Пи отношение. Краткая история числа пи

Подписаться
Вступай в сообщество «servizhome.ru»!
ВКонтакте:

Введение

В статье присутствуют математические формулы, поэтому для чтения перейдите на сайт для их корректного отображения. Число \(\pi \) имеет богатую историю. Данная константа обозначает отношение длины окружности к ее диаметру.

В науке число \(\pi \) используют в любых расчетах, где есть окружности. Начиная от объема банки газировки, до орбит спутников. И не только окружности. Ведь в изучении кривых линий число \(\pi \) помогает понять периодические и колебательные системы. Например, электромагнитные волны и даже музыку.

В 1706 году в книге «Новое введение в математику» британского ученого Уильяма Джонса (1675-1749 гг.) для обозначения числа 3,141592… впервые была использована буква греческого алфавита \(\pi \). Это обозначение происходит от начальной буквы греческих слов περιϕερεια — окружность, периферия и περιµετρoς — периметр. Общепринятым обозначение стало после работ Леонарда Эйлера в 1737 году.

Геометрический период

Постоянство отношения длины любой окружности к её диаметру было замечено уже давно. Жители Междуречья применяли довольно грубое приближение числа \(\pi \). Как следует из древних задач, в своих расчетах они используют значение \(\pi ≈ 3 \).

Более точное значение для \(\pi \) использовали древние египтяне. В Лондоне и Нью-Йорке хранятся две части древнеегипетского папируса, который называют «папирус Ринда». Папирус был составлен писцом Армесом примерно между 2000-1700 гг. до н.э.. Армес в своем папирусе написал, что площадь круга с радиусом \(r\) равна площади квадрата со стороной, равной \(\frac{8}{9} \) от диаметра окружности \(\frac{8}{9} \cdot 2r \), то есть \(\frac{256}{81} \cdot r^2 = \pi r^2 \). Отсюда \(\pi = 3,16\).

Древнегреческий математик Архимед (287-212 гг. до н.э.) впервые поставил задачу измерения круга на научную почву. Он получил оценку \(3\frac{10}{71} < \pi < 3\frac{1}{7}\), рассмотрев отношение периметров вписанного и описанного 96-угольника к диаметру окружности. Архимед выразил приближение числа \(\pi \) в виде дроби \(\frac{22}{7}\), которое до сих называется архимедовым числом.

Метод достаточно простой, но при отсутствии готовых таблиц тригонометрических функций потребуется извлечение корней. Кроме этого, приближение сходится к \(\pi \) очень медленно: с каждой итерацией погрешность уменьшается лишь вчетверо.

Аналитический период

Несмотря на это, до середины 17 века все попытки европейских учёных вычислить число \(\pi \) сводились к увеличению сторон многоугольника. Так например, голландский математик Лудольф ван Цейлен (1540-1610 гг.) вычислил приближенное значение числа \(\pi \) с точностью до 20-ти десятичных цифр.

На вычисление ему понадобилось 10 лет. Удваивая по методу Архимеда число сторон вписанных и описанных многоугольников, он дошел до \(60 \cdot 2^{29} \) — угольника с целью вычисления \(\pi \) с 20 десятичными знаками.

После смерти в его рукописях были обнаружены ещё 15 точных цифр числа \(\pi \). Лудольф завещал, чтобы найденные им знаки были высечены на его надгробном камне. В честь него число \(\pi \) иногда называли «лудольфовым числом» или «константой Лудольфа».

Одним из первых, кто представил метод, отличный от метода Архимеда, был Франсуа Виет (1540-1603 гг.). Он пришел к результату , что круг, диаметр которого равен единице, имеет площадь:

\[\frac{1}{2 \sqrt{\frac{1}{2}} \cdot \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2}} } \cdot \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} \cdots }}}} \]

С другой стороны, площадь равна \(\frac{\pi}{4} \). Подставив и упростив выражение, можно получить следующую формулу бесконечного произведения для вычисления приближенного значения \(\frac{\pi}{2} \):

\[\frac{\pi}{2} = \frac{2}{\sqrt{2}} \cdot \frac{2}{\sqrt{2 + \sqrt{2}}} \cdot \frac{2}{\sqrt{2+ \sqrt{2 + \sqrt{2}}}} \cdots \]

Полученная формула представляет собой первое точное аналитическое выражение для числа \(\pi \). Кроме этой формулы, Виет, используя метод Архимеда, дал с помощью вписанных и описанных многоугольников, начиная с 6-угольника и заканчивая многоугольником с \(2^{16} \cdot 6 \) сторонами приближение числа \(\pi \) с 9 правильными знаками.

Английский математик Уильям Броункер (1620-1684 гг.), используя цепную дробь , получил следующие результаты вычисления \(\frac{\pi}{4}\):

\[\frac{4}{\pi} = 1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \frac{7^2}{2 + \frac{9^2}{2 + \frac{11^2}{2 + \cdots }}}}}} \]

Данный метод вычисления приближения числа \(\frac{4}{\pi} \) требует довольно больших вычислений, чтобы получить хотя бы небольшое приближение.

Получаемые в результате подстановки значения то больше, то меньше числа \(\pi \), и каждый раз все ближе к истинному значению, но для получения значения 3,141592 потребуется совершить довольно большие вычисления.

Другой английский математик Джон Мэчин (1686-1751 гг.) в 1706 году для вычисления числа \(\pi \) со 100 десятичными знаками воспользовался формулой, выведенной Лейбницем в 1673 году, и применил её следующим образом:

\[\frac{\pi}{4} = 4 arctg\frac{1}{5} — arctg\frac{1}{239} \]

Ряд быстро сходится и с его помощью можно вычислить число \(\pi \) с большой точностью. Формулы подобного типа использовались для установки нескольких рекордов в эпоху компьютеров.

В XVII в. с началом периода математики переменной величины наступил новый этап в вычислении \(\pi \). Немецкий математик Готфрид Вильгельм Лейбниц (1646-1716 гг.) в 1673 году нашел разложение числа \(\pi \), в общем виде его можно записать следующим бесконечным рядом:

\[ \pi = 1 — 4(\frac{1}{3} + \frac{1}{5} — \frac{1}{7} + \frac{1}{9} — \frac{1}{11} + \cdots) \]

Ряд получается при подстановке x = 1 в \(arctg x = x — \frac{x^3}{3} + \frac{x^5}{5} — \frac{x^7}{7} + \frac{x^9}{9} — \cdots\)

Леонард Эйлер развивает идею Лейбница в своих работах, посвященных использованию рядов для arctg x при вычислении числа \(\pi \). В трактате «De variis modis circuli quadraturam numeris proxime exprimendi» (О различных методах выражения квадратуры круга приближенными числами), написанном в 1738 году, рассматриваются методы усовершенствования вычислений по формуле Лейбница.

Эйлер пишет о том, что ряд для арктангенса будет сходиться быстрее, если аргумент будет стремиться к нулю. Для \(x = 1\) сходимость ряда очень медленная: для вычисления с точностью до 100 цифр необходимо сложить \(10^{50}\) членов ряда. Ускорить вычисления можно, уменьшив значение аргумента. Если принять \(x = \frac{\sqrt{3}}{3}\), то получается ряд

\[ \frac{\pi}{6} = artctg\frac{\sqrt{3}}{3} = \frac{\sqrt{3}}{3}(1 — \frac{1}{3 \cdot 3} + \frac{1}{5 \cdot 3^2} — \frac{1}{7 \cdot 3^3} + \cdots) \]

По утверждению Эйлера, если мы возьмем 210 членов этого ряда, то получим 100 верных знаков числа. Полученный ряд неудобен, потому что необходимо знать достаточно точное значение иррационального числа \(\sqrt{3} \). Также Эйлер в своих вычислениях использовал разложения арктангенсов на сумму арктангенсов меньших аргументов :

\[где x = n + \frac{n^2-1}{m-n}, y = m + p, z = m + \frac{m^2+1}{p} \]

Далеко не все формулы для вычисления \(\pi \), которые использовал Эйлер в своих записных книжках, были опубликованы. В опубликованных работах и записных книжках он рассмотрел 3 различных ряда для вычисления арктангенса, а также привел множество утверждений, касающихся количества суммируемых членов, необходимых для получения приближенного значения \(\pi \) c заданной точностью.

В последующие годы уточнения значения числа \(\pi \) происходили все быстрее и быстрее. Так, например, в 1794 году Георг Вега (1754-1802 гг.) определил уже 140 знаков , из который только 136 оказались верными.

Период компьютерных вычислений

XX век ознаменован совершенно новым этапом в вычислении числа \(\pi \). Индийский математик Сриниваса Рамануджан (1887-1920 гг.) обнаружил множество новых формул для \(\pi \). В 1910 году он получил формулу для вычисления \(\pi \) через разложение арктангенса в ряд Тейлора:

\[\pi = \frac{9801}{2\sqrt{2} \sum\limits_{k=1}^{\infty} \frac{(1103+26390k) \cdot (4k)!}{(4\cdot99)^{4k} (k!)^2}} .\]

При k=100 достигается точность в 600 верных цифр числа \(\pi \).

Появление ЭВМ позволило существенно увеличить точность получаемых значений за более короткие сроки. В 1949 году всего за 70 часов с помощью ENIAC группа ученых под руководством Джона фон Неймана (1903-1957 гг.) получила 2037 знаков после запятой числа \(\pi \) . Давид и Грегорий Чудновские в 1987 году получили формулу, с помощью которой смогли установить несколько рекордов в вычислении \(\pi \):

\[\frac{1}{\pi} = \frac{1}{426880\sqrt{10005}} \sum\limits_{k=1}^{\infty} \frac{(6k)!(13591409+545140134k)}{(3k)!(k!)^3(-640320)^{3k}}.\]

Каждый член ряда дает по 14 цифр. В 1989 году было получено 1 011 196 691 цифр после запятой. Данная формула хорошо подходит для вычисления \(\pi \) на персональных компьютерах. На данный момент братья являются профессорами в политехническом институте Нью-Йоркского университета.

Важным событием недавнего времени стало открытие формулы в 1997 году Саймоном Плаффом . Она позволяет извлечь любую шестнадцатеричную цифру числа \(\pi \) без вычисления предыдущих. Формула носит название «Формула Бэйли — Боруэйна — Плаффа» в честь авторов статьи, где формула была впервые опубликована. Она имеет следующий вид:

\[\pi = \sum\limits_{k=1}^{\infty} \frac{1}{16^k} (\frac{4}{8k+1} — \frac{2}{8k+4} — \frac{1}{8k+5} — \frac{1}{8k+6}) .\]

В 2006 году Саймон, используя PSLQ, получил несколько красивых формул для вычисления \(\pi \). Например,

\[ \frac{\pi}{24} = \sum\limits_{n=1}^{\infty} \frac{1}{n} (\frac{3}{q^n — 1} — \frac{4}{q^{2n} -1} + \frac{1}{q^{4n} -1}), \]

\[ \frac{\pi^3}{180} = \sum\limits_{n=1}^{\infty} \frac{1}{n^3} (\frac{4}{q^{2n} — 1} — \frac{5}{q^{2n} -1} + \frac{1}{q^{4n} -1}), \]

где \(q = e^{\pi}\). В 2009 году японские ученые, используя суперкомпьютер T2K Tsukuba System, получили число \(\pi \) c 2 576 980 377 524 десятичными знаками после запятой. Вычисления заняли 73 часа 36 минут. Компьютер был оснащен 640-ка четырех ядерными процессорами AMD Opteron, что обеспечило производительность в 95 триллионов операций в секунду.

Следующее достижение в вычислении \(\pi \) принадлежит французскому программисту Фабрису Беллару , который в конце 2009 года на своем персональном компьютере под управлением Fedora 10 установил рекорд, вычислив 2 699 999 990 000 знаков после запятой числа \(\pi \). За последние 14 лет это первый мировой рекорд, который поставлен без использования суперкомпьютера. Для высокой производительности Фабрис использовал формулу братьев Чудновских. В общей сложности вычисление заняло 131 день (103 дня расчеты и 13 дней проверка результата). Достижение Беллара показало, что для таких вычислений не обязательно иметь суперкомпьютер.

Всего через полгода рекорд Франсуа был побит инженерами Александром Йи и Сингеру Кондо. Для установления рекорда в 5 триллионов знаков после запятой числа \(\pi \) был также использован персональный компьютер, но уже с более внушительными характеристиками: два процессора Intel Xeon X5680 по 3,33 ГГц, 96 ГБ оперативной памяти, 38 ТБ дисковой памяти и операционная система Windows Server 2008 R2 Enterprise x64. Для вычислений Александр и Сингеру использовали формулу братьев Чудновских. Процесс вычисления занял 90 дней и 22 ТБ дискового пространства. В 2011 году они установили еще один рекорд , вычислив 10 триллионов десятичных знаков числа \(\pi \). Вычисления происходили на том же компьютере, на котором был поставлен их предыдущий рекорд и занял в общей сложности 371 день. В конце 2013 года Александр и Сингеру улучшили рекорд до 12,1 триллиона цифр числа \(\pi \), вычисление которых заняло у них всего 94 дня. Такое улучшение в производительности достигнуто благодаря оптимизации производительности программного обеспечения, увеличения количества ядер процессора и значительного улучшения отказоустойчивости ПО.

Текущим рекордом является рекорд Александра Йи и Сингеру Кондо, который составляет 12,1 триллиона цифр после запятой числа \(\pi \).

Таким образом, мы рассмотрели методы вычисления числа \(\pi \), используемые в древние времена, аналитические методы, а также рассмотрели современные методы и рекорды по вычислению числа \(\pi \) на компьютерах.

Список источников

  1. Жуков А.В. Вездесущее число Пи – М.:Изд-во ЛКИ, 2007 – 216 с.
  2. Ф.Рудио. О квадратуре круга, с приложением истории вопроса, составленной Ф.Рудио. / Рудио Ф. – М.: ОНТИ НКТП СССР, 1936. – 235c.
  3. Arndt, J. Pi Unleashed / J. Arndt, C. Haenel. – Springer, 2001. – 270p.
  4. Шухман, Е.В. Приближенное вычисление числа Пи с помощью ряда для arctg x в опубликованных и неопубликованных работах Леонарда Эйлера / Е.В. Шухман. — История науки и техники, 2008 – №4. – С. 2-17.
  5. Euler, L. De variis modis circuli quadraturam numeris proxime exprimendi/ Commentarii academiae scientiarum Petropolitanae. 1744 – Vol.9 – 222-236p.
  6. Шумихин, С. Число Пи. История длиною в 4000 лет / С. Шумихин, А. Шумихина. — М.: Эксмо, 2011. — 192с.
  7. Борвейн, Дж.М. Рамануджан и число Пи. / Борвейн, Дж.М., Борвейн П.Б. В мире науки. 1988 – №4. – С. 58-66.
  8. Alex Yee. Number world. Access mode: numberworld.org

Понравилось?

Расскажи

Если сравнить окружности отличных друг от друга размеров, то можно заметить следующее: размеры разных окружностей пропорциональны. А это значит, что при увеличении диаметра окружности в некоторое количество раз, увеличивается и длина этой окружности в такое же количество раз. Математически это записать можно так:

C 1 C 2
=
d 1 d 2 (1)

где C1 и С2 – длины двух разных окружностей, а d1 и d2 – их диаметры.
Это соотношение работает при наличии коэффициента пропорциональности – уже знакомой нам константы π . Из отношения (1) можно сделать вывод: длина окружности C равна произведению диаметра этой окружности на независящий от окружности коэффициент пропорциональности π :

C = π d.

Также эту формулу можно записать в ином виде, выразив диаметр d через радиус R данной окружности:

С = 2π R.

Как раз эта формула и является проводником в мир окружностей для семиклассников.

Еще с древности люди пытались установить значение этой константы. Так, например, жители Месопотамии вычисляли площадь круга по формуле:

Откуда π = 3.

В древнем Египте значение для π было точнее. В 2000-1700 годах до нашей эры писец, именуемый Ахмесом, составил папирус, в котором мы находим рецепты разрешения различных практических задач. Так, например, для нахождения площади круга он использует формулу:

8 2
S = ( d )
9

Из каких соображений он получил эту формулу? – Неизвестно. Вероятно, на основе своих наблюдений, впрочем, как это делали и другие древние философы.

По стопам Архимеда

Какое из двух числе больше 22/7 или 3.14 ?
- Они равны.
- Почему?
- Каждое из них равно π .
А. А. Власов. Из Экзаменационного билета.

Некоторы полагают, что дробь 22/7 и чисо π тождественно равны. Но это является заблуждением. Помимо вышеприведенного неверного ответа на экзамене (см. эпиграф) к этой группе можно также добавить одну весьма занимательную головоломку. Задание гласит: "переложите одну спичку так, чтобы равенство стало верным".

Решение будет таковым: нужно образовать "крышу" для двух вертикальных спичек слева, используя одну из вертикальных спичек в знаменателе справа. Получится визуальное изображение буквы π .

Многие знают, что приближение π = 22/7 определил древнегреческий математик Архимед. В честь этого часто такое приближение называют "Архимедовым" числом. Архимеду удалось не только установить приближенное значение для π, но также найти точность этого приближения, а именно – найти узкий числовой промежуток, которому принадлежит значение π . В одной из своих работ Архимед доказывает цепь неравенств, которая на современный лад выглядела бы так:

10 6336 14688 1
3 < < π < < 3
71 1 1 7
2017 4673
4 2

можно записать проще: 3,140 909 < π < 3,1 428 265...

Как видим из неравенств, Архимед нашел довольно-таки точное значение с точностью до 0,002. Самое удивительно то, что он нашел два первых знака после запятой: 3,14... Именно такое значение чаще всего мы используем в несложных расчетах.

Практическое применение

Едут двое в поезде:
− Вот смотри, рельсы прямые, колеса круглые.
Откуда же стук?
− Как откуда? Колеса-то круглые, а площадь
круга пи эр квадрат, вот квадрат-то и стучит!

Как правило, знакомятся с этим удивительным числом в 6-7 классе, но более основательно им занимаются к концу 8-го класса. В этой части статьи мы приведем основные и самые важные формулы, которые пригодятся вам в решении геометрических задач, только для начала условимся принимать π за 3,14 для удобства подсчета.

Пожалуй, самая известная формула среди школьников, в которой используется π , это – формула длины и площади окружности. Первая – формула площади круга – записывается так:

π D 2
S=π R 2 =
4

где S – площадь окружности, R – ее радиус, D – диаметр окружности.

Длина окружности, или, как ее иногда называют, периметр окружности, вычисляют по формуле:

С = 2 π R = π d,

где C – длина окружности, R – радиус, d – диаметр окружности.

Понятно, что диаметр d равен двум радиусам R.

Из формулы длины окружности можно легко найти радиус окружности:

где D – диаметр, С – длина окружности, R – радиус окружности.

Это базовые формулы, знать которые должен каждый ученик. Также иногда приходится вычислять площадь не всей окружности, а только ее части – сектора. Поэтому представляем вам её – формулу для вычисления площади сектора окружности. Выглядит она так:

α
S = π R 2
360 ˚

где S – площадь сектора, R – радиус окружности, α – центральный угол в градусах.

Такое загадочное 3,14

И правда, оно загадочно. Потому что в честь этих магических цифр устраивают праздники, снимают фильмы, проводят общественные акции, пишут стихи и многое другое.

Например, в 1998 году вышел фильм американского режиссера Даррена Аронофски под названием "Пи". Фильм получил множество наград.

Каждый год 14 марта в 1:59:26 люди, интересующиеся математикой, празднуют "День числа Пи". К празднику люди подготавливают круглый торт, усаживаются за круглый стол и обсуждают число Пи, решают задачи и головоломки, связанные с Пи.

Вниманием это удивительное число не обошли и поэты, неизвестный написал:
Надо только постараться и запомнить всё как есть – три, четырнадцать, пятнадцать, девяносто два и шесть.

Давайте развлечемся!

Вашему вниманию предлагаются интересные ребусы с числом Пи. Разгадайте слова, какие зашифрованы ниже.

1. π р

2. π L

3. π k

Ответы: 1. Пир; 2. Надпил; 3. Писк.

Отношение длины окружности к ее диаметру одно и то же для всех окружностей. Это отношение принято обозначать греческой буквой (“пи” - начальная буква греческого слова , которое и означало “окружность”).

Архимед в сочинении “Измерение круга” вычислил отношение длины окружности к диаметру (число ) и нашел, что оно заключено между 3 10/71 и 3 1/7.

Долгое время в качестве приближенного значения использовали число 22/7, хотя уже в V веке в Китае было найдено приближение 355/113 = 3,1415929..., которое было открыто вновь в Европе лишь в XVI веке.

В Древней Индии считали равным = 3,1622….

Французский математик Ф. Виет вычислил в 1579 г. с 9 знаками.

Голландский математик Лудольф Ван Цейлен в 1596 г. публикует результат своего десятилетнего труда – число , вычисленное с 32 знаками.

Но все эти уточнения значения числа производились методами, указанными еще Архимедом: окружность заменялась многоугольником со все большим числом сторон. Периметр вписанного многоугольника при этом был меньше длины окружности, а периметр описанного многоугольника – больше. Но при этом оставалась неясным, является ли число рациональным, т. е. отношением двух целых чисел, или иррациональным.

Лишь в 1767 г. немецкий математик И.Г. Ламберт доказал, что число иррационально.

А еще через сто с лишним лет в 1882 г. другой немецкий математик – Ф. Линдеман доказал его трансцендентность, что означало и невозможность построения при помощи циркуля и линейки квадрата, равновеликого данному кругу.

Простейшее измерение

Начертим на плотном картоне окружность диаметра d (=15 см) , вырежем получившийся круг и обмотаем вокруг него тонкую нить. Измерив длину l (=46,5 см) одного полного оборота нити, разделим l на длину диаметра d окружности. Получившееся частное будет приближенным значением числа , т. е. = l / d = 46,5 см / 15 см = 3,1 . Данный довольно грубый способ дает в обычных условиях приближенное значение числа с точностью до 1.

Измерение с помощью взвешивания

На листе картона начертим квадрат. Впишем в него круг. Вырежем квадрат. Определим массу картонного квадрата с помощью школьных весов. Вырежем из квадрата круг. Взвесим и его. Зная массы квадрата m кв (=10 г) и вписанного в него круга m кр (=7,8 г) воспользуемся формулами

где p и h –соответственно плотность и толщина картона, S – площадь фигуры. Рассмотрим равенства:

Естественно, что в данном случае приближенное значение зависит от точности взвешивания. Если взвешиваемые картонные фигуры будут довольно большими, то возможно даже на обычных весах получить такие значения масс, которые обеспечат приближение числа с точностью до 0,1.

Суммирование площадей прямоугольников, вписанных в полукруг

Рисунок 1

Пусть А (a; 0), В (b; 0). Опишем на АВ полуокружность как на диаметре. Разделим отрезок АВ на n равных частей точками x 1 , x 2 , ..., x n-1 и восстановим из них перпендикуляры до пересечения с полуокружностью. Длина каждого такого перпендикуляра – это значение функции f(x)= . Из рисунка 1 ясно, что площадь S полукруга можно вычислить по формуле

S = (b – a) ((f(x 0) + f(x 1) + … + f(x n-1)) / n.

В нашем случае b=1, a=-1 . Тогда = 2 S .

Значения будут тем точнее, чем больше точек деления будет на отрезке АВ. Облегчить однообразную вычислительную работу поможет компьютер, для которого ниже приводится программа 1, составленная на Бейсике.

Программа 1

REM "Вычисление пи"
REM "Метод прямоугольников"
INPUT "Введите число прямоугольников", n
dx = 1 / n
FOR i = 0 TO n - 1
f = SQR(1 - x ^ 2)
x = x + dx
a = a + f
NEXT i
p = 4 * dx * a
PRINT "Значение пи равно ", p
END

Программа была набрана и запущена при различных значениях параметра n . Полученные значения числа записаны в таблице:

Метод Монте-Карло

Это фактически метод статистических испытаний. Свое экзотическое название он получил от города Монте-Карло в княжестве Монако, знаменитого своими игорными домами. Дело в том, что метод требует применения случайных чисел, а одним из простейших приборов, генерирующих случайные числа, может служить рулетка. Впрочем, можно получить случайные числа и при помощи …дождя.

Для опыта приготовим кусок картона, нарисуем на нем квадрат и впишем в квадрат четверть круга. Если такой чертеж некоторое время подержать под дождем, то на его поверхности останутся следы капель. Подсчитаем число следов внутри квадрата и внутри четверти круга. Очевидно, что их отношение будет приближенно равно отношению площадей этих фигур, так как попадание капель в различные места чертежа равновероятно. Пусть N кр – число капель в круге, N кв – число капель в квадрате, тогда

4 N кр / N кв.

Рисунок 2

Дождь можно заменить таблицей случайных чисел, которая составляется с помощью компьютера по специальной программе. Каждому следу капли поставим в соответствие два случайных числа, характеризующих его положение вдоль осей Ох и Оу . Случайные числа можно выбрать из таблицы в любом порядке, например, подряд. Пусть первое четырехзначное число в таблице 3265 . Из него можно приготовить пару чисел, каждое из которых больше нуля и меньше единицы: х=0,32, у=0,65 . Эти числа будем считать координатами капли, т. е. капля как будто попала в точку (0,32; 0,65). Аналогично поступаем и со всеми выбранными случайными числами. Если окажется, что для точки (х; у) выполняется неравенство, то, значит, она лежит вне круга. Если х + у = 1 , то точка лежит внутри круга.

Для подсчета значения снова воспользуемся формулой (1). Ошибка вычислений по этому методу, как правило, пропорциональна , где D – некоторая постоянная, а N –число испытаний. В нашем случае N = N кв. Из этой формулы видно: для того чтобы уменьшить ошибку в 10 раз (иначе говоря, чтобы получить в ответе еще один верный десятичный знак), нужно увеличить N, т. е. объем работы, в 100 раз. Ясно, что применение метода Монте-Карло стало возможным только благодаря компьютерам. Программа 2 реализует на компьютере описанный метод.

Программа 2

REM "Вычисление пи"
REM "Метод Монте-Карло "
INPUT "Введите число капель ", n
m = 0
FOR i = 1 TO n
t = INT(RND(1) * 10000)
x = INT(t \ 100)
y = t - x * 100
IF x ^ 2 + y ^ 2 < 10000 THEN m = m + 1
NEXT i
p = 4 * m / n

END

Программа была набрана и запущена при различных значениях параметра n. Полученные значения числа записаны в таблице:

n
n

Метод “падающей иголки”

Возьмем обыкновенную швейную иголку и лист бумаги. На листе проведем несколько параллельных прямых так, чтобы расстояния между ними были равны и превышали длину иголки. Чертеж должен быть достаточно большим, чтобы случайно брошенная игла не упала за его пределами. Введем обозначения: а - расстояние между прямыми, l – длина иглы.

Рисунок 3

Положение случайным образом брошенной на чертеж иглы (см. рис. 3) определяется расстоянием Х от ее середины до ближайшей прямой и углом j , которой игла образует с перпендикуляром, опущенным из середины иглы на ближайшую прямую (см. рис. 4). Ясно, что

Рисунок 4

На рис. 5 изобразим графически функцию y=0,5 cos . Всевозможные расположения иглы характеризуются точками с координатами (; у ) , расположенными на участке ABCD. Закрашенный участок AED – это точки, которые соответствуют случаю пересечения иглы с прямой. Вероятность события a – “игла пересекла прямую” – вычисляется по формуле:

Рисунок 5

Вероятность p(a) можно приблизительно определить многократным бросанием иглы. Пусть иглу бросали на чертеж c раз и p раз она упала, пересекая одну из прямых, тогда при достаточно большом c имеем p(a) = p / c . Отсюда = 2 l с / a k.

Замечание. Изложенный метод представляет собой вариацию метода статистических испытаний. Он интересен с дидактической точки зрения, так как помогает совместить простой опыт с составлением довольно сложной математической модели.

Вычисление с помощью ряда Тейлора

Обратимся к рассмотрению произвольной функции f(х). Предположим, что для нее в точке x 0 существуют производные всех порядков до n -го включительно. Тогда для функции f(х) можно записать ряд Тейлора:

Вычисления с помощью этого ряда будут тем точнее, чем больше членов ряда будет задействовано. Реализовать данный способ, конечно, лучше всего на компьютере, для чего можно воспользоваться программой 3.

Программа 3

REM "Вычисление пи"
REM "Разложение в ряд Тейлора "
INPUT n
a = 1
FOR i = 1 TO n
d = 1 / (i + 2)
f = (-1) ^ i * d
a = a + f
NEXT i
p = 4 * a
PRINT "значение пи равно"; p
END

Программа была набрана и запущена при различных значениях параметра n . Полученные значения числа записаны в таблице:

Есть очень простые мнемонические правила для запоминания значения числа :

(), а общепринятым оно стало после работ Эйлера . Это обозначение происходит от начальной буквы греческих слов περιφέρεια - окружность, периферия и περίμετρος - периметр.

Оценки

  • 510 знаков после запятой: π ≈ 3,141 592 653 589 793 238 462 643 383 279 502 884 197 169 399 375 105 820 974 944 592 307 816 406 286 208 998 628 034 825 342 117 067 982 148 086 513 282 306 647 093 844 609 550 582 231 725 359 408 128 481 117 450 284 102 701 938 521 105 559 644 622 948 954 930 381 964 428 810 975 665 933 446 128 475 648 233 786 783 165 271 201 909 145 648 566 923 460 348 610 454 326 648 213 393 607 260 249 141 273 724 587 006 606 315 588 174 881 520 920 962 829 254 091 715 364 367 892 590 360 011 330 530 548 820 466 521 384 146 951 941 511 609 433 057 270 365 759 591 953 092 186 117 381 932 611 793 105 118 548 074 462 379 962 749 567 351 885 752 724 891 227 938 183 011 949 129 833 673 362…

Свойства

Соотношения

Известно много формул с числом π :

  • Формула Валлиса:
  • Тождество Эйлера :
  • Т. н. «интеграл Пуассона » или «интеграл Гаусса »

Трансцендентность и иррациональность

Нерешенные проблемы

  • Неизвестно, являются ли числа π и e алгебраически независимыми.
  • Неизвестно, являются ли числа π + e , π − e , πe , π / e , π e , π π , e e трансцендентными.
  • До сих пор ничего не известно о нормальности числа π ; неизвестно даже, какие из цифр 0-9 встречаются в десятичном представлении числа π бесконечное количество раз.

История вычисления

и Чудновского

Мнемонические правила

Чтобы нам не ошибаться, Надо правильно прочесть: Три, четырнадцать, пятнадцать, Девяносто два и шесть. Надо только постараться И запомнить всё как есть: Три, четырнадцать, пятнадцать, Девяносто два и шесть. Три, четырнадцать, пятнадцать, Девять, два, шесть, пять, три, пять. Чтоб наукой заниматься, Это каждый должен знать. Можно просто постараться И почаще повторять: «Три, четырнадцать, пятнадцать, Девять, двадцать шесть и пять.»

2. Подсчитайте количество букв в каждом слове в нижеприведенных фразах (без учета знаков препинания ) и запишите эти цифры подряд - не забывая про десятичную запятую после первой цифры «3», разумеется. Получится приближенное число Пи.

Это я знаю и помню прекрасно: Пи многие знаки мне лишни, напрасны.

Кто и шутя, и скоро пожелаетъ Пи узнать число - ужъ знаетъ!

Вот и Миша и Анюта прибежали Пи узнать число они желали.

(Вторая мнемоническая запись верна (с округлением последнего разряда) только при использовании дореформенной орфографии : при подсчете количества букв в словах необходимо учитывать твердые знаки!)

Еще один вариант этой мнемонической записи:

Это я знаю и помню прекрасно:
Пи многие знаки мне лишни, напрасны.
Доверимся знаньям громадным
Тех, пи кто сосчитал, цифр армаду.

Раз у Коли и Арины Распороли мы перины. Белый пух летал, кружился, Куражился, замирал, Ублажился, Нам же дал Головную боль старух. Ух, опасен пуха дух!

Если соблюдать стихотворный размер, можно довольно быстро запомнить:

Три, четырнадцать, пятнадцать, девять два, шесть пять, три пять
Восемь девять, семь и девять, три два, три восемь, сорок шесть
Два шесть четыре, три три восемь, три два семь девять, пять ноль два
Восемь восемь и четыре, девятнадцать, семь, один

Забавные факты

Примечания

Смотреть что такое "Число пи" в других словарях:

    число - Прие моч ное Источник: ГОСТ 111 90: Стекло листовое. Технические условия оригинал документа Смотри также родственные термины: 109. Число бетатронных колебаний … Словарь-справочник терминов нормативно-технической документации

    Сущ., с., употр. очень часто Морфология: (нет) чего? числа, чему? числу, (вижу) что? число, чем? числом, о чём? о числе; мн. что? числа, (нет) чего? чисел, чему? числам, (вижу) что? числа, чем? числами, о чём? о числах математика 1. Числом… … Толковый словарь Дмитриева

    ЧИСЛО, числа, мн. числа, чисел, числам, ср. 1. Понятие, служащее выражением количества, то, при помощи чего производится счет предметов и явлений (мат.). Целое число. Дробное число. Именованное число. Простое число. (см. простой1 в 1 знач.).… … Толковый словарь Ушакова

    Абстрактное, лишенное особенного содержания обозначение какоголибо члена некоторого ряда, в котором этому члену предшествует или следует за ним какой нибудь др. определенный член; абстрактный индивидуальный признак, отличающий одно множество от… … Философская энциклопедия

    Число - Число грамматическая категория, выражающая количественные характеристики предметов мысли. Грамматическое число одно из проявлений более обшей языковой категории количества (см. Категория языковая) наряду с лексическим проявлением («лексическое… … Лингвистический энциклопедический словарь

    Число, приближенно равное 2,718, которое часто встречается в математике и естественных науках. Например, при распаде радиоактивного вещества по истечении времени t от исходного количества вещества остается доля, равная e kt, где k число,… … Энциклопедия Кольера

    А; мн. числа, сел, слам; ср. 1. Единица счёта, выражающая то или иное количество. Дробное, целое, простое ч. Чётное, нечётное ч. Считать круглыми числами (приблизительно, считая целыми единицами или десятками). Натуральное ч. (целое положительное … Энциклопедический словарь

    Ср. количество, счетом, на вопрос: сколько? и самый знак, выражающий количество, цифра. Без числа; нет числа, без счету, многое множество. Поставь приборы, по числу гостей. Числа римские, арабские или церковные. Целое число, ·противоп. дробь.… … Толковый словарь Даля

Сегодня день рождения числа Пи, который, по инициативе американских математиков, отмечается 14 марта в 1 час и 59 минут пополудни. Связано это с более точным значением числа Пи: все мы привыкли считать эту константу как 3,14, но число можно продолжить так: 3, 14159... Переводя это в календарную дату, получаем 03.14, 1:59.

Фото: АиФ/ Надежда Уварова

Профессор кафедры математического и функционального анализа Южно-Уральского государственного университета Владимир Заляпин говорит, что «днём числа Пи» всё же следует считать 22 июля, потому что в европейском формате дат этот день записывается как 22/7, а значение этой дроби приблизительно равно значению Пи.

«История числа, дающего отношение длины окружности к диаметру окружности, уходит в далёкую древность, — рассказывает Заляпин. — Уже шумеры и вавилоняне знали, что это это отношение не зависит от диаметра окружности и является постоянным. Одно из первых упоминаний о числе Пи можно встретить в текстах египетского писца Ахмеса (около 1650 года до н. э.). Древние греки, много позаимствовавшие у египтян, внесли свой вклад в развитие этой загадочной величины. По легенде, Архимед был настолько увлечён расчётами, что не заметил, как римские солдаты взяли его родной город Сиракузы. Когда римский солдат подошёл к нему, Архимед закричал по-гречески: «Не трогай моих кругов!». В ответ солдат заколол его мечом.

Платон получил довольно точное значение числа Пи для своего времени — 3,146. Лудольф ванн Цейлен провёл большую часть своей жизни над расчётами первых 36 цифр после запятой числа Пи, и они были выгравированы на его надгробной плите после смерти».

Иррациональное и ненормальное

По словам профессора, во все времена погоня за вычислением новых десятичных знаков обуславливалась желанием получить точное значение этого числа. Предполагалось, что число Пи рациональное и, следовательно, может быть выражено простой дробью. А это в корне неверно!

Число Пи популярно ещё и потому, что оно — мистическое. С древних времён существовала религия почитателей константы. Помимо традиционного значения Пи — математической константы (3,1415...), выражающей отношение длины окружности к её диаметру, есть масса других значений цифры. Любопытны такие факты. В процессе измерений размеров Великой пирамиды в Гизе оказалось, что она имеет такое же соотношение высоты к периметру своего основания, как радиус окружности к её длине, то есть ½ Пи.

Если рассчитать длину экватора Земли с использованием числа Пи с точностью до девятого знака, ошибка в расчётах составит всего около 6 мм. Тридцати девяти знаков после запятой в числе Пи достаточно для вычисления длины окружности, опоясывающей известные космические объекты во Вселенной, с погрешностью не большей, чем радиус атома водорода!

Изучением Пи занимается в том числе и математический анализ. Фото: АиФ/ Надежда Уварова

Хаос в цифрах

По словам профессора математики, в 1767 году Ламберт установил иррациональность числа Пи, то есть невозможность представить его отношением двух целых. Это означает, что последовательность десятичных знаков числа Пи — это хаос, овеществлённый в цифрах. Иными словами, в «хвосте» десятичных знаков содержится любое число, любая последовательность чисел, любые тексты, которые были, есть и будут, да только извлечь эту информацию не представляется возможным!

«Точное значение числа Пи узнать невозможно, — продолжает Владимир Ильич. — Но попытки эти не оставляются. В 1991 году Чудновские добились новых 2260000000 десятичных знаков константы, а в 1994 году — 4044000000. После этого количество верных знаков числа Пи нарастало лавинообразно».

Мировой рекорд по запоминанию числа Пи у китайца Лю Чао , который сумел запомнить 67890 знаков после запятой без ошибки и воспроизвести их в течение 24 часов и 4 минут.

О «золотом сечении»

Кстати, связь между «пи» и другой удивительной величиной — золотым сечением — на самом деле так и не доказана. Люди давно заметили, что «золотая» пропорция — она же число Фи — и число Пи, делённое на два, различаются между собой меньше, чем на 3% (1,61803398... и 1,57079632...). Однако для математики эти три процента — разница слишком существенная, чтобы считать эти значения тождественными. Точно так же можно сказать, что число Пи и число Фи являются родственниками ещё одной известной постоянной — числа Эйлера, так как корень из него близок к половине числа Пи. Одна вторая Пи — 1, 5708, Фи — 1,6180, корень из Е — 1, 6487.

Это — лишь часть значения Пи. Фото: Скриншот

День рождения Пи

В Южно-Уральском государственном университете день рождения константы отмечают все преподаватели и студенты-математики. Так было всегда — нельзя сказать, что интерес появился лишь в последние годы. Число 3,14 приветствуют даже специальным праздничным концертом!



← Вернуться

×
Вступай в сообщество «servizhome.ru»!
ВКонтакте:
Я уже подписан на сообщество «servizhome.ru»