Атмосферные осадки. Классификация, типы и виды климатических осадков. Климат и виды атмосферных осадков Среднегодовое количество осадков определение

Подписаться
Вступай в сообщество «servizhome.ru»!
ВКонтакте:

Атмосферными осадками называют воду, которая из атмосферы выпадает на земную поверхность. Атмосферные осадки имеют и более научное название — гидрометеоры.

Измеряют их в миллиметрах. Для этого замеряют толщу воды, выпавшей на поверхность с помощью специальных приборов — осадкомеров. Если нужно измерить толщу воды на больших площадях, то используют метеорологические радиолокаторы.

В среднем наша Земля получает почти 1000 мм осадков ежегодно. Но вполне предсказуемо, что их количество выпавшей влаги зависит от многих условий: климата и режима погоды, рельефа местности и близости водоемов.

Виды атмосферных осадков

Вода из атмосферы выпадает на земную поверхность, находясь в двух своих состояниях — жидком и твердом. По этому принципу все атмосферные осадки принято делить на жидкие (дождь и роса) и твердые (град, иней и снег). Рассмотрим каждый из этих видов подробнее.

Жидкие атмосферные осадки

Жидкие атмосферные осадки попадают на землю в виде водяных капель.

Дождь

Испаряясь с поверхности земли, вода в атмосфере собирается в облака, которые состоят из мельчайших капель, размерами от 0,05 до 0,1 мм. Эти миниатюрные капельки в облаках с течением времени сливаются друг с другом, становясь все больше в размерах и заметно тяжелее. Визуально данный процесс можно наблюдать, когда белоснежное облако начинает темнеть и тяжелеть. Когда таких капель в туче становится слишком много, они проливаются на землю в виде дождя.

Летом дождь идет в виде крупных капель. Крупными они остаются потому, что нагретый воздух поднимается от земли. Вот эти восходящие струи и не дают каплям разбиваться в более мелкие.

Зато весной и осенью воздух намного прохладнее, поэтому в эти времена года дожди — моросящие. Причем, если дождь идет из слоистых облаков, его называют обложным, а если капли начинают падать из кунево-дождевых, то дождь превращается в ливень.

Ежегодно в виде дождя на нашу планету проливается почти 1 млрд. тонн воды.

В отдельную категорию стоит выделить морось . Этот вид осадков также выпадает из слоистых облаков, но капли ее настолько малы, а их скорость настолько ничтожна, что капельки воды кажутся подвешенными в воздухе.

Роса

Еще один вид жидких осадков, который выпадает в ночное время или рано утром. Капельки росы образуются из водяного пара. За ночь этот пар остывает, и вода из газообразного состояния превращается в жидкое.

Самые благоприятные условия для образования росы: ясная погода, теплый воздух и почти полное отсутствие ветра.

Твердые атмосферные осадки

Твердые осадки мы можем наблюдать в холодное время года, когда воздух охлаждается до такой степени, что капельки воды, находящиеся в воздухе, замерзают.

Снег

Снег также как и дождь, образуется в облаке. Затем, когда облако попадает в поток воздуха, в котором температура ниже 0°С, капельки воды в нем замерзают, становятся тяжелыми и выпадают на землю в виде снега. Каждая капелька застывает в виде своеобразного кристаллика. Ученые утверждают, что все снежинки имеют разную форму и найти одинаковые просто невозможно.

Кстати, снежинки падают очень медленно, так как почти на 95% состоят из воздуха. По этой же причине они белого цвета. А хрустит снег под ногами потому, что ломаются кристаллики. И наш слух способен уловить этот звук. Зато для рыб настоящее мучение, так как снежинки, падающие на воду, издают высокочастотный звук, который рыбы слышат.

Град

выпадает только в теплое время года, особенно, если накануне было очень жарко и душно. Прогретый воздух сильными потоками устремляется вверх, унося с собой испарившуюся воду. Образуются тяжелые кучевые облака. Затем, под воздействием восходящих потоков капельки воды в них тяжелеют, начинают замерзать и обрастать кристаллами. Вот эти комочки кристаллов и устремляются на землю, по пути увеличиваясь в размерах за счет слияния с каплями переохлажденной воды в атмосфере.

Нужно учитывать, что такие ледяные "снежки" устремляются на землю с невероятно быстротой, а потому град способен пробить шифер или стекло. Град наносит большой урон сельскому хозяйству, поэтому самые "опасные" тучи, которые готовы разразиться градом, разгоняют с помощью специальных пушек.

Иней

Иней, как и роса, образуется из водяного пара. Но в зимние и осенние месяцы, когда уже достаточно холодно, капельки воды замерзают и потому выпадают в виде тонкого слоя ледяных кристаллов. А не тают они потому, что земля остывает еще больше.

Сезоны дождей

В тропиках и очень редко в умеренных широтах наступает такое время года, когда выпадает непомерно большое количество осадков. Этот период называют сезоном дождей.

В странах, которые расположены в этих широтах, не бывает суровых зим. Зато весна, лето и осень стоят неимоверно жаркие. За этот жаркий период накапливается огромное количество влаги в атмосфере, которая и выливается затем в виде затяжных дождей.

В зоне экватора сезон дождей наступает два раза в год. А в тропическом поясе, южнее и севернее экватора, такой сезон случается лишь один раз в году. Связано это с тем, что пояс дождей постепенно курсирует с юга на север и обратно.

Исходные данные:

Река Сура, пункт г.Пенза, площадь водосбора F = 15400 км 2 , залесенность 27%, заболоченность 1%. Среднемноголетнее количество осадков х 0 =666 мм.

Таблица 1. Среднемесячные и среднегодовые расходы и модули стока.

Период наблюдений (годы) с 1963 по 1972 год.

Сентябрь

М л/с · км 2

М а л/с · км 2

Бассейн-аналог - река Сура,с.Кадышево

Средняя многолетняя величина годового стока (норма) М о а = 3,7 л/с · км 2 , С v = 0,28

Многолетнее: U бр = 1500 млн. м 3 , Р = 80%, r = 0.

1. Определить среднюю многолетнюю величину (норму) годового стока при наличии данных наблюдений.

У нас имеются исходные данные: среднегодовые расходы воды,при этом для уменьшения объёма расчётов период наблюдений был сокращён до 10 лет.

Нормой гидрологических величин называется среднее арифметическое значение характеристик гидрологического режима за многолетний период такой продолжительности, при увеличении которой полученное среднее значение существенно не меняется.

При наличии длительных (50 - 80 лет) наблюдений и неизмененных физико-географических и хозяйственных условий, а также, если период наблюдений включает не менее двух полных циклов колебаний водности реки, величина среднего многолетнего стока вычисляется по формуле:

где Qi - средний годовой стока за i-й год;

n - число лет наблюдений.

Определяем среднюю многолетнюю величину годовых расходов реки Сура, пункт г.Пенза по данным

Напомним, что расход воды - это объём воды, протекающей через живое сечение потока в единицу времени.

Полученную норму в виде среднего многолетнего расхода воды требуется выразить через другие характеристики стока : модуль, слой, объём и коэффициент стока.

· Модуль стока - количество воды, стекающее с единицы площади водосбора в единицу времени.

Средний многолетний модуль стока вычисляем по соотношению:

л/с · км 2 , (2)

где F - площадь водосбора, км 2 (приложение 1).

· Объём стока - объём воды, стекающей с водосбора за какой-либо интервал времени.

Вычисляем средний многолетний объём стока за год:

где Т - число секунд в году, равное 31,54 · 106 с.

· Слой стока - количество воды, стекающее с водосбора за какой-либо интервал времени, равное толщине слоя, равномерно распределённого по площади этого водосбора. Слой стока выражается в мм.

Средний многолетний слой стока вычисляем по зависимости:

мм/год. (4)

· Коэффициент стока - отношение величины (объёмы или слоя) стока к количеству выпавших на площадь водосбора осадков, обусловивших возникновение стока.

Средний многолетний коэффициент стока:

где х 0 - средняя многолетняя величина осадков в год, мм. Оценка репрезентативности (достаточности) ряда наблюдений определяется величиной относительной средней квадратической ошибки средней многолетней величины (нормы) годового стока, вычисляемой по формуле:

где С v - коэффициент изменчивости (вариации) годового стока; длина ряда считается достаточной для определения Q 0 , если? 510%. Величина среднего стока при этом называется нормой стока.

Определить коэффициент изменчивости (вариации) Сv годового стока.

Коэффициент изменчивости С v характеризует отклонения стока за отдельные годы от нормы стока; он равен:

где? Q - среднеквадратическое отклонение годовых расходов от нормы стока.

Если n < 30, то

Если сток за отдельные годы выразить в виде модульных коэффициентов,

а при n < 30

Составляем таблицу для подсчёта С v годового стока реки Сура пункт г.Пенза

Данные для подсчёта С v

Годовые расходы Qi , м3/с

Коэффициент изменчивости С v годового стока реки Сура, пункт г.Пенза равен:

Относительная средняя квадратическая ошибка средней многолетней величины годового стока реки Сура за период с 1963 по 1972гг. (10 лет) равна:

Относительная средняя квадратическая ошибка коэффициента изменчивости С v при его определении методом моментов равна:

В рассматриваемом примере

Длина ряда считается достаточной для определения Q 0 и C v , если, а. Величина среднего годового стока при этом условии называется нормой стока.

Вывод : В нашем примере находится в пределах допустимого, а больше допустимой ошибки. Значит, ряд наблюдений недостаточный, необходимо удлинить его.

2. Определить норму стока при недостатке данных методом гидрологической аналогии.

Река-аналог выбирается по:

ь сходству климатических характеристик;

ь синхронности колебаний стока во времени;

ь однородности рельефа, почвогрунтов, гидрогеологических условий, близкой степени покрытости водосбора лесами и болотами;

ь соотношению площадей водосборов, которые не должны отличаться более чем в 10 раз;

ь отсутствию факторов, искажающих сток (строительство плотин, изъятие и сбросы воды).

Река-аналог должна иметь многолетний период гидрометрических наблюдений для точного определения нормы стока и не менее 6 лет параллельных наблюдений с изучаемой рекой.

Строим на миллиметровке график связи модулей исследуемой реки и реки-аналога. За годы параллельных наблюдений наносим точки в виде кружочков диаметром 1мм, справа записываем порядковый номер года. График строим в виде прямой линии усредняющей точки. Зависимости считаются удовлетворительными, если отклонения большей части точек от средней линии не превышают 15%. Затем, зная норму стока реки-аналога М о а = 3,7 л/с · км 2 , определяем норму стока, выраженную через модуль изучаемой реки, и вычисляем норму стока через расход.

По графику связи среднегодовых модулей стока р.Сура, пункт г.Пенза и р.Сура, с.Кадышево М о = 2,9 л/с · км 2 .

Коэффициент изменчивости годового стока вычисляем по формуле

где Cv - коэффициент изменчивости стока в расчётном створе;

C vа - в створе реки-аналога;

М 0а - среднемноголетняя величина годового стока реки-аналога;

А - тангенс угла наклона графика связи.

В рассматриваем примере:

Окончательно принимаем:

М 0 = 2,9 л/с · км 2 ,

Q 0 = 44,66 м 3 /с,

3. Построить и проверить кривую обеспеченности годового стока.

Для характеристики возможных колебаний стока за длительный период и определения расчётных расходов в гидрологии применяют аналитические кривые обеспеченности: биноминальную кривую обеспеченности и кривую трехпараметрического гамма-распределения. Они определяются следующими параметрами:

ь - средней величиной,

ь С v - коэффициентом изменчивости (вариации),

ь С s - коэффициентом асимметрии.

В работе требуется построить кривую обеспеченности годового стока, воспользовавшись кривой трёхпараметрического гамма-распределения. Для этого необходимо рассчитать три параметра:

ь Q 0 - среднюю многолетнюю величину (норму) годового стока,

ь С v - коэффициент изменчивости (вариации) годового стока,

ь С s - коэффициент асимметрии годового стока.

Используя результаты расчётов первой части работы для р.Сура, пункт г. Пенза, имеем Q 0 = 44,66 м 3 /с, С v = 0,35.

Коэффициент асимметрии С s характеризует несимметричность гидрологического ряда и определяется путём подбора, исходя из условия наилучшего соответствия аналитической кривой с точками фактических наблюдений; для рек, расположенных в равнинных условиях, при расчёте годового стока наилучшие результаты дает соотношение С s = 2С v . Поэтому понимаем для р.Сура, пункт г.Пенза: С s = 2С v = 2 · 0,35 = 0,70 с последующей проверкой.

Ординаты кривой определяем в зависимости от коэффициента С v (в примере С v =0,35) по таблицам, составленным С.Н. Крицким и М.Ф. Менкелем для С s = 2С v Для повышения точности кривой необходимо учитывать сотые доли С v и провести интерполяцию между соседними столбцами цифр (таблица 2).

§ для Р = 0,01

§ для Р = 0,1

§ для Р = 1

§ для Р = 5

§ для Р = 10

§ для Р = 25

§ для Р = 50

§ для Р = 75

§ для Р = 80

§ для Р = 90

§ для Р = 95

§ для Р = 99

Таблица 2

Обеспеченность, Р %

Ординаты кривой

Обеспеченностью гидрологической величины называется вероятность превышения рассматриваемого значения гидрологической величины среди совокупности всех возможных её значений.

По данным таблицы 2 на миллиметровке форматом 203288 мм 2 строим теоретическую кривую обеспеченности, откладывая по оси абсцисс Р (1 см - 5%), а по оси ординат - К р. Построенная кривая в верхней и нижней частях имеет большую кривизну, что затрудняет пользование ею. Кривая обеспеченности на клетчатке вероятностей (рис.2) имеет более плавный вид и удобна в использовании.

Построив кривую обеспеченности на клетчатке вероятностей, проверяем её данные фактических наблюдений. Для этого модульные коэффициенты годовых расходов (из табл.1, графа 4) располагаем по убыванию в таблице 3 и для каждого из них вычисляем его фактическую обеспеченность по формуле:

Р = m / (n + 1) · 100%, (12)

где Р - обеспеченность члена ряда, расположенного в порядке убывания;

m - порядковый номер члена ряда;

n - число членов ряда.

Таблица 3.

Модульные коэффициенты по убыванию К

Фактическая обеспеченность

Годы соответствующие К

Вывод: Как видно на рис.2, нанесённые точки усредняют теоретическую кривую; значит, кривая построена правильно и соотношение С s = 2C v соответствует действительности. В противном случае необходимо изменить соотношение С s к C v и вновь построить теоретическую кривую обеспеченности.

4. Рассчитать внутригодовое распределение стока методом компоновки для целей орошения с расчётной вероятностью превышения Р = 80%. Для расчёта используем исходные данные среднемесячные расходы воды (приложение 1). Расчёт делится на две части: межсезонное распределение, имеющее наиболее важное значение; внутрисезонное распределение (по месяцам и декадам), устанавливаемое с некоторой схематизацией. Межсезонное распределение. В зависимости от типа внутригодового распределения стока год делится на два периода: многоводный и маловодный (межень). В зависимости от цели использования один из них назначается лимитирующим. Лимитирующий - это наиболее напряжённый с точки зрения водохозяйственного использования период (сезон). Для целей осушения лимитирующим периодом является многоводный; Для целей орошения, энергетики - маловодный. В период включается один или два сезона. На реках с весенним половодьем для целей орошения выделяются: многоводный период (он же сезон) - весна; и маловодный (лимитирующий) период, включающий в себя сезоны - лето - осень и зима, причём лимитирующим сезоном при орошении является лето - осень (при энергетическом использовании - зима).

Расчёт выполняется по гидрологическим годам, т.е. по годам, начинающимся с многоводного сезона. Сроки сезонов назначаются едиными для всех лет наблюдений с округлением их до целого месяца. Продолжительность многоводного сезона назначается так, чтобы в границах сезона помещалось половодье как в годы с наиболее ранним сроком наступления, так и с наиболее поздним сроком окончания.

В задании продолжительность сезона, можно принять следующий:

  • · весна (апрель, май, июнь);
  • · лето - осень (июль, август, сентябрь, октябрь, ноябрь);
  • · зима (декабрь и январь, февраль, март следующего года).

Величина стока за отдельные сезоны и периоды определяется суммой среднемесячных расходов (таблица 4). В последнем году к расходу за декабрь прибавляются расходы за три месяца (I, II, III) первого года.

При расчёте по методу компоновки внутригодовое распределение стока принимается из условия равенства вероятности превышения стока за год, стока за лимитирующий период и внутри его за лимитирующий сезон. Поэтому необходимо определить расходы заданной проектом обеспеченности (в задании Р = 80%) для года, лимитирующих периода и сезона. Следовательно, требуется рассчитать параметры кривых обеспеченности (Q o , C v и C s) для лимитирующих периода и сезона (для годового стока параметры вычислены в первой части задания). Вычисления производятся методом моментов в табл.4 по схеме, изложенной выше для годового стока (см. табл.1).

Таблица 4. Расчёт внутригодового распределения стока методом компоновки (межсезонное распределение). река Сура, пункт г.Пенза по данным с 1963 по 1972 гг. (10 лет).

Расходы за лимитирующий сезон лето - осень

Сток лето - осень

Расходы за сезон весна

Весеннийсток

§ Параметры кривой обеспеченности для годового стока.

гидрологический сток орошение

; С s = 2С v = 2 · 0,27= 0,54.

Определяем ординату кривых трехпараметрического гамма-распределения для С v годового стока:

§ Параметры кривой обеспеченности для лимитирующего периода.

С s = 2С v = 2 · 0,18 = 0,36

Определяем ординату кривых трехпараметрического гамма-распределения для С v меженного стока:

§ Параметры кривой обеспеченности для лимитирующего сезона.

; С s = 2С v = 2 · 0,26 = 0,52

Определяем ординату кривых трехпараметрического гамма-распределения для Сv стока лета - осени:

Определяем расчетные расходы по формулам:

годового стока Q рас год = · 12 · Q o , (13)

Q рас год = 0,70 · 12 · 44,66 = 375,144 м 3 /с;

лимитирующего периода Q рас меж = · Q меж, (14)

Q рас.меж = 0,85 · 222,39 = 189,03 м 3 /с;

лимитирующего сезона Q рас ло = · Q ло, (15)

Q рас ло = 0,77 · 121,14 = 93,28 м 3 /с.

Где,- ординаты кривых трехпараметрического гамма-распределения, снятые с таблицы соответственно для С v годового стока, С v меженного стока и С v для лета - осени.

Одним из основных условий метода компоновки, является равенство:

Q рас год = ? Q рас сез.

Однако это равенство нарушится, если расчётный сток за нелимитирующие сезоны определять также по кривым обеспеченности (ввиду различия параметров кривых).

Поэтому расчётный сток за нелимитирующий период (в задании - за весну) определяем по разности:

Q рас вес = Q рас год - Q рас меж (16)

Q рас вес = 375,14-189,03 = 186,11 м 3 /с.

А за нелимитирующий сезон (в задании - зима) определяем по разности:

Q рас зим = Q рас меж - Q рас ло (17)

Q рас зим = 189,03 - 93,28 = 95,75 м 3 /с.

Внутрисезонное распределение - принимается осредненным по каждой из трех групп водности:

  • · Многоводная группа, включающая годы с обеспеченностью стока за сезон Р
  • · Средняя по водности 33
  • · Маловодная Р > 66%.

Для выделения лет, входящих в отдельные группы водности, необходимо суммарные расходы за сезоны расположить по убыванию и подсчитать их фактическую обеспеченность (пример - табл.4). Так как расчетная обеспеченность (Р=80%) соответствует маловодной группе, дальнейший расчет можно производить для лет, входящих в маловодную группу (табл.5).

Для этого в графу «Суммарный сток» выписать расходы по сезонам, соответствующие обеспеченностям Р > 66%, а в графу «Годы» - записать годы, соответствующие этим расходам.

Среднемесячные расходы внутри сезона расположить в убывающем порядке с указанием календарных месяцев, к которым они относятся (табл.5). Таким образом, первым окажется расход за наиболее многоводный месяц, последним - за маловодный месяц.

Для всех лет произвести суммирование расходов отдельно за сезон и за каждый месяц. Принимая сумму расходов за сезон за 100%, определить процент каждого месяца А%, входящего в сезон, а в графу «Месяц» записать наименование того месяца, который повторяется наиболее часто. Если повторений нет, выписать любой из встречающихся, но так, чтобы каждый месяц, входящий в сезон, имел свой процент от сезона.

Затем, умножая расчётный расход за сезон, определённый в части межсезонного распределения стока (табл.4.), на процентную долю каждого месяца А% (табл.5), вычислить расчётный расход каждого месяца. Например:

По данным табл.5 графы «Расчетные расходы по месяцам» на миллиметровке построить расчётный гидрограф Р - 80% изучаемой реки (рис.3).

Таблица 5. Вычисление внутрисезонного распределения стока. р. Сура, пункт г.Пенза.

Суммарный сток

Среднемесячные расходы по убыванию

За весенний сезон

За летнее - осенний сезон

За зимний сезон

Расчетные расходы по месяцам

Примечание. Чтобы получить объёмы стока в млн.м 3 , следует расходы умножить: а) для 31-дневного месяца на коэффициент 2,68; б) для 30-дневнего месяца - 2,59; в) для 28-дневнего месяца - 2,42.

5. Определить расчетный максимальный расход талых вод Р = 1% при отсутствии данных гидрометрических наблюдений.

Определяют расчетный максимальный расход талых вод Р = 1% при отсутствии данных гидрометрических наблюдений по формуле:

  • § Q p - расчетный мгновенный максимальный расход талых вод заданной обеспеченности Р, м 3 /с;
  • § М р - модуль максимального расчетного расхода заданной обеспеченности Р, м 3 /с·км 2 ;
  • § h p - расчетный слой половодья, см;
  • § F - площадь водосбора, км 2 ;
  • § n - показатель степени редукции зависимости
  • § К о - параметр дружности половодья;
  • § ? 1 и? 2 - коэффициенты, учитывающие снижение максимальных расходов рек, зарегулированных озерами (водохранилищами) и в залесенных и заболоченных бассейнах;
  • § ? - коэффициент, учитывающий неравенство статистических параметров слоя стока и максимальных расходов при Р = 1%; ? = 1;
  • § F 1 - дополнительная площадь водосбора, учитывающая снижение редукции, км 2 , принимается по приложению 3.

Параметр К о определяется по данным рек - аналогов, в контрольной работе К о выписывается из приложения 3. Параметр n 1 зависит от природной зоны, определяется из приложения 3.

Расчетный слой стока половодья вычисляется по формуле:

h p =К р ·, (20)

  • § К р - ордината аналитической кривой трехпараметрического гамма-распределения заданной вероятности превышения, определяется по приложению 2 в зависимости от С v = 0,26 ,при C s =2C v =2 · 0,26 = 0,52 с точностью до сотых интерполяций между соседними столбцами;
  • § - средний слой половодья, устанавливается по рекам - аналогам или интерполяцией, в контрольной работе - по приложению 3.

Коэффициент?, учитывающий снижение максимального стока рек, зарегулированных проточными озерами, следует определять по формуле:

1/(1+Сfоз), (21)

  • § С - коэффициент, принимаемый в зависимости от величины среднего многолетнего слоя весеннего стока;
  • § f оз - средневзвешенная озерность.

Так как в расчетных водосборах нет проточных озер, а расположенная вне главного русла f оз < 2%, принимаем? = 1. Коэффициент? 1 , учитывающий снижение максимальных расходов воды в залесенных водосборах, определяется по формуле:

  • § n 2 - коэффициент редукции принимается по приложению 3.
  • § ? 1 - коэффициент, зависит от природной зоны, расположения леса на водосборе и общей залесенности f л в %, выписывается по приложению 3.

Коэффициент? 2 , учитывающий снижение максимального расхода воды заболоченных бассейнов, определяется по формуле:

  • § ? - коэффициент, зависящий от типа болот, определяется по приложению 3;
  • § f ? - относительная площадь болот и заболоченных лесов и лугов в бассейне, %.

По приложению 3, определяем F 1 = 2 км 2 ; = 80 мм; С v = 0,40; n 1 = 0,25; ? = 1, К о =0,022; ? 1 = 1,20; n 2 = 0,20; ? = 0,8;

По приложению 2, определяем: К р = 2,51;

h p = К р ·= 2,51 · 80 = 200 мм;

Количество осадков постоянно интересует тех, кто следит за погодой. Казалось бы, в прогнозе стоит 10-15 мм, а на улицах — снег по колено или огромные лужи. Чтобы Вам было проще ориентироваться в прогнозах, мы подготовили информацию об измерении количества осадков.

Метеорологи различают два понятия: высота снежного покрова и количество выпавших осадков. То, что мы видим на улице после снегопада, это высота снежного покрова, который порой достигает 50 см, хотя количество выпавших осадков при этом может быть не более 20 мм. Один миллиметр выпавшего снега приравнивается к 1-1,5 см высоты снежного покрова в зависимости от структуры снега.

По метеорологическому наставлению, миллиметр осадков — это один литр воды на квадратный метр. На всех метеостанция стоят осадкомерные ведра, из которых, в 9 и 21 час по Гринвичу, осадки выливаются в специальный сосуд, по которому измеряется их количество. Твердые осадки — снег, град — растапливаются, а потом специалисты измеряют получившуюся воду.

Осадки на территории России

На территории России, за исключением крупных островов Северного Ледовитого океана, в среднем выпадает 9653 км 3 осадков, которые условно могли бы покрыть ровную поверхность сушу слоем 571 мм. Из этого количества на испарение затрачивается 5676 км 3 (336 мм) осадков.

В формировании годовых сумм атмосферных осадков обнаруживаются четко выраженные закономерности, характерные не только для конкретных территорий, но и для страны в целом (рис. 1.4). В направлении с запада на восток происходит последовательное уменьшение количества атмосферных осадков, наблюдается их зональное распределение, которое изменяется под воздействием рельефа местности и теряет свою четкость на востоке страны.

Во внутригодовом распределении на большей части страны наблюдается преобладание осадков летнего периода. В годовом разрезе наибольшее количество осадков приходится на июнь, наименьшее - на вторую половину зимы. Преобладание осадков холодного периода характерно в основном для юго-западных районов - Ростовской, Пензенской, Самарской областей, Ставропольского края, низовьев р. Терека.

В июне-августе (календарные летние месяцы) на европейской территории выпадает более 30% годового слоя осадков, в Восточной Сибири - 50%, в Забайкалье и бассейне р. Амура - 60-70%. Зимой (декабрь-февраль) в европейской части выпадает 20-25% осадков, в Забайкалье - 5%, Якутии - 10%.

Осенние месяцы (сентябрь-октябрь) отличаются относительно равномерным распределением осадков по всей территории (20-30%). Весной (март-май) от западных границ до р. Енисея выпадает до 20% годового количества осадков, восточнее р. Енисея - в основном 15-20%. Наименьшее количество осадков в это время наблюдается в Забайкалье (около 10%).

Самое общее представление о характере изменений атмосферных осадков на территории РФ во второй половине ХХ и начале XXI столетия дают временные ряды пространственно осредненных средних годовых и сезонных аномалий атмосферных осадков.

Рис. 1.5 иллюстрирует изменения среднегодовых осадков, осредненных по всей территории России, а рис. 1.6 - аналогичный ход сезонных осадков.

Рис. 1.5. Средние за год (январь-декабрь) аномалии осадков (мм/месяц), осредненные по территории России, за 1936-2007 гг.

Аномалии рассчитаны как отклонения от среднего за 1961-1990 гг.; кривая линия соответствует 11-летнему сглаживанию; линейный тренд за 1976-2007 гг. показан прямой линией (по данным ИГКЭ Росгидромета и РАН)


Рис. 1.6. Сезонные аномалии осадков (мм/месяц), осредненные по территории РФ, 1936-2007 гг.
(усл. обозначения - см. рис. 1.5)

Сезонные и годовые осадки представляют собой средние из месячных сумм за месяцы рассматриваемого сезона/года. Временные ряды осадков приведены за период 1936-2007 гг., в течение которого основная сеть метеорологических наблюдений на территории России уже существенно не менялась и не могла серьезно влиять на межгодичные колебания пространственно осредненных величин. На всех временных рядах показаны тенденции (линейные тренды) изменений за период 1976-2007 гг., которые больше других характеризуют антропогенные изменения современного климата.

Отметим сложный характер межгодичных колебаний количества осадков, особенно с середины 60-х гг. ХХ в. Можно выделить периоды увеличения осадков - до 60-х и после 80-х гг., а между ними примерно два десятилетия разнонаправленных флуктуаций.

В целом по территории России и в ее регионах (кроме Приамурья и Приморья) отмечается некоторое увеличение средних годовых осадков, наиболее заметное в Западной и Средней Сибири. Тренд среднегодовых осадков за 1976-2007 гг. в среднем по России составляет 0,8 мм/месяц/10 лет и описывает 23% межгодичной изменчивости.

В среднем для России наиболее заметной особенностью является рост весенних осадков (1,74 мм/месяц/10 лет, вклад в дисперсию 27%), по-видимому, за счет сибирских регионов и европейской территории. Еще один заметный факт - убывание зимних и летних осадков в Восточной Сибири, летних и осенних - в Приамурье и Приморье, которое, однако, не проявилось в тенденциях осадков для России в целом, так как компенсировалось ростом осадков в Западной Сибири.

На рис. 1.7 приведены пространственные распределения локальных коэффициентов линейного тренда осадков, дающие более детальную (в пространстве) картину современных тенденций в изменении режима осадков на территории России за 1976-2007 гг. Оценки трендов получены по точечным (станционным) данным об осредненных за год/сезон аномалиях месячных сумм осадков.


Рис. 1.2.5. Среднегодовые аномалии осадков (мм/месяц) для регионов России за 1936-2007 гг. (усл. обозначения - см. рис. 1.5)(по данным ИГКЭ Росгидромета и РАН)

Коэффициенты трендов, рассчитанные в мм/месяц/10 лет, затем нормированы на соответствующие сезонные/годовые «нормы» осадков (полученные осреднением месячных «норм») и выражены в результате в процентах от нормы за десятилетие. Все оценки выполнены постанционно.

Количественные оценки линейного тренда регионально осредненных атмосферных осадков за 1976-2007 гг. приведены в табл. 1.7 . Здесь b - коэффициенты линейного тренда, а d - вклад тренда в суммарную дисперсию ряда (коэффициент тренда означает среднюю скорость линейного изменения осадков на рассматриваемом отрезке времени и выражен в мм/мес. за 10-летие, мм/мес./10 лет). Вклад тренда в дисперсию характеризует долю (в %) суммарной межгодичной изменчивости. Оценки получены по данным станционных наблюдений, осредненных за год и по календарным сезонам.

Таблица 1.7. Оценки линейного тренда пространственно осредненных среднегодовых и сезонных аномалий атмосферных осадков для территории России и регионов России за период 1976-2007 гг.:

b (мм/месяц/10 лет) - коэффициент тренда, d (%) - вклад тренда в полную дисперсую (по данным ИГКЭ Росгидромета и РАН)

Физико-географический регион

Европейская часть

Средняя Сибирь

Прибайкалье и Забайкалье

Восточная Сибирь

Приамурье и Приморье

В результате, коэффициенты линейного тренда (рис. 1.8) выражены в процентах от локальной сезонной/годовой нормы осадков за десятилетие и характеризуют среднюю скорость локальных изменений атмосферных осадков на территории России в течение 1976-2007 гг.




Рис. 1.8. Пространственные распределения локальных коэффициентов линейного тренда годовых и сезонных аномалий атмосферных осадков за 1976-2007 гг. на территории России (%/10 лет): год, зима, весна, лето, осень (по данным ИГКЭ Росгидромета и РАН)

Распределения оценок трендов подтверждают основные региональные и сезонные особенности, отмеченные выше при анализе регионально осредненных рядов осадков. Так, прослеживается рост весенних осадков в Западной Сибири и, заметно слабее, уменьшение летних осадков на европейской территории России. Обращает внимание северо-восточный регион, где наблюдается уменьшение зимних и летних осадков и рост весенних осадков.

Таким образом, в период 1976 - 2007 гг. на территории России в целом и во всех ее регионах (кроме Приамурья и Приморья) в изменениях годовых сумм осадков отмечалась тенденция к их увеличению, хотя по величине эти изменения были небольшими. Наиболее существенные сезонные особенности: рост весенних осадков в регионе Западная Сибирь и убывание зимних осадков в регионе Восточная Сибирь.

Испаряемость

Годовая испаряемость на равнинах России колеблется от 150-200 мм в сибирских провинциях тундр до 1000 мм в полупустынях и пустынях Прикаспийской низменности. В тайге наиболее характерные величины испаряемости составляют 450-500 мм, в провинциях смешанных лесов - 600-700 мм, в степях - 800-900 мм.

Рассматривая распределение фактического испарения с поверхности суши в пределах России (рис. 1.9 ), следует отметить, что его значения возрастают от северных широт к южным.

Так, средний годовой слой испарения в пределах арктических пустынь составляет лишь 100-150 мм, в то время как в центральных и центрально-черноземных областях, а также в Краснодарском крае он достигает 400-500 мм. В Центральной и Восточной Сибири испарение меньше, чем на тех же широтах Русской равнины. Это обусловлено влиянием вечной мерзлоты, меньшим количеством атмосферных осадков, горным характером и общим значительным повышением отметок местности. Снижение величины испарения к северу от зоны смешанных лесов связано в основном с уменьшением количества тепла, а к югу - с недостатком осадков.

Потери на испарение с водной поверхности водохранилищ в среднем составляют 1,9% прихода, причем по некоторым крупным водохранилищам пределы колебаний могут составлять от 1,2 до 9%. Наибольшие потери на испарение характерны для водохранилищ южных районов Европейской территории.

Увлажнение территории определяется по соотношению между количеством выпадающих атмосферных осадков и испаряемостью (рис. 1.10). При этом если осадки превышают испаряемость, возникает избыточное увлажнение и часть выпавшей влаги удаляется из данной местности в виде стока. Недостаточное увлажнение территории связано с тем, что осадков выпадает меньше, чем может испариться.

Атмосферными осадками называется влага, выпавшая на поверхность из атмосферы в виде дождя, мороси, крупы, снега, града. Осадки выпадают из облаков , но не каждое облако дает осадки. Формирование осадков из облака идет за счет укрупнения капель до размеров, способных преодолеть восходящие токи и сопротивление воздуха. Укрупнение капель идет за счет слияния капель, испарения влаги с поверхности капель (кристаллов) и конденсации водяного пара на других.

Формы осадков:

  1. дождь – имеет капли размером от 0,5 до 7 мм (в среднем 1,5 мм);
  2. морось – состоит из маленьких капель размером до 0,5 мм;
  3. снег – состоит из шестигранных кристаллов льда, образовавшихся в процессе сублимации;
  4. снежная крупа – округлые ядрышки диаметром 1 мм и более, наблюдается при температурах близких к нулю. Крупинки легко сжимаются пальцами;
  5. ледяная крупа – ядрышки крупы имеют обледеневшую поверхность, их трудно раздавить пальцами, при падении на землю они подскакивают;
  6. град – крупные кусочки льда округлой формы размерами от горошины до 5- 8 см в диаметре. Вес градин в отдельных случаях превышает 300 г, иногда может достигать нескольких килограмм. Град выпадает из кучево-дождевых облаков.

Виды осадков:

  1. Обложные осадки – равномерные, длительные по продолжительности, выпадают из слоисто-дождевых облаков;
  2. Ливневые осадки – характеризуются быстрым изменением интенсивности и непродолжительностью. Они выпадают из кучево-дождевых облаков в виде дождя, нередко с градом.
  3. Моросящие осадки – в виде мороси выпадают из слоистых и слоисто-кучевых облаков.

Распределение годовых сумм осадков (мм) (по С.Г. Любушкинй и др.)

(линии на карте, соединяющие точки с одинаковым количеством осадков за определенный период времени (например, за год), называются изогиетами)

Суточный ход осадков совпадает с суточным ходом облачности. Выделяются два типа суточного хода осадков – континентальный и морской (береговой). Континентальный тип имеет два максимума (в утренние часы и после полудня) и два минимума (ночью и перед полуднем). Морской тип – один максимум (ночью) и один минимум (днем).

Годовой ход осадков различен на разных широтах и даже в пределах одной зоны. Он зависит от количества тепла, термического режима, циркуляции воздуха, удаленности от побережий, характера рельефа.

Наиболее обильны осадки в экваториальных широтах, где годовое их количество (ГКО) превосходит 1000- 2000 мм. На экваториальных островах Тихого океана выпадает 4000- 5000 мм, а на подветренных склонах тропических островов до 10 000 мм. Причиной обильных осадков являются мощные восходящие токи очень влажного воздуха. К северу и югу от экваториальных широт количество осадков уменьшается, достигая минимума на 25-35º, где среднегодовое значение не превышает 500 мм и уменьшается во внутриконтинентальных районах до 100 мм и менее. В умеренных широтах количество осадков несколько увеличивается (800 мм). В высоких широтах ГКО незначительно.

Максимальная годовая сумма осадков зарегистрировано в Черрапунджи (Индия) – 26461 мм. Минимальное отмеченное годовое количество осадков – в Асуане (Египет), Икике – (Чили), где в отдельные годы осадков не выпадает вообще.

Распределение количества осадков по материкам в % к общей сумме

Австралия

Северная

Ниже 500 мм

500 –1000 мм

Свыше 1000 мм

По происхождению различают конвективные, фронтальные и орографические осадки.

  1. Конвективные осадки характерны для жаркого пояса, где интенсивны нагрев и испарение, но летом нередко бывают и в умеренном поясе.
  2. Фронтальные осадки образуются при встрече двух воздушных масс с разной температурой и иными физическими свойствами, выпадают из более теплого воздуха, образующего циклонические вихри, типичны для умеренного и холодного поясов.
  3. Орографические осадки выпадают на наветренных склонах гор, особенно высоких. Они обильны, если воздух идет со стороны теплого моря и обладает большой абсолютной и относительной влажностью.

Типы осадков по происхождению:

I - конвективные, II - фронтальные, III - орографические; ТВ - теплый воздух, ХВ - холодный воздух.

Годовой ход осадков , т.е. изменение их количества по месяцам, в разных местах Земли не одинаков. Можно наметить несколько основных типов годового хода осадков и выразить их в виде столбиковых диаграмм.

  1. Экваториальный тип – осадки выпадают довольно равномерно весь год, сухих месяцев нет, лишь после дней равноденствия отмечаются два небольших максимума – в апреле и октябре – и после дней солнцестояния два небольших минимума – в июле и январе.
  2. Муссонный тип – максимум осадков летом, минимум зимой. Свойствен субэкваториальным широтам, а также восточным побережьям материков в субтропических и умеренных широтах. Общее количество осадков при этом постепенно уменьшается от субэкваториального к умеренному поясу.
  3. Средиземноморский тип – максимум осадков зимой, минимум – летом. Наблюдается в субтропических широтах на западных побережьях и внутри материков. Годовое количество осадков постепенно уменьшается к центру континентов.
  4. Континентальный тип осадков умеренных широт – в теплый период осадков в два-три раза больше, чем в холодный. По мере возрастания континентальности климата в центральных областях материков общее количество осадков уменьшается, а разница летних и зимних осадков увеличивается.
  5. Морской тип умеренных широт – осадки распределяются равномерно в течение года с небольшим максимумом в осенне-зимнее время. Их количество больше, чем наблюдается для этого типа.

Типы годового хода осадков:

1 - экваториальный, 2 - муссонный, 3 - средиземноморский, 4 - континентальный умеренных широт, 5 - морской умеренных широт.

Литература

  1. Зубащенко Е.М. Региональная физическая география. Климаты Земли: учебно-методическое пособие. Часть 1. / Е.М. Зубащенко, В.И. Шмыков, А.Я. Немыкин, Н.В. Полякова. – Воронеж: ВГПУ, 2007. – 183 с.


← Вернуться

×
Вступай в сообщество «servizhome.ru»!
ВКонтакте:
Я уже подписан на сообщество «servizhome.ru»