, то число было бы членом прогрессии с найденным номером. А в нашем случае, ответ задачи будет: нет.

Задача на основе реального варианта ГИА:

Арифметическая прогрессия задана условием:

a n = -4 + 6,8n

Найти первый и десятый члены прогрессии.

Здесь прогрессия задана не совсем привычным образом. Формула какая-то... Бывает.) Однако, эта формула (как я писал выше) - тоже формула n-го члена арифметической прогрессии! Она тоже позволяет найти любой член прогрессии по его номеру.

Ищем первый член. Тот, кто думает. что первый член - минус четыре, фатально ошибается!) Потому, что формула в задаче - видоизменённая. Первый член арифметической прогрессии в ней спрятан. Ничего, сейчас отыщем.)

Так же, как и в предыдущих задачах, подставляем n=1 в данную формулу:

a 1 = -4 + 6,8·1 = 2,8

Вот! Первый член 2,8, а не -4!

Аналогично ищем десятый член:

a 10 = -4 + 6,8·10 = 64

Вот и все дела.

А теперь, тем кто дочитал до этих строк, - обещанный бонус.)

Предположим, в сложной боевой обстановке ГИА или ЕГЭ, вы подзабыли полезную формулу n-го члена арифметической прогрессии. Что-то припоминается, но неуверенно как-то... То ли n там, то ли n+1, то ли n-1... Как быть!?

Спокойствие! Эту формулку легко вывести. Не очень строго, но для уверенности и правильного решения точно хватит!) Для вывода достаточно помнить элементарный смысл арифметической прогрессии и иметь пару-тройку минут времени. Нужно просто нарисовать картинку. Для наглядности.

Рисуем числовую ось и отмечаем на ней первый. второй, третий и т.п. члены. И отмечаем разность d между членами. Вот так:

Смотрим на картинку и соображаем: чему равняется второй член? Второй одно d :

a 2 =a 1 +1 ·d

Чему равняется третий член? Третий член равняется первый член плюс два d .

a 3 =a 1 +2 ·d

Улавливаете? Я не зря некоторые слова выделяю жирным шрифтом. Ну ладно, ещё один шаг).

Чему равняется четвёртый член? Четвёртый член равняется первый член плюс три d .

a 4 =a 1 +3 ·d

Пора сообразить, что количество промежутков, т.е. d , всегда на один меньше, чем номер искомого члена n . Т.е., до номера n, количество промежутков будет n-1. Стало быть, формула будет (без вариантов!):

a n = a 1 + (n-1)d

Вообще, наглядные картинки очень помогают решать многие задачи в математике. Не пренебрегайте картинками. Но если уж картинку нарисовать затруднительно, то... только формула!) Кроме того, формула n-го члена позволяет подключить к решению весь мощный арсенал математики - уравнения, неравенства, системы и т.д. Картинку-то в уравнение не вставишь...

Задания для самостоятельного решения.

Для разминки:

1. В арифметической прогрессии (a n) a 2 =3; a 5 =5,1. Найти a 3 .

Подсказка: по картинке задача решается секунд за 20... По формуле - сложнее получается. Но для освоения формулы - полезнее.) В Разделе 555 эта задачка решена и по картинке, и по формуле. Почувствуйте разницу!)

А это - уже не разминка.)

2. В арифметической прогрессии (a n) a 85 =19,1; a 236 =49, 3. Найти a 3 .

Что, неохота картинку рисовать?) Ещё бы! Уж лучше по формуле, да...

3. Арифметическая прогрессия задана условием: a 1 =-5,5; a n+1 = a n +0,5. Найдите сто двадцать пятый член этой прогрессии.

В этом задании прогрессия задана рекуррентным способом. Но считать до сто двадцать пятого члена... Не всем такой подвиг под силу.) Зато формула n-го члена по силам каждому!

4. Дана арифметическая прогрессия (a n):

-148; -143,8; -139,6; -135,4, .....

Найти номер наименьшего положительного члена прогрессии.

5. По условию задания 4 найти сумму наименьшего положительного и наибольшего отрицательного членов прогрессии.

6. Произведение пятого и двенадцатого членов возрастающей арифметической прогрессии равно -2,5, а сумма третьего и одиннадцатого членов равна нулю. Найти a 14 .

Не самая простая задачка, да...) Здесь способ "на пальцах" не прокатит. Придётся формулы писать да уравнения решать.

Ответы (в беспорядке):

3,7; 3,5; 2,2; 37; 2,7; 56,5

Получилось? Это приятно!)

Не всё получается? Бывает. Кстати, в последнем задании есть один тонкий момент. Внимательность при чтении задачи потребуется. И логика.

Решение всех этих задач подробно разобрано в Разделе 555. И элемент фантазии для четвёртой, и тонкий момент для шестой, и общие подходы для решения всяких задач на формулу n-го члена - всё расписано. Рекомендую.

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Задачи по арифметической прогрессии существовали уже в глубокой древности. Они появлялись и требовали решения, поскольку имели практическую необходимость.

Так, в одном из папирусов Древнего Египта, имеющем математическое содержание, - папирусе Райнда (XIX век до нашей эры) - содержится такая задача: раздели десять мер хлеба на десять человек, при условии если разность между каждым из них составляет одну восьмую меры».

И в математических трудах древних греков встречаются изящные теоремы, имеющие отношение к арифметической прогрессии. Так, Гипсикл Александрийский (II век составивший немало интересных задач и добавивший четырнадцатую книгу к «Началам» Евклида, сформулировал мысль: «В арифметической прогрессии, имеющей четное число членов, сумма членов 2-ой половины больше суммы членов 1-ой на квадрату 1/2 числа членов».

Обозначается последовательность an. Числа последовательности называются ее членами и обозначаются обычно буквами с индексами, которые указывают порядковый номер этого члена (a1, a2, a3 … читается: «a 1-ое», «a 2-ое», «a 3-тье» и так далее).

Последовательность может быть бесконечной или конечной.

А что же такое арифметическая прогрессия? Под ней понимают получаемую сложением предыдущего члена (n) с одним и тем же числом d, являющимся разностью прогрессии.

Если d<0, то мы имеем убывающую прогрессию. Если d>0, то такая прогрессия считается возрастающей.

Арифметическая прогрессия называется конечной, если учитываются только несколько ее первых членов. При очень большом количестве членов это уже бесконечная прогрессия.

Задается любая арифметическая прогрессия следующей формулой:

an =kn+b, при этом b и k - некоторые числа.

Абсолютно верно утверждение, являющееся обратным: если последовательность задается подобной формулой, то это точно арифметическая прогрессия, которая имеет свойства:

  1. Каждый член прогрессии - среднее арифметическое предыдущего члена и последующего.
  2. Обратное: если, начиная со 2-ого, каждый член - среднее арифметическое предыдущего члена и последующего, т.е. если выполняется условие, то данная последовательность - арифметическая прогрессия. Это равенство одновременно является и признаком прогрессии, поэтому его, как правило, называют характеристическим свойством прогрессии.
    Точно так же верна теорема, которая отражает это свойство: последовательность - арифметическая прогрессия только в том случае, если это равенство верно для любого из членов последовательности, начиная со 2-ого.

Характеристическое свойство для четырёх любых чисел арифметической прогрессии может быть выражено формулой an + am = ak + al, если n + m = k + l (m, n, k - числа прогрессии).

В арифметической прогрессии любой необходимый (N-й) член найти можно, применяя следующую формулу:

К примеру: первый член (a1) в арифметической прогрессии задан и равен трём, а разность (d) равняется четырём. Найти нужно сорок пятый член этой прогрессии. a45 = 1+4(45-1)=177

Формула an = ak + d(n - k) позволяет определить n-й член арифметической прогрессии через любой ее k-тый член при условии, если он известен.

Сумма членов арифметической прогрессии (подразумевается 1-ые n членов конечной прогрессии) вычисляется следующим образом:

Sn = (a1+an) n/2.

Если известны и 1-ый член, то для вычисления удобна другая формула:

Sn = ((2a1+d(n-1))/2)*n.

Сумма арифметической прогрессии, которая содержит n членов, подсчитывается таким образом:

Выбор формул для расчетов зависит от условий задач и исходных данных.

Натуральный ряд любых чисел, таких как 1,2,3,...,n,...- простейший пример арифметической прогрессии.

Помимо арифметической прогрессии существует еще и геометрическая, которая обладает своими свойствами и характеристиками.

Арифметической прогрессией называют последовательность чисел (членов прогрессии)

В которой каждый последующий член отличается от предыдущего на сталое слагаемое, которое еще называют шагом или разницей прогрессии .

Таким образом, задавая шаг прогрессии и ее первый член можно найти любой ее элемент по формуле

Свойства арифметической прогрессии

1) Каждый член арифметической прогрессии, начиная со второго номера является средним арифметическим от предыдущего и следующего члена прогрессии

Обратное утверждение также верно. Если среднее арифметическое соседних нечетных (четных) членов прогрессии равно члену, который стоит между ними, то данная последовательность чисел является арифметической прогрессией. По этим утверждением очень просто проверить любую последовательность.

Также по свойству арифметической прогрессии, приведенную выше формулу можно обобщить до следующей

В этом легко убедиться, если расписать слагаемые справа от знака равенства

Ее часто применяют на практике для упрощения вычислений в задачах.

2) Сумма n первых членов арифметической прогрессии вычисляется по формуле

Запомните хорошо формулу суммы арифметической прогрессии, она незаменима при вычислениях и довольно часто встречается в простых жизненных ситуациях.

3) Если нужно найти не всю сумму, а часть последовательности начиная с k -го ее члена, то в Вам пригодится следующая формула суммы

4) Практический интерес представляет отыскание суммы n членов арифметической прогрессии начиная с k -го номера. Для этого используйте формулу

На этом теоретический материал заканчивается и переходим к решению распространенных на практике задач.

Пример 1. Найти сороковой член арифметической прогрессии 4;7;...

Решение:

Согласно условию имеем

Определим шаг прогрессии

По известной формуле находим сороковой член прогрессии

Пример2. Арифметическая прогрессия задана третьим и седьмым ее членом . Найти первый член прогрессии и сумму десяти.

Решение:

Распишем заданные элементы прогрессии по формулам

От второго уравнения вычтем первое, в результате найдем шаг прогрессии

Найденное значение подставляем в любое из уравнений для отыскания первого члена арифметической прогрессии

Вычисляем сумму первых десяти членов прогрессии

Не применяя сложных вычислений ми нашли все искомые величины.

Пример 3. Арифметическую прогрессию задано знаменателем и одним из ее членов . Найти первый член прогрессии, сумму 50 ее членов начиная с 50 и сумму 100 первых.

Решение:

Запишем формулу сотого элемента прогрессии

и найдем первый

На основе первого находим 50 член прогрессии

Находим сумму части прогрессии

и сумму первых 100

Сумма прогрессии равна 250.

Пример 4.

Найти число членов арифметической прогрессии, если:

а3-а1=8, а2+а4=14, Sn=111.

Решение:

Запишем уравнения через первый член и шаг прогрессии и определим их

Полученные значения подставляем в формулу суммы для определения количества членов в сумме

Выполняем упрощения

и решаем квадратное уравнение

Из найденных двух значений условии задачи подходит только число 8 . Таким образом сумма первых восьми членов прогрессии составляет 111.

Пример 5.

Решить уравнение

1+3+5+...+х=307.

Решение: Данное уравнение является суммой арифметической прогрессии. Выпишем первый ее член и найдем разницу прогрессии



← Вернуться

×
Вступай в сообщество «servizhome.ru»!
ВКонтакте:
Я уже подписан на сообщество «servizhome.ru»