Как рассчитывают количество осадков? Атмосферные осадки. Схема и виды атмосферных осадков Жидкие атмосферные осадки

Подписаться
Вступай в сообщество «servizhome.ru»!
ВКонтакте:

Годовое количество осадков . Образование осадков и их количество на любой территории зависит от трех основных условий: влагосодержания воздушной массы, ее температуры и возможности восхождения. Эти факторы, действуя совместно, создают довольно сложную картину географического распределения осадков.
На территории Русской равнины наибольшее количество осадков (600–700 мм/год) выпадает в полосе 50–65°, с. ш. В этих широтах в течение всего года активно развиваются циклонические процессы, и переносится наибольшее количество влаги с Атлантики. Кроме того, увеличению осадков способствует наличие цепи возвышенностей (Среднерусская, Смоленско-Московская, Валдайская, Северные Увалы). К северу и к югу от этой зоны количество осадков постепенно уменьшается. На Кольском полуострове, в Архангельской области, Республике Коми и Республике Карелия годовое количество осадков составляет 400–550 мм/год. На арктическом побережье оно уменьшается до 350–370 мм/год. «Островами» повышенного количества осадков на севере Европейской части России являются Хибины (800–1000 мм/год) и Тиманский кряж (600–630 мм/год). К югу от зоны повышенного количества осадков, т.е. южнее 50° с. ш., четко прослеживается уменьшение осадков с северо-запада на юго-восток. Если на Окско-Донской равнине годовое количество осадков составляет 520–580 мм/год, то в нижнем течении Волги оно уменьшается до 200–350 мм/год.

Урал, разделяющий Русскую и Западно-Сибирскую равнины, создает меридионально вытянутую полосу повышенных сумм осадков на подветренной стороне и на вершине хребта. На Северном Урале выпадает осадков 800–900 мм/год, на Среднем и Южном Урале – 600–700 мм/год. На некотором расстоянии за хребтом проходит полоса меньшего количества осадков.

Аналогично широтному распределению осадков на Русской равнине, на территории Западной Сибири на широтах 60–65° с.ш. располагается зона повышенного количества осадков. Однако, она уже чем на Европейской части России и осадков здесь выпадает меньше, так как воздушные потоки с Атлантики теряют над Уралом часть своей влаги. В среднем течении реки Обь, в районе Ханты-Мансийска годовое количество осадков составляет 550–600 мм/год. К югу и северу от этой полосы количество осадков уменьшается. На арктическом побережье Западной Сибири годовые суммы осадков не превышают 300–350 мм/год. Практически столько же осадков выпадает на юге Западной Сибири. Однако, по сравнению с Русской равниной, область малых сумм осадков здесь значительно сдвинута к северу. На одной и той же широте (55° с.ш.) в Смоленске за год выпадает 690 мм осадков, а в Омске практически в два раза меньше – 368 мм/год.

На территории Среднесибирского плоскогорья наблюдается постепенное уменьшение осадков с запада на восток. Наибольшее количество осадков здесь выпадает на плато Путорана и на Енисейском кряже (500–600 мм/год). К востоку, включая долину реки Лена и низовья реки Алдан, количество осадков заметно уменьшается, особенно в холодный период. В обширной котловине, расположенной в центре Центрально- Якутской низменности, закрытой плоскогорьем от западных ветров, осадки составляют всего 250–300 мм/год, что характерно для степных и полупустынных районов. Уменьшение осадков прослеживается и к югу, вплоть до Забайкалья. Саяны, горы Прибайкалья и, частично, Забайкалья достаточно интенсивно увлажняются осадками из воздушных масс, поступающих с акватории Тихого океана, особенно летом и осенью. Годовые суммы осадков составляют здесь 500–550 мм. На северо-востоке Сибири чередование горных хребтов, плато, межгорных котловин и низменностей создает чрезвычайно пеструю картину распределения осадков. Наибольшее количество осадков в этом районе выпадает на западных склонах Верхоянского хребта (350–450мм/год). В районе Колымской низменности и на побережьях и Восточно-Сибирского годовые суммы осадков не превышают 200–250 мм. Очень сухими являются и межгорные котловины, разделяющие Верхоянский хребет, хребет Черского и Момский хребет.


Далее на восток, по мере приближения к окраинным морям Тихого океана, годовое количество осадков возрастает. Зимой на материковой части господствуют сухие и холодные континентальные воздушные массы, а летом – влажный тихоокеанский воздух умеренных широт. Минимальные суммы осадков в этом районе (200–250 мм/год) отмечаются на побережье . На побережьях Берингова и годовые суммы осадков возрастают до 550–600 мм/год. Однако, надо отметить, что здесь даже на небольшом расстоянии количество осадков может значительно различаться. На восточных склонах прибрежных хребтов, которые являются наветренными для влажного летнего муссона (хребты Джугджур, Колымский, Корякский), количество осадков составляет 600–700 мм/год. Менее увлажненными являются их западные склоны, где годовое количество осадков не превышает 300–400 мм. На восточных склонах Буреинского хребта выпадает 750–850 мм осадков в год. Западнее, в долине реки Зея, где влияние летнего муссона уже менее ощутимо, годовое количество осадков постепенно уменьшается до 550–650 мм/год. В Приморском крае определяющее влияние на географическое распределение осадков оказывает хребет Сихотэ- Алинь. В этом регионе наиболее интенсивные осадки выпадают на побережье и склонах Сихотэ-Алиня (850–950 мм/год). Большое количество осадков приносят сюда летом частые южные циклоны и . В центральной части Сихотэ-Алиня, в закрытых долинах и котловинах, количество осадков уменьшается на 150–200 мм/год по отношению к открытым вершинам и склонам. В направлении озера Ханка количество осадков сокращается до 550–600 мм/год. Частные циклоны, высокое влагосодержание воздуха и гористый рельеф острова Сахалин и Курильских островов делают этот регион одним из самых увлажненных в России. На Сахалине годовое количество осадков постепенно уменьшается с юга (900–1000 мм/год) на север и к долине реки Поронай (350–650 мм/год). На Курильских островах оно повсюду превышает –1000 мм/год.

Годовой ход количества осадков иллюстрируется картами сумм осадков в центральные месяцы календарных сезонов. На севере Европейской части России минимальное месячное количество осадков обычно приходится на февраль –март. Непосредственно на побережье арктических морей минимум осадков чаще наступает в марте–апреле. Максимальное количество осадков на севере Европейской части России выпадает в августе на арктическом побережье, и в сентябре – в предгорьях Урала. Осенью суммы осадков на береговой полосе больше, чем в удалении от неё. В течение остальной части года вблизи крупных водоёмов количество осадков уменьшается. Аналогичный годовой ход осадков, но на фоне большего количества осадков, наблюдается и на северо-западе России, правда, летний максимум в августе выражен более четко. В центре Европейской части России минимум осадков приходится на февраль–март. Максимальное количество осадков здесь чаще приходится на июль.

В Поволжье годовой ход осадков выражен слабо, количество осадков мало меняется от месяца к месяцу. Небольшой рост осадков заметен лишь в июле. На нижней Волге и Северном Кавказе наблюдается тенденция к появлению двух максимумов осадков в течение года: в мае–июне и в ноябре–декабре. Эти максимумы близки по величине и почти не меняются от года к году.

На Черноморском побережье Кавказа четко выражен зимний максимум осадков. Он почти в два раза превышает летний. На северо западном побережье максимальное количество осадков выпадает осенью (сентябрь–ноябрь), минимальное – в весенне-летний период.

На Урале годовой ход осадков заметно меняется, как при движении с севера на юг, так и с запада на восток. На западных склонах Урала максимальное количество осадков выпадает в июле. При этом весь период с июня по сентябрь характеризуется значительным количеством осадков (более 50 мм в месяц). За Уралом максимум также приходится на июль. Однако на фоне общего уменьшения осадков в ‘тени’ Урала он выражен более четко. Минимум осадков повсюду в этом районе наблюдается в феврале–марте, причем за Уралом количество осадков в эти месяцы составляет лишь 10–20% от летнего максимума.

Аналогичная форма годового хода осадков (четко выраженный максимум в июле и минимум – в феврале–марте) сохраняется и на равнинной части Западной Сибири. На западных склонах Алтая и Кузнецкого Алатау максимум осадков приходится на осень (октябрь–ноябрь). Однако значительное количество осадков выпадает и летом. Внутри горной страны максимальное количество осадков выпадает в июле–августе, а минимальное – в январе–феврале. Годовой ход осадков в этих горных системах отличается резкостью перехода от малых зимних осадков к значительным летним осадкам, что вообще свойственно континентальному климату.

В Восточной Сибири, на побережьях арктических морей максимальное количество осадков выпадает в августе–сентябре. При движении на юг время наступления максимума постепенно смещается на июль. На берегах озера Байкал заметно появление второго, меньшего по величине, максимума в ноябре. Минимальное количество осадков на всей территории Восточной Сибири приходится на февраль–март. Сходная форма годового хода количества осадков с максимумом в июле наблюдается во внутренних районах северо-восточной Азии. На побережье максимум осадков приходится на август.

В районах Дальнего Востока, где господствует муссонная циркуляция, годовой ход осадков также отличается значительной неравномерностью. На материке максимальное количество осадков выпадает в августе, часто составляя более 100 мм в месяц. Минимум осадков в этом районе чаще всего наблюдается в январе–феврале. При этом он не превышает 8–10 мм в месяц. На острове Сахалин максимальное количество осадков выпадает в сентябре. Однако в некоторых случаях наблюдается и второй, зимний, максимум осадков, преимущественно в декабре. Минимум осадков приходится на февраль.

Очень разнообразны формы годового хода осадков на Камчатке. Внутренние районы полуострова имеют максимум осадков в июле–августе, минимум – в марте. Прибрежные районы характеризуются двухвершинной формой годового хода, причём осенне-зимний максимум, в ноябре–декабре, значительно превышает весенний, в марте–апреле. Минимальное количество осадков здесь выпадает в феврале. Аналогичная форма годового хода количества осадков наблюдается и на Курильских островах.

Таким образом, наибольшая амплитуда годового хода осадков на территории России (30% от годового количества осадков) наблюдается в Забайкалье, на Среднесибирском плоскогорье, в Центральной Якутии, а также в прибрежных районах Дальнего Востока. Наиболее ровный годовой ход осадков наблюдается в средней полосе Европейской части России (50–60° с.ш.), его амплитуда не превышает 5–10%.


Буду благодарен, если Вы поделитесь этой статьей в социальных сетях:

Довольно часто можно услышать, что люди в Москве жалуются на погоду. То дождь, то снег норовит помешать их планам. Многие считают, что в наших широтах не самый лучший климат, а кто-то, наоборот, очень любит такие разнообразные погодные условия. Однако если обратиться к статистике, то годовое количество осадков в Москве не такое уж и большое, по сравнению со многими другими регионами. Наверное, стоит подробнее проанализировать Только после этого можно будет правильно оценить погодные условия.

Климат Москвы

Замечательный город Москва лежит в полосе В каком-то смысле жителям этих широт очень повезло, поскольку здесь крайне редко бывают сильные морозы и слишком жаркая погода. Даже если такие погодные условия наступают, то длятся они совсем непродолжительное время. Морозы в этой полосе обычно устанавливаются на период около 2-3 недель, после чего температура всё-таки начинает подниматься.

Что касается жары, то она может длиться дольше, чем холода: от 3-4 дней до вполне продолжительного времени. Иногда высокие температуры способны продержаться даже до 1,5 месяца. Главным фактором, оказывающим влияние на формирование такого климата, является в первую очередь географическое положение. Город находится на Восточно-Европейской равнине, поэтому здесь могут свободно распространяться волны как холода, так и тепла. За один год в Москве отмечается порядка 30 гроз, чаще всего в период с мая по сентябрь.

Основные черты московского климата

Теперь настало время поговорить о том,какое годовое количество осадков в Москве обычно выпадает. За 12 месяцев на территории столицы, а также на прилегающих к ней землях, выпадает от 600 до 800 мм Конечно же, существовали и рекордные показатели, которые превысили обычную цифру. Например, в 2013 году годовое количество осадков в Москве составило 891 мм, что заметно выше, чем наблюдалось во все предыдущие года. Многим интересно, какой месяц является самым холодным в году. За последние 30 лет это почётное звание принадлежит февралю. этого зимнего месяца составляет -6,7 °C. Не сильно отстаёт и январь. Его средние показатели равны -6,5 °C.

Стоит поговорить и о приятном. Самым тёплым месяцем признан июль, в это время средняя температура находится на уровне +19,2 °C. Москвичи очень любят солнечную погоду, однако, часто она держится непродолжительное время. Периодически в Москве встречается такое явление, как туман. Оно появляется в течение всего года. Но чаще всего туман можно наблюдать в июне, а также осенью - в сентябре и октябре.

Общие среднегодовые показатели

Необходимо поговорить и о других показателях, которые также заметно влияют на климат города. Конечно же, это великое множество факторов, которые метеорологи тщательно фиксируют. Они собирают необходимую статистику и анализируют её, чтобы сделать дальнейшие прогнозы. Стоит отметить средние показатели за год. Итак, среднегодовые показатели Москвы следующие:

  • Температура - +5,8 °C (иногда она превышала этот порог и достигала +7 °C, подобные явления отмечались в 2008 и 2015 годах).
  • Влажность воздуха - 76%.
  • Скорость ветра - 2,3 метра в секунду.

Интересно, что существует показатель, который измеряет среднее количество солнечных часов в году. Это число составляет 1731 час. Некоторые годы наблюдения показали более 2 тыс. солнечных часов. Такой показатель был зафиксирован в 2007 и 2014 годах.

Годовое количество осадков в Москве: наименьшие показатели

Выше уже были рассмотрены средние показатели осадков в Москве. Однако интересно узнать, часто ли это число бывает меньшим. Если количество дождя и снега падает ниже среднего показателя, то можно говорить о том, что год считается засушливым. Итак, уже было сказано, что среднее годовое количество осадков в Москве составляет в разные годы от 600 до 800 мм. Самая большая их часть обычно выпадает в летний сезон, а меньше всего их можно наблюдать в марте и в апреле.

Самый сухой год, который наблюдался за всю историю измерений - 1920. Тогда годовое количество осадков в Москве в мм составило всего 336. В XXI веке самым сухим периодом пока стал 2014 год. На протяжении этого года было зафиксировано число осадков, равное 491 мм.

Как проводятся измерения?

Итак, выше были рассмотрены такие важные показатели, как среднегодовая температура, годовое количество осадков в Москве и т. д. Важно также рассмотреть вопрос, как они измеряются и где фиксируются.

В Москве расположено несколько которые занимаются непосредственно этим вопросом. Основное ведомство, показатели которого считаются официальными, это метеостанция, расположенная на ВДНХ. Её данные используются различными государственными органами для размещения информации о фактической погоде и температурных рекордах Москвы. Показания помогают рассчитывать нормы температуры и осадков на текущий период. Метеостанция на ВДНХ была открыта в 1939 году. За время существования её несколько раз переносили в разные места в пределах ВДНХ. Также производилась её реорганизация. Тем не менее она функционирует и в настоящее время.

Конец формы

72 Начало формы

С помощью карты сравните среднегодовое количество атмосферных осадков в точках, обозначенных на карте цифрами 1, 2, 3. Расположите эти точки в порядке увеличения количества осадков, выпадающих в них.

Среднее годовое количество атмосферных осадков (мм)

Конец формы

73 Начало формы В каком из перечисленных высказываний содержится информация о климате территории? 1) До конца текущей недели в Красноярском крае сохранятся сильные морозы. 2) Лето в Якутске жаркое, а зима, напротив, очень морозная, малоснежная. 3) В ближайшие дни атлантический циклон принесёт потепление и атмосферные осадки в Уральский регион. 4) Прошедшие на этой неделе в Москве снегопады стали одними из самых сильных за эту зиму. Конец формы
74 Начало формы В каком из перечисленных высказываний содержится информация о климате территории? 1) В конце недели в Иркутской области температура ночью будет понижаться до –51С°. 2) Вчера в Москве день был жаркий и безоблачный, но ночью опустился туман и выпала роса. 3) Летом муссоны приносят большое количество атмосферных осадков на территорию страны. 4) Изменение температуры воздуха на побережье завтра будет сопровождаться изменением направления ветра и выпадением атмосферных осадков. Конец формы

Начало формы

75 Начало формы

Начало формы

Определите, какое атмосферное давление будет наблюдаться на вершине горы высотой 700 метров, если у её подножья его значение составляет 760 мм рт. столба и известно, что давление изменяется на 10 мм на каждые 100 м. Ответ запишите в виде числа.



76Начало формы

Повышенное атмосферное давление характерно для погодных условий территорий, находящихся под влиянием

1) циклонов

2) антициклонов

3) холодных атмосферных фронтов

4) тёплых атмосферных фронтов

78Начало формы

В каком из обозначенных на рисунке буквами пунктов будет выпадать наименьшее количество атмосферных осадков?

1) А 2) В 3) С 4) D

79Конец формы

Начало формы

Приведите пример климатического пояса, в пределах которого в течение года сменяются два типа воздушных масс.

Конец формы

Конец формы

81 Начало формы

Приведите пример климатического пояса, в пределах которого круглый год господствуют воздушные массы одного и того же типа.

Конец формы

Конец формы

Конец формы

84 Начало формы Определите, какое атмосферное давление будет на вершине горы, обозначенной на рисунке буквой А, если у подножия горы его значение составляет 760 мм рт.ст., и известно, что атмосферное давление понижается на 10 мм на каждые 100 м. Ответ запишите в виде числа. Конец формы

85 Начало формы

Определите, какая температура воздуха будет на вершине горы, обозначенной на рисунке буквой А , если у подножия горы её значение составляет 12 °С, и известно, что температура воздуха понижается на 0,6°С на каждые 100 м. Ответ запишите в виде числа.

Конец формы

Конец формы

87 Начало формы Атмосферное давление на вершине горы в точке, обозначенной на рисунке буквой А, составляет 690 мм рт.ст. Определите относительную высоту точки А (в метрах), если известно, что атмосферное давление в точке Б у подножия горы составляет 750 мм, а также, что атмосферное давление понижается на 10 мм на каждые 100 м подъема. Ответ запишите в виде числа. Конец формы

Конец формы

Конец формы

Конец формы

Конец формы

281C9D

Конец формы

Конец формы

Начало формы

Конец формы

Конец формы

Конец формы

Начало формы

Конец формы

Конец формы

Начало формы

Конец формы

Конец формы

Начало формы

Конец формы

Конец формы

Конец формы

Начало формы

Конец формы

Конец формы

Начало формы

Конец формы

Конец формы

Начало формы

Конец формы

Начало формы

Конец формы

Пункт А

Виды климатических осадков необходимо рассматривать в неразрывной связи с понятием «погода». Именно эти элементы являются основополагающими, если рассматривать условия конкретного региона.

Под понятием «погода» подразумевают состояние атмосферы в конкретном месте. Формирование типа климата, его постоянство зависят от множества факторов, которые имеют свои закономерности проявления. Одинаковые условия не могут наблюдаться на отдельных участках. Виды климатических осадков различны на всех континентах Земного шара.

На климат могут влиять такие показатели, как солнечная радиация, атмосферное давление, влажность воздуха и температура, атмосферные осадки, направление и сила ветра, облачность, рельеф.

Климат

Многолетний режим погоды - это климат. Значительное влияние на него оказывает количество солнечного тепла, поступающего на поверхность Земли. Показатель этот зависит от высоты Солнца в полдень - географической широты. Самое большое количество солнечного тепла поступает на экватор, к полюсам это значение уменьшается.

Также важнейшим фактором, оказывающим влияние на погоду, является взаимная расположенность суши и моря, которая позволяет выделить морской и континентальный типы климата.

Морской (океанический) климат характерен для океанов, островов и прибрежных частей материков. Этому типу присущи малые годовые суточные колебания температур воздуха и значительное количество атмосферных осадков.

Континентальный климат характеризует материковые зоны. Показатель континентальности материка зависит от среднегодовых колебаний температуры воздуха.

Еще одним фактором, влияющим на погодные условия, можно назвать морские течения. Такая зависимость проявляется в изменении температуры воздушных масс. Имеют свой характер также и климатические осадки вблизи океана.

Именно температура воздуха - следующий фактор, влияние которого на погоду и климат трудно переоценить. Изменения термальных условий создают динамику показателей воздушного давления, формируя зоны высокого и низкого атмосферного давления. Указанными зонами переносятся воздушные массы. Разная природа встречающихся воздушных масс образует которому характерны облачность, осадки, увеличение скорости ветра и изменение температуры.

Комплексное взаимодействие вышеперечисленных факторов формирует на определенных территориях типы погодных условий.

Выделяют такие типы климата: экваториальный, тропический муссонный, тропический сухой, средиземноморский, субтропический сухой, умеренный морской, умеренный континентальный, умеренный муссонный, субарктический, арктический или антарктический.

Типы климата. Краткое описание всех типов климата

Экваториальный тип характеризуется среднегодовой температурой в рамках +26˚С, большим количеством атмосферных осадков в течение года, преобладанием теплых и влажных воздушных масс и распространен в экваториальных областях Африки, Южной Америки и Океании.

Виды осадков напрямую зависят от региона. Ниже рассмотрим типы климата, которые характерны тропической среде.

Виды тропического климата

Погода во всем мире достаточно разнообразна. Тропический муссонный имеет следующие характеристики: температура в январе - +20˚С, в июле - +30˚С, 2000 мм атмосферных осадков, преобладают муссоны. Распространен на территории Южной и Юго-Восточной Азии, Западной и Центральной Африки, Северной Австралии.

Тропическому сухому климату свойственна температура воздуха в январе +12˚С, июле - +35˚С, незначительные осадки в пределах 200 мм, преобладают пассаты. Распространен на территории Северной Африки, Центральной Австралии.

Средиземноморский тип климата можно охарактеризовать следующими показателями: температура в январе +7˚С, в июле +22˚С; 200 мм осадков, в летний период при преобладают антициклоны, в зимний - циклоны. Распространен средиземноморский климат на территории Средиземноморья, Южной Африки, Юго-Западной Австралии, Западной Калифорнии.

Температурные показатели субтропического сухого климата колеблются в пределах от 0˚С в январе до +40˚С в июле, при этом типе климата осадки не превышают 120 мм, в атмосфере преобладают сухие континентальные воздушные массы. Территория распространения этого вида погодных условий - внутренние части материков.

Умеренный отличается такими температурными показателями: от +2˚С до +17˚С, выпадением атмосферных осадков на уровне 1000 мм, ему свойственны Распространен он на территории западных частей Евразии и Северной Америки.

Показывает значительную разницу сезонных температур: -15˚С - +20˚С, атмосферные осадки в пределах 400 мм, западные ветры и распространенность на внутренних частях материков.

Умеренный муссонный демонстрирует резкие температурные колебания от -20˚С в январе до +23˚С в июле, выпадение осадков на уровне 560 мм, наличие муссонов и преобладание на востоке Евразии.

При субарктическом типе климата температуры пребывают в диапазоне от -25˚С до +8˚С, осадки - 200 мм, в атмосфере преобладание муссонов, территория - Северная Евразия и Америка.

Арктический (антарктический) тип, при котором присутствуют низкие температуры - -40˚С - 0˚С, незначительные осадки - 100 мм, антициклоны, - распространен в материковой зоне Австралии и Северном Ледовитом океане.

Рассмотренные нами типы, преобладающие на обширных территориях, определяют как макроклиматы. Помимо указанных изучаются также мезо- и микроклиматы, которые касаются относительно небольших территорий с устойчивыми погодными условиями.

Важнейшим критерием для определения типа климата являются качественные и количественные характеристики выпадающих на заданной территории атмосферных осадков.

Атмосферные осадки и их виды. Погода и понятие климата

Климат Земли неоднороден, и не последнюю роль в этом играют количественные и качественные показатели выпадающих над территорией осадков. Факторы, от которых они зависят, определяет схема. Виды атмосферных осадков зависят от следующих факторов: физической формы, место образования, характера выпадения, места происхождения.

Рассмотрим подробнее каждый из факторов.

Физические характеристики атмосферных осадков

Виды атмосферных осадков классифицируются в зависимости от их физического состояния:

  1. Жидкие, к которым можно отнести морось и дождь.
  2. Твердые - к ним относятся снег, крупа, град.
  • Дождь - водяные капли. Является наиболее распространенным видом осадков, которые выпадают из кучево-дождевых и слоисто-дождевых облаков.
  • Моросью называют микроскопические капли влаги с диаметром в сотые доли миллиметра, выпадающие из слоистых облаков или густого тумана при плюсовых температурах.
  • Преобладающей формой твердых осадков является снег, видами которого считаются снежная и ледяная крупы, выпадающие при низких температурах.
  • Град - еще одна форма твердых осадков в виде частиц льда величиной 5-20 мм. Такой вид осадков, несмотря на свою структуру, выпадает в теплое время года.

Влияние сезонности на физическое состояние атмосферных осадков

В зависимости от сезона атмосферные осадки выпадают в определенных формах. Для теплого периода характерны следующие виды: дождь, морось, роса, град. В холодное время года возможны снег, крупа, иней, изморозь, гололед.

Классификация осадков в зависимости от места образования

В верхних образовываются дождь, морось, град, крупа, снег.

На земле или близко к земле - роса, иней, морось, гололед.

Характер выпадения атмосферных осадков

По характеру выпадения атмосферные осадки можно разделить на моросящие, ливневые и обложные. Их характер зависит от множества факторов.

Моросящие осадки продолжительны и имеют слабую интенсивность, ливневые характеризуются большой интенсивностью, но малой продолжительностью, обложные имеют однотонную интенсивность без резких колебаний.

Характер и количество осадков, безусловно, влияют на погодные условия определенной местности, что, в свою очередь, отражается на общем климате. В тропиках, к примеру, дождь можно наблюдать лишь несколько месяцев в году. В остальное время печет солнце.

Климатические осадки

Климат и виды климатических осадков находятся в прямой зависимости друг от друга. Факторами, влияющими на распространение снега и дождя, являются температура, движение воздушных масс, рельеф и морские течения.

Зона экваториального климата характеризуется наибольшим количеством осадков на Земле. Этот факт обусловлен высокими температурами воздуха и большой влажностью.

Разделяют на сухой пустынный и влажный виды тропического климата. Мировой климат имеет средние показатели осадков, которые находятся в пределах 500-5000 мм.

Муссонный тип характеризуется большим количеством осадков, которые приходят со стороны океана. Погодные условия здесь имеют свою периодичность.

Арктический же беден на осадки, что объясняется наличием низких атмосферных температур.

На основании места происхождения все виды климатических осадков можно разделить на:

  • конвективные, которые преобладают на территориях с жарким климатом, но возможны и в зонах с умеренным климатом;
  • фронтальные, формирующиеся при встрече двух разнотемпературных воздушных масс, распространены в умеренных и холодных типах климата.

Подведем итог

Климат Земли, характеристика и типы климатических осадков - основные понятия, которые мы рассмотрели. На основании сказанного можно говорить о том, что Земля - это большая система, каждый из элементов которой находится в прямой или опосредованной зависимости от других. Такое понимание вопроса регламентирует применение комплексных подходов, когда рассматривают климат и виды атмосферных осадков как сферы интереса науки. Только при совокупном изучении этих факторов можно найти правильные ответы на вопросы, интересующие ученых.

Атмосферные осадки, атмосфера, погода и климат - все эти понятия тесно взаимосвязаны. При изучении невозможно упустить даже один из разделов.

Исходные данные:

Река Сура, пункт г.Пенза, площадь водосбора F = 15400 км 2 , залесенность 27%, заболоченность 1%. Среднемноголетнее количество осадков х 0 =666 мм.

Таблица 1. Среднемесячные и среднегодовые расходы и модули стока.

Период наблюдений (годы) с 1963 по 1972 год.

Сентябрь

М л/с · км 2

М а л/с · км 2

Бассейн-аналог - река Сура,с.Кадышево

Средняя многолетняя величина годового стока (норма) М о а = 3,7 л/с · км 2 , С v = 0,28

Многолетнее: U бр = 1500 млн. м 3 , Р = 80%, r = 0.

1. Определить среднюю многолетнюю величину (норму) годового стока при наличии данных наблюдений.

У нас имеются исходные данные: среднегодовые расходы воды,при этом для уменьшения объёма расчётов период наблюдений был сокращён до 10 лет.

Нормой гидрологических величин называется среднее арифметическое значение характеристик гидрологического режима за многолетний период такой продолжительности, при увеличении которой полученное среднее значение существенно не меняется.

При наличии длительных (50 - 80 лет) наблюдений и неизмененных физико-географических и хозяйственных условий, а также, если период наблюдений включает не менее двух полных циклов колебаний водности реки, величина среднего многолетнего стока вычисляется по формуле:

где Qi - средний годовой стока за i-й год;

n - число лет наблюдений.

Определяем среднюю многолетнюю величину годовых расходов реки Сура, пункт г.Пенза по данным

Напомним, что расход воды - это объём воды, протекающей через живое сечение потока в единицу времени.

Полученную норму в виде среднего многолетнего расхода воды требуется выразить через другие характеристики стока : модуль, слой, объём и коэффициент стока.

· Модуль стока - количество воды, стекающее с единицы площади водосбора в единицу времени.

Средний многолетний модуль стока вычисляем по соотношению:

л/с · км 2 , (2)

где F - площадь водосбора, км 2 (приложение 1).

· Объём стока - объём воды, стекающей с водосбора за какой-либо интервал времени.

Вычисляем средний многолетний объём стока за год:

где Т - число секунд в году, равное 31,54 · 106 с.

· Слой стока - количество воды, стекающее с водосбора за какой-либо интервал времени, равное толщине слоя, равномерно распределённого по площади этого водосбора. Слой стока выражается в мм.

Средний многолетний слой стока вычисляем по зависимости:

мм/год. (4)

· Коэффициент стока - отношение величины (объёмы или слоя) стока к количеству выпавших на площадь водосбора осадков, обусловивших возникновение стока.

Средний многолетний коэффициент стока:

где х 0 - средняя многолетняя величина осадков в год, мм. Оценка репрезентативности (достаточности) ряда наблюдений определяется величиной относительной средней квадратической ошибки средней многолетней величины (нормы) годового стока, вычисляемой по формуле:

где С v - коэффициент изменчивости (вариации) годового стока; длина ряда считается достаточной для определения Q 0 , если? 510%. Величина среднего стока при этом называется нормой стока.

Определить коэффициент изменчивости (вариации) Сv годового стока.

Коэффициент изменчивости С v характеризует отклонения стока за отдельные годы от нормы стока; он равен:

где? Q - среднеквадратическое отклонение годовых расходов от нормы стока.

Если n < 30, то

Если сток за отдельные годы выразить в виде модульных коэффициентов,

а при n < 30

Составляем таблицу для подсчёта С v годового стока реки Сура пункт г.Пенза

Данные для подсчёта С v

Годовые расходы Qi , м3/с

Коэффициент изменчивости С v годового стока реки Сура, пункт г.Пенза равен:

Относительная средняя квадратическая ошибка средней многолетней величины годового стока реки Сура за период с 1963 по 1972гг. (10 лет) равна:

Относительная средняя квадратическая ошибка коэффициента изменчивости С v при его определении методом моментов равна:

В рассматриваемом примере

Длина ряда считается достаточной для определения Q 0 и C v , если, а. Величина среднего годового стока при этом условии называется нормой стока.

Вывод : В нашем примере находится в пределах допустимого, а больше допустимой ошибки. Значит, ряд наблюдений недостаточный, необходимо удлинить его.

2. Определить норму стока при недостатке данных методом гидрологической аналогии.

Река-аналог выбирается по:

ь сходству климатических характеристик;

ь синхронности колебаний стока во времени;

ь однородности рельефа, почвогрунтов, гидрогеологических условий, близкой степени покрытости водосбора лесами и болотами;

ь соотношению площадей водосборов, которые не должны отличаться более чем в 10 раз;

ь отсутствию факторов, искажающих сток (строительство плотин, изъятие и сбросы воды).

Река-аналог должна иметь многолетний период гидрометрических наблюдений для точного определения нормы стока и не менее 6 лет параллельных наблюдений с изучаемой рекой.

Строим на миллиметровке график связи модулей исследуемой реки и реки-аналога. За годы параллельных наблюдений наносим точки в виде кружочков диаметром 1мм, справа записываем порядковый номер года. График строим в виде прямой линии усредняющей точки. Зависимости считаются удовлетворительными, если отклонения большей части точек от средней линии не превышают 15%. Затем, зная норму стока реки-аналога М о а = 3,7 л/с · км 2 , определяем норму стока, выраженную через модуль изучаемой реки, и вычисляем норму стока через расход.

По графику связи среднегодовых модулей стока р.Сура, пункт г.Пенза и р.Сура, с.Кадышево М о = 2,9 л/с · км 2 .

Коэффициент изменчивости годового стока вычисляем по формуле

где Cv - коэффициент изменчивости стока в расчётном створе;

C vа - в створе реки-аналога;

М 0а - среднемноголетняя величина годового стока реки-аналога;

А - тангенс угла наклона графика связи.

В рассматриваем примере:

Окончательно принимаем:

М 0 = 2,9 л/с · км 2 ,

Q 0 = 44,66 м 3 /с,

3. Построить и проверить кривую обеспеченности годового стока.

Для характеристики возможных колебаний стока за длительный период и определения расчётных расходов в гидрологии применяют аналитические кривые обеспеченности: биноминальную кривую обеспеченности и кривую трехпараметрического гамма-распределения. Они определяются следующими параметрами:

ь - средней величиной,

ь С v - коэффициентом изменчивости (вариации),

ь С s - коэффициентом асимметрии.

В работе требуется построить кривую обеспеченности годового стока, воспользовавшись кривой трёхпараметрического гамма-распределения. Для этого необходимо рассчитать три параметра:

ь Q 0 - среднюю многолетнюю величину (норму) годового стока,

ь С v - коэффициент изменчивости (вариации) годового стока,

ь С s - коэффициент асимметрии годового стока.

Используя результаты расчётов первой части работы для р.Сура, пункт г. Пенза, имеем Q 0 = 44,66 м 3 /с, С v = 0,35.

Коэффициент асимметрии С s характеризует несимметричность гидрологического ряда и определяется путём подбора, исходя из условия наилучшего соответствия аналитической кривой с точками фактических наблюдений; для рек, расположенных в равнинных условиях, при расчёте годового стока наилучшие результаты дает соотношение С s = 2С v . Поэтому понимаем для р.Сура, пункт г.Пенза: С s = 2С v = 2 · 0,35 = 0,70 с последующей проверкой.

Ординаты кривой определяем в зависимости от коэффициента С v (в примере С v =0,35) по таблицам, составленным С.Н. Крицким и М.Ф. Менкелем для С s = 2С v Для повышения точности кривой необходимо учитывать сотые доли С v и провести интерполяцию между соседними столбцами цифр (таблица 2).

§ для Р = 0,01

§ для Р = 0,1

§ для Р = 1

§ для Р = 5

§ для Р = 10

§ для Р = 25

§ для Р = 50

§ для Р = 75

§ для Р = 80

§ для Р = 90

§ для Р = 95

§ для Р = 99

Таблица 2

Обеспеченность, Р %

Ординаты кривой

Обеспеченностью гидрологической величины называется вероятность превышения рассматриваемого значения гидрологической величины среди совокупности всех возможных её значений.

По данным таблицы 2 на миллиметровке форматом 203288 мм 2 строим теоретическую кривую обеспеченности, откладывая по оси абсцисс Р (1 см - 5%), а по оси ординат - К р. Построенная кривая в верхней и нижней частях имеет большую кривизну, что затрудняет пользование ею. Кривая обеспеченности на клетчатке вероятностей (рис.2) имеет более плавный вид и удобна в использовании.

Построив кривую обеспеченности на клетчатке вероятностей, проверяем её данные фактических наблюдений. Для этого модульные коэффициенты годовых расходов (из табл.1, графа 4) располагаем по убыванию в таблице 3 и для каждого из них вычисляем его фактическую обеспеченность по формуле:

Р = m / (n + 1) · 100%, (12)

где Р - обеспеченность члена ряда, расположенного в порядке убывания;

m - порядковый номер члена ряда;

n - число членов ряда.

Таблица 3.

Модульные коэффициенты по убыванию К

Фактическая обеспеченность

Годы соответствующие К

Вывод: Как видно на рис.2, нанесённые точки усредняют теоретическую кривую; значит, кривая построена правильно и соотношение С s = 2C v соответствует действительности. В противном случае необходимо изменить соотношение С s к C v и вновь построить теоретическую кривую обеспеченности.

4. Рассчитать внутригодовое распределение стока методом компоновки для целей орошения с расчётной вероятностью превышения Р = 80%. Для расчёта используем исходные данные среднемесячные расходы воды (приложение 1). Расчёт делится на две части: межсезонное распределение, имеющее наиболее важное значение; внутрисезонное распределение (по месяцам и декадам), устанавливаемое с некоторой схематизацией. Межсезонное распределение. В зависимости от типа внутригодового распределения стока год делится на два периода: многоводный и маловодный (межень). В зависимости от цели использования один из них назначается лимитирующим. Лимитирующий - это наиболее напряжённый с точки зрения водохозяйственного использования период (сезон). Для целей осушения лимитирующим периодом является многоводный; Для целей орошения, энергетики - маловодный. В период включается один или два сезона. На реках с весенним половодьем для целей орошения выделяются: многоводный период (он же сезон) - весна; и маловодный (лимитирующий) период, включающий в себя сезоны - лето - осень и зима, причём лимитирующим сезоном при орошении является лето - осень (при энергетическом использовании - зима).

Расчёт выполняется по гидрологическим годам, т.е. по годам, начинающимся с многоводного сезона. Сроки сезонов назначаются едиными для всех лет наблюдений с округлением их до целого месяца. Продолжительность многоводного сезона назначается так, чтобы в границах сезона помещалось половодье как в годы с наиболее ранним сроком наступления, так и с наиболее поздним сроком окончания.

В задании продолжительность сезона, можно принять следующий:

  • · весна (апрель, май, июнь);
  • · лето - осень (июль, август, сентябрь, октябрь, ноябрь);
  • · зима (декабрь и январь, февраль, март следующего года).

Величина стока за отдельные сезоны и периоды определяется суммой среднемесячных расходов (таблица 4). В последнем году к расходу за декабрь прибавляются расходы за три месяца (I, II, III) первого года.

При расчёте по методу компоновки внутригодовое распределение стока принимается из условия равенства вероятности превышения стока за год, стока за лимитирующий период и внутри его за лимитирующий сезон. Поэтому необходимо определить расходы заданной проектом обеспеченности (в задании Р = 80%) для года, лимитирующих периода и сезона. Следовательно, требуется рассчитать параметры кривых обеспеченности (Q o , C v и C s) для лимитирующих периода и сезона (для годового стока параметры вычислены в первой части задания). Вычисления производятся методом моментов в табл.4 по схеме, изложенной выше для годового стока (см. табл.1).

Таблица 4. Расчёт внутригодового распределения стока методом компоновки (межсезонное распределение). река Сура, пункт г.Пенза по данным с 1963 по 1972 гг. (10 лет).

Расходы за лимитирующий сезон лето - осень

Сток лето - осень

Расходы за сезон весна

Весеннийсток

§ Параметры кривой обеспеченности для годового стока.

гидрологический сток орошение

; С s = 2С v = 2 · 0,27= 0,54.

Определяем ординату кривых трехпараметрического гамма-распределения для С v годового стока:

§ Параметры кривой обеспеченности для лимитирующего периода.

С s = 2С v = 2 · 0,18 = 0,36

Определяем ординату кривых трехпараметрического гамма-распределения для С v меженного стока:

§ Параметры кривой обеспеченности для лимитирующего сезона.

; С s = 2С v = 2 · 0,26 = 0,52

Определяем ординату кривых трехпараметрического гамма-распределения для Сv стока лета - осени:

Определяем расчетные расходы по формулам:

годового стока Q рас год = · 12 · Q o , (13)

Q рас год = 0,70 · 12 · 44,66 = 375,144 м 3 /с;

лимитирующего периода Q рас меж = · Q меж, (14)

Q рас.меж = 0,85 · 222,39 = 189,03 м 3 /с;

лимитирующего сезона Q рас ло = · Q ло, (15)

Q рас ло = 0,77 · 121,14 = 93,28 м 3 /с.

Где,- ординаты кривых трехпараметрического гамма-распределения, снятые с таблицы соответственно для С v годового стока, С v меженного стока и С v для лета - осени.

Одним из основных условий метода компоновки, является равенство:

Q рас год = ? Q рас сез.

Однако это равенство нарушится, если расчётный сток за нелимитирующие сезоны определять также по кривым обеспеченности (ввиду различия параметров кривых).

Поэтому расчётный сток за нелимитирующий период (в задании - за весну) определяем по разности:

Q рас вес = Q рас год - Q рас меж (16)

Q рас вес = 375,14-189,03 = 186,11 м 3 /с.

А за нелимитирующий сезон (в задании - зима) определяем по разности:

Q рас зим = Q рас меж - Q рас ло (17)

Q рас зим = 189,03 - 93,28 = 95,75 м 3 /с.

Внутрисезонное распределение - принимается осредненным по каждой из трех групп водности:

  • · Многоводная группа, включающая годы с обеспеченностью стока за сезон Р
  • · Средняя по водности 33
  • · Маловодная Р > 66%.

Для выделения лет, входящих в отдельные группы водности, необходимо суммарные расходы за сезоны расположить по убыванию и подсчитать их фактическую обеспеченность (пример - табл.4). Так как расчетная обеспеченность (Р=80%) соответствует маловодной группе, дальнейший расчет можно производить для лет, входящих в маловодную группу (табл.5).

Для этого в графу «Суммарный сток» выписать расходы по сезонам, соответствующие обеспеченностям Р > 66%, а в графу «Годы» - записать годы, соответствующие этим расходам.

Среднемесячные расходы внутри сезона расположить в убывающем порядке с указанием календарных месяцев, к которым они относятся (табл.5). Таким образом, первым окажется расход за наиболее многоводный месяц, последним - за маловодный месяц.

Для всех лет произвести суммирование расходов отдельно за сезон и за каждый месяц. Принимая сумму расходов за сезон за 100%, определить процент каждого месяца А%, входящего в сезон, а в графу «Месяц» записать наименование того месяца, который повторяется наиболее часто. Если повторений нет, выписать любой из встречающихся, но так, чтобы каждый месяц, входящий в сезон, имел свой процент от сезона.

Затем, умножая расчётный расход за сезон, определённый в части межсезонного распределения стока (табл.4.), на процентную долю каждого месяца А% (табл.5), вычислить расчётный расход каждого месяца. Например:

По данным табл.5 графы «Расчетные расходы по месяцам» на миллиметровке построить расчётный гидрограф Р - 80% изучаемой реки (рис.3).

Таблица 5. Вычисление внутрисезонного распределения стока. р. Сура, пункт г.Пенза.

Суммарный сток

Среднемесячные расходы по убыванию

За весенний сезон

За летнее - осенний сезон

За зимний сезон

Расчетные расходы по месяцам

Примечание. Чтобы получить объёмы стока в млн.м 3 , следует расходы умножить: а) для 31-дневного месяца на коэффициент 2,68; б) для 30-дневнего месяца - 2,59; в) для 28-дневнего месяца - 2,42.

5. Определить расчетный максимальный расход талых вод Р = 1% при отсутствии данных гидрометрических наблюдений.

Определяют расчетный максимальный расход талых вод Р = 1% при отсутствии данных гидрометрических наблюдений по формуле:

  • § Q p - расчетный мгновенный максимальный расход талых вод заданной обеспеченности Р, м 3 /с;
  • § М р - модуль максимального расчетного расхода заданной обеспеченности Р, м 3 /с·км 2 ;
  • § h p - расчетный слой половодья, см;
  • § F - площадь водосбора, км 2 ;
  • § n - показатель степени редукции зависимости
  • § К о - параметр дружности половодья;
  • § ? 1 и? 2 - коэффициенты, учитывающие снижение максимальных расходов рек, зарегулированных озерами (водохранилищами) и в залесенных и заболоченных бассейнах;
  • § ? - коэффициент, учитывающий неравенство статистических параметров слоя стока и максимальных расходов при Р = 1%; ? = 1;
  • § F 1 - дополнительная площадь водосбора, учитывающая снижение редукции, км 2 , принимается по приложению 3.

Параметр К о определяется по данным рек - аналогов, в контрольной работе К о выписывается из приложения 3. Параметр n 1 зависит от природной зоны, определяется из приложения 3.

Расчетный слой стока половодья вычисляется по формуле:

h p =К р ·, (20)

  • § К р - ордината аналитической кривой трехпараметрического гамма-распределения заданной вероятности превышения, определяется по приложению 2 в зависимости от С v = 0,26 ,при C s =2C v =2 · 0,26 = 0,52 с точностью до сотых интерполяций между соседними столбцами;
  • § - средний слой половодья, устанавливается по рекам - аналогам или интерполяцией, в контрольной работе - по приложению 3.

Коэффициент?, учитывающий снижение максимального стока рек, зарегулированных проточными озерами, следует определять по формуле:

1/(1+Сfоз), (21)

  • § С - коэффициент, принимаемый в зависимости от величины среднего многолетнего слоя весеннего стока;
  • § f оз - средневзвешенная озерность.

Так как в расчетных водосборах нет проточных озер, а расположенная вне главного русла f оз < 2%, принимаем? = 1. Коэффициент? 1 , учитывающий снижение максимальных расходов воды в залесенных водосборах, определяется по формуле:

  • § n 2 - коэффициент редукции принимается по приложению 3.
  • § ? 1 - коэффициент, зависит от природной зоны, расположения леса на водосборе и общей залесенности f л в %, выписывается по приложению 3.

Коэффициент? 2 , учитывающий снижение максимального расхода воды заболоченных бассейнов, определяется по формуле:

  • § ? - коэффициент, зависящий от типа болот, определяется по приложению 3;
  • § f ? - относительная площадь болот и заболоченных лесов и лугов в бассейне, %.

По приложению 3, определяем F 1 = 2 км 2 ; = 80 мм; С v = 0,40; n 1 = 0,25; ? = 1, К о =0,022; ? 1 = 1,20; n 2 = 0,20; ? = 0,8;

По приложению 2, определяем: К р = 2,51;

h p = К р ·= 2,51 · 80 = 200 мм;



← Вернуться

×
Вступай в сообщество «servizhome.ru»!
ВКонтакте:
Я уже подписан на сообщество «servizhome.ru»