Как работает фазовый автофокус. Как работает автофокус

Подписаться
Вступай в сообщество «servizhome.ru»!
ВКонтакте:

Первые десятилетия фотографии камеры были большими и представляли собой простую, но громоздкую конструкцию в виде «гармошки», соединяющей объектив и кассетную часть с фотопластинкой. Перед съемкой на место фотопластинки вставлялось матовое стекло (фокусировочный экран), и фотограф вручную двигал объектив (обычно однолинзовый) для фокусировки изображения, накрывшись темным покрывалом для повышения яркости и контраста. Процесс этот был небыстрый, но и спешить особо было некуда: светочувствительность фотопластинок в то время была низкой, выдержка составляла минуты, так что снимали в основном статичные сцены — пейзажи, натюрморты и портреты людей, которым приходилось для этого сидеть неподвижно.

Ручная работа

К началу XX века чувствительность фотоматериалов увеличилась, формат уменьшился, камеры стали намного компактнее и удобнее, но сфокусировать объектив по изображению на маленьком фокусировочном экране стало сложно даже с помощью лупы. Эту проблему можно было решить несколькими путями. Во‑первых, сфокусировать объектив на гиперфокальном расстоянии, так, чтобы большая часть объектов в кадре изображалась резко. Во‑вторых, разметить шкалу расстояний на объективе и наводить резкость, выставляя нужные значения «на глаз». И, в-третьих, можно было применить принципиально новое решение, оснастив камеры устройством для измерения дистанции — дальномером. Этот несложный оптический прибор состоял из светоделительной призмы и поворотного зеркала, разнесенных на определенное расстояние (база). Фотограф, глядя в окошко дальномера, поворачивал зеркало до тех пор, пока изображения не совмещались. С помощью триангуляции, исходя из угла поворота и базы, можно было найти расстояние до объекта съемки и выставить эту дистанцию на объективе (вручную). Такими устройствами камеры начали оснащать с начала XX века, а в 1916 году в модели 3A Autographic Kodak Special конструкторы впервые механически объединили измерение расстояния с одновременной фокусировкой объектива. Настоящую популярность это приспособление получило благодаря компании Leica, которая начала снабжать свои камеры дальномерами начиная с модели Leica I (1925), — собственно, такие камеры и стали называться дальномерными.


Убрать раздвоение

В 1976 году на выставке Photokina компания Leica представила фотокамеру с системой Correfot (которую она разрабатывала с 1960 года) — первой системой автофокусировки в мире. По одной из легенд, несмотря на интерес публики, компания отказалась от ее выпуска, «потому что клиенты уже знают, как правильно фокусировать объектив». На самом деле система была просто слишком прожорлива (комплекта из шести батареек хватало менее чем на час съемок) и в целом «сырая». Поэтому первой серийной автофокусной камерой стала в 1977 году Konica C 35 AF, оснащенная системой Visitronic компании Honeywell. Система эта базировалась на классическом дальномере и триангуляции, только два изображения сводил вместе не сам фотограф, а электромеханическая автоматика, сравнивая сигналы с двух ПЗС-матриц.


Компания Canon пошла немного другим путем, решив обойтись без сложной электромеханики. В Canon AF35M (1977) появился активный автофокус, представлявший собой оптоэлектронную версию классического дальномера: светодиод излучал инфракрасный импульс, а расстояние определялось по углу его отражения от объекта, измеренного с помощью ПЗС-датчика. В следующей модели, Canon AF35ML (1981), уже использовалась пассивная автофокусировка, основанная на «твердотельной триангуляции»: никаких движущихся частей, а «сведение» изображений осуществлялось электронным способом — по разности сигналов на двух ПЗС-матрицах.


В первых дальномерных камерах фотограф совмещал изображения, считывал расстояние и выставлял полученное значение на фокусировочной шкале объектива. В камере 3A Autographic Kodak Special эти процедуры были объединены в одну.

Сдвиг по фазе

Первой автофокусной зеркальной камерой стала Minolta Maxxum 7000 (1985). В этой модели использовалась система фазовой автофокусировки (AF) через объектив (Through The Lens — TTL), которая широко применяется и сейчас. Принцип ее работы основан на том, что лучи, проходящие через две половины объектива, отражаются зеркалом и фокусируются в двух разных точках на датчике АФ — двух ПЗС-линейках. Расстояние между этими точками для идеальной фокусировки точно известно, и если измеренная дистанция между пиками не совпадает с этим значением, система управления начинает двигать объектив в нужном направлении до тех пор, пока пики не окажутся на нужных местах. В реальной жизни, конечно, все намного сложнее — изображение представляет собой не точку, может быть расположено не на оптической оси и т. п. Эти проблемы решаются введением различных масок и дополнительных конденсорных линз, но принцип тот же.


Автоматические дальномеры и настоящая АФ Konica C35 AF была оснащена электромеханическим дальномером с двумя ПЗС-датчиками. Сигналы с датчиков сравнивались, их совпадение означало точную фокусировку.

Фазовый автофокус очень быстрый (система сразу знает, в каком направлении нужно двигать объектив, и благодаря этому даже может отслеживать движение объекта в кадре), не требует большой вычислительной мощности и не имеет движущихся частей. Основной недостаток этой системы — ее неуверенная работа при низком освещении, а также то, что она работает только при опущенном зеркале: в момент съемки зеркало поднимается, и весь свет через объектив попадает на пленку или матрицу, а не на датчик АF. А значит, эта система не годится для тех случаев, когда кадр визируется по ЖК-экрану (LiveView), то есть для большинства компактных цифровых камер и смартфонов.


А первая настоящая АФ появилась в камере Minolta Maxxum 7000. Это была полноценная система фазовой автофокусировки через объектив (TTL) — предок всех современных фазовых систем АФ.

По образу и подобию

Для цифровых камер, которые с начала 2000-х заменили пленочные, пришлось придумывать новый принцип автофокусировки. Ну, не совсем новый. Как человек наводит объектив вручную? Крутит кольцо фокусировки, пока наблюдаемая картинка не станет резкой, то есть максимально контрастной. Контрастный автофокус работает точно так же: двигает объектив, добиваясь максимальной контрастности картинки на светочувствительной матрице.


Такая система работает с основной матрицей и не требует сложных оптических схем и дополнительных датчиков. Но, в отличие от фазовой автофокусировки, она не может определить заранее, в какую сторону следует двигать объектив, и начинает это делать в случайном направлении — точно так, как это делал бы человек. Поэтому скорость фокусировки иногда оставляет желать лучшего — особенно в условиях недостаточного освещения или при съемке малоконтрастных объектов, когда система просто не может «рассмотреть» резкие детали (в точности как человек). Тем не менее долгое время для компактных цифровых камер и особенно смартфонов альтернатив контрастной автофокусировке просто не существовало.


Камера Canon EOS 70D стала первой моделью, оснащенной системой типа Dual Pixel CMOS AF. В отличие от гибридной системы АФ, которая использует специальные выделенные фотодиоды на общей КМОП-матрице, АФ с «двойными пикселями» и для фокусировки, и для фотосъемки задействует все фотодиоды матрицы.

Гибридный подход

В 2010 году компания Fujifilm выпустила камеру FinePix F300EXR с новой, гибридной системой автофокусировки. На матрице камеры, помимо обычных светочувствительных фотодиодов (пикселей), были равномерно разбросаны два типа специализированных — «правые» и «левые», то есть воспринимающие свет только от правой или левой части объектива (другая часть закрыта непрозрачной маской). Система АF сравнивала изображение на субматрицах, образованных «левыми» и «правыми» пикселями. Точное совпадение этих двух изображений говорит о точной фокусировке, а смещение показывает, насколько и в какую сторону следует сместить объектив. Похоже на фазовую АF, не так ли? Почти, но не совсем: разрешающая способность субматриц существенно меньше, чем всей матрицы, и при очень малых отклонениях от точной фокусировки система неспособна увидеть разницу, так что на финальном этапе используется фокусировка по контрасту.


Ничего лишнего

Гибридный автофокус выгодно сочетает достоинства фазовой и контрастной систем АF, однако имеет и недостатки. Для улучшения работы АФ нужно увеличить количество пикселей, которые «работают» только на 50%, а это приводит к уменьшению общей светочувствительности матрицы. Но разработчики матриц придумали остроумный способ обойти это ограничение.

В 2013 году в камере Canon EOS 70D была впервые опробована система Dual Pixel CMOS AF. А в 2016 году на рынке появился первый смартфон с камерой, оснащенной системой Dual Pixel, — флагман Samsung Galaxy S7.


Существует способ сделать так, чтобы «всё было резко» вовсе без автофокусировки. В эпоху пленочных камер дешевые модели обычно снабжались простым объективом с фиксированной фокусировкой (focus-free) на гиперфокальном расстоянии. Такой объектив позволяет более-менее резко изображать все объекты, находящиеся на расстоянии от половины гиперфокального (обычно 0,5−1 м) до бесконечности. Подобными же объективами снабжались и дешевые цифровые камеры, и первые смартфоны с камерами. Однако этот принцип применим только для дешевых широкоугольных объективов с большим минимальным значением диафрагмы. Другой случай — это использование пленоптической камеры, или «камеры светового поля». Она фиксирует не только распределение освещенности в фокальной плоскости, но и направление пришедших лучей (световое поле). Такое изображение можно позднее «перефокусировать» любым нужным образом (в любой плоскости). Идея подобных камер была выдвинута в 1908 году, а несколько лет назад компания Lytro решила производить цифровые версии, хотя особого распространения они пока не получили.

Каждый пиксель матрицы Dual Pixel состоит из двух отдельных фотодиодов — «правого» и «левого». Таким образом, при автофокусировке вся матрица делится на две субматрицы, «правую» и «левую», с таким же разрешением, как и основная матрица. Сравнение сигналов с двух половинок обеспечивает точность выше, чем у гибридных, а скорость гораздо выше, чем у контрастных систем АF (скажем, в Samsung Galaxy S7 время фокусировки составляет менее 0,2 с). Поскольку Dual Pixel является фазовой системой АF, она позволяет отслеживать движение объекта в кадре. А в момент съемки обе субматрицы работают как единое целое, не происходит никакого падения светочувствительности, что важно для смартфонов с их небольшими матрицами. Поэтому такая система на сегодняшний день представляет собой вершину эволюции систем АF. Конечно, до тех пор, пока инженеры опять не придумают что-нибудь новое.


Сонары, радары и лидары

Отдельную ветку на эволюционном древе автофокусировки занимают внешние (относительно оптической системы камеры) дальномеры с прямым измерением расстояния. Одной из первых фотокамер с системой автофокусировки стала модель Polaroid SX-70 Sonar OneStep (1978), оснащенная, как понятно из ее названия, дальномером на основе ультразвукового сонара. Архаика? Вовсе нет, сонарные дальномеры для камер существуют и сейчас. Их выпускает, например, компания RedRockMicro — правда, не для автоматической, а для дистанционной ручной фокусировки профессиональных камер. Более новый принцип определения расстояния, лазерная локация, сейчас активно используется не только в строительной и военной технике, но и в некоторых смартфонах (LG G3) — в дополнение к обычной системе контрастной автофокусировки. В патентах Sony упоминается радарная автофокусировка, но серийных образцов подобного типа на рынке не представлено.

Редакция благодарит Markus Kohlpayntner за помощь в подготовке статьи.

Многие мои читатели жалуются на плохую работу автофокуса в камере. Давайте разберем в общих чертах как работает система автофокуса в современных зеркальных камерах и вообще способы наводки на резкость в сложных случаях.

Если понимать логику работы этой системы, то вы будете знать как «лечить» такие проблемы.

В настоящее время в фотокамерах используется в основном два типа пассивных автофокусов. Контрастный и Фазовый. Совсем недавно появились еще их сочетания, когда грубая наводка на фокус идёт с помощью фазового метода (самого быстрого), а супер-точная с помощью контрастного.

Потому неплохо будет осветить оба метода, а заодно мы разберемся, почему по LiveView можно настроить фокус идеально даже тогда, когда в видоискателе мы получаем стабильную ошибку фокуса и автофокус тоже работает с ошибкой (фронт/бек автофокуса).

Во-первых контрастным методом автофокуса пользуются почти все беззеркальные камеры. Опять же в последнее время стали некоторые из них оснащать более быстрым фазовым методом определения фокуса.

Суть контрастного метода связана с его названием, т.е. камера определяет в фокусе ли изображение по положению линз объектива при котором достигается максимальный контраст изображения. При этом контраст определяется по конечному изображению на матрице камеры или его участкам (центральному, например).
(Какие это участки вне нашей «глубины» статьи)

режим LiveView

На картинке показана зеркальная камера в режиме «LiveView», с поднятым зеркалом, когда мы настраиваем фокус по экрану. Тоже самое происходит на беззеркальной камере, только в автоматическом режиме.

С одной стороны, раз мы настраиваем фокус по конечному изображению на матрице камеры, то точность достигается идеальная, но с другой стороны, для того, чтобы понять в какую сторону контраст изображения увеличивается, при перемещении линз объектива, а в какую падает, нам (фотокамере) приходится двигать линзы объектива и сравнивать полученные изображения.


1 — объектив
2 — основное зеркало (в данном случае в поднятом положении)
3 — затвор камеры
4 — сенсор камеры

Как выглядит работа контрастного автофокуса

Камера открывает затвор и получает картинку. По картинке камера не может сказать, в какую сторону ей двигать линзы, чтобы получить более контрастное изображение, а соответственно и более точный фокус. Потому камера просто двигает линзы в определенном направлении, например, вперед. После этого опять считывает изображение и сравнивает значение контраста картинки с изначальным. Если контраст упал, значит мы двигаем линзы не в ту сторону. И камера смещает линзы в обратном направлении, дальше, чем они были в самом начале на определенное расстояние (определяется прошивкой камеры). Опять сравнивает картинку — перелет или недолет?

Есть определенная методика, как с помощью минимального количества таких «пристрелов» попасть в нужное место, в фокус. Но мы не будем углубляться, так как это нам не нужно на данный момент. Кто хочет — может сам поискать, я уже не помню и название метода.

Последовательность шагов в контрастном методе определения правильного фокуса отличается для разных производителей камер. Можно делать большие скачки и постепенно уменьшать диапазон, отлавливая максимум контраста (напоминает методику поиска собакой), а можно пройтись по всему диапазону фокусировки последовательно маленькими шажками, пока не переступишь порог за которым начнется падение контраста.

Предлагаю подвигать ползунки на данной анимации, любезно предоставленной Стэнфордским университетом

К сожалению, у Вас не установлен flash плеер.

Но зеркальные камеры в основном полагаются как раз на фазовый метод определения фокуса, который гораздо быстрее работает, так что мы перейдем к нему.

Фазовый метод автофокуса отличается от контрастного метода тем, что позволяет на одном единственном измерении сделать вывод в какое место нужно переместить линзы объектива для достижения оптимального фокуса.

Ниже представлена схема фазового автофокуса. Многие видели основное зеркало фотокамеры, которое поднимается в момент съемки и издаёт хлопающий звук, но все ли знают про дополнительное зеркало, которое обеспечивает работу фазового автофокуса в зеркальных камерах?

То, что на схеме выглядит как маленькая спичка, прикрепленная к середине большой спички (основное зеркало) на самом деле небольшое зеркало, которое работает за счет полупрозрачного окошка в основном зеркале.


Где же находится это окошко? Давайте посмотрим.

В продолжении вы узнаете, как настраивать автофокус, что можно делать, а что не стоит.

(продолжение на следующей странице)

© 2014 сайт

Автофокус или автоматическая фокусировка для большинства фотографических сюжетов является более предпочтительным решением по сравнению с ручной фокусировкой. В умелых руках автофокус осуществляет наводку на резкость точнее, а, главное, быстрее, чем среднестатистический фотограф. Однако автофокус далеко не так прост, как это может показаться начинающему фотолюбителю, и правильное его использование весьма далеко от принципа point-and-shoot. Существует ряд тонкостей, которые следует усвоить, если вы хотите, чтобы автофокус перестал жить своей собственной жизнью и начал делать то, что вы от него хотите.

Я настоятельно рекомендую вам перечитать тот раздел инструкции к вашему фотоаппарату, который посвящён автофокусу – это одни из самых полезных страниц во всём руководстве, и информацией, содержащейся там, не стоит пренебрегать. Как минимум, вы должны представлять, какие органы управления отвечают за переключение между различными режимами работы автофокуса и выбор нужной вам фокусировочной точки.

Большинство фотоаппаратов имеют два основных режима автофокуса: одиночный и следящий.

Одиночный или покадровый автофокус (в камерах Nikon он называется Single Servo AF (S), а в аппаратах Canon – One-shot AF) предназначен для съёмки неподвижных сцен, таких как, например, большинство пейзажей. При нажатии кнопки спуска наполовину камера фокусируется на объекте, расположенном в пределах заранее выбранной фокусировочной точки, после чего фокус блокируется, позволяя вам изменить компоновку кадра (не меняя, разумеется, расстояния до объекта) и лишь затем спустить затвор.

Следует понимать, что на самом деле объектив фокусируется не на объекте, как таковом, а на определённой дистанции . Таким образом, если я позволю камере навестись на некий объект, расположенный на расстоянии 5 метров от меня, то и все прочие объекты, удалённые от меня на 5 метров, т.е. лежащие в фокальной плоскости, выйдут резкими, и пока фокус заблокирован, а расстояние до объекта не меняется, я волен вертеть камерой в угоду композиции, не опасаясь сбить фокусировку.

Этот метод хорош, когда расстояние до снимаемого объекта сравнительно велико и измеряется как минимум метрами. На близких же дистанциях, неизбежных при макросъёмке , перекомпоновка кадра, влекущая за собой изменение расстояния всего в пару сантиметров, может вылиться в заметное смещение фокуса относительно объекта, что будет особенно критичным при малой глубине резкости.

Следящий или непрерывный автофокус (у Nikon – Continuous Servo AF (C), у Canon – AI Servo AF) незаменим при съёмке движущихся объектов, таких как спортсмены или животные. Пока кнопка спуска затвора остаётся полунажатой, автофокусировка продолжает работать непрерывно, удерживая объект в фокусе, даже когда дистанция между ним и вами изменяется. Блокировки фокуса при этом естественно не происходит, поскольку линзы объектива находятся в постоянном движении, отслеживая перемещения объекта.

Очевидно, что при использовании следящего автофокуса вы не можете произвольно менять компоновку кадра, т.к. если активная фокусировочная точка покинет снимаемый объект, то и фокус сместится с объекта на фон вслед за точкой. Для того, чтобы заблокировать фокус в следящем режиме автофокуса, следует использовать фокусировку задней кнопкой .

Промежуточный или автоматический режим (AF-A или AI Focus AF), который сам решает – использовать ли одиночный или следящий автофокус, – не внушает мне большого доверия, поскольку он не всегда в состоянии отличить движение камеры от движения объекта.

Точки фокусировки

Количество фокусировочных точек в современных фотоаппаратах может достигать полусотни и даже больше. Изобилие точек фокусировки это, конечно, приятно, и порою полезно, но даже если ваша камера имеет небольшое по современным меркам число точек (девять или одинадцать), вам всё равно хватит их с головой.

При съёмке неподвижных объектов я использую только одну единственную точку, чаще всего – центральную. Одна точка позволяет мне точнейшим образом сфокусироваться на нужном мне объекте или даже на отдельной его детали, а затем, заблокировав фокус, перекомпоновать кадр так, как мне того хочется.

Автоматический выбор точек фокусировки весьма удобен, когда вы спешите, но следует помнить, что камера обычно старается сфокусироваться на ближайшем к ней объекте или же на области с наибольшим контрастом, а это далеко не всегда то, чего вы хотите. Автофокус не может знать, какой из объектов является наиболее важным и требующим безусловной резкости, а какой второстепенен, и, следовательно, может остаться не в фокусе, а потому не ленитесь самостоятельно выбрать фокусировочную точку, в случае, если автоматика камеры с этим не справляется.

Я использую автовыбор фокусировочной точки только в следующих ситуациях:

  • Объект движется очень быстро, и у меня попросту нет времени выбирать точки – камера сделает это куда проворнее. Это справедливо и тогда, когда движется сам фотограф, находясь, к примеру, на борту моторной лодки.
  • Единственный объект съёмки хорошо выделяется на сравнительно монотонном фоне, как, например, птица, летящая по небу, и у автофокуса нет шансов навестись на что-нибудь постороннее.
  • Все элементы снимаемой сцены находятся на одинаково большом удалении от фотоаппарата, как, например, при съёмке с высокой горы, и разницей между расстоянием до отдельных объектов можно пренебречь.
  • Съёмка текстур, когда снимаемая поверхность размещается в фокальной плоскости, т.е. строго перпендикулярно оптической оси объектива.
  • Фотоаппарат передаётся в руки человека, не имеющего понятия об автофокусе.

Во всех остальных случаях я пользуюсь единственной фокусировочной точкой.

Следует также помнить, что форма фокусировочных точек в видоискателе фотоаппарата лишь приблизительно обозначает истинные форму и габариты датчиков автофокуса.

Приоритет фокуса или спуска

Приоритет фокуса (focus priority) означает, что при полном нажатии кнопки спуска затвора, снимок будет сделан, только если объект съёмки находится в фокусе. В противном случае затвор не сработает.

Если же включен приоритет спуска (release priority), то снимок будет сделан, когда бы вы ни нажали на кнопку, вне зависимости от того, осуществлена наводка на резкость или нет.

Обычно, согласно заводским настройкам фотоаппарата, в режиме одиночного автофокуса используется приоритет фокуса, а в режиме следящего автофокуса – приоритет спуска, но вы вольны изменять приоритеты по своему усмотрению.

Различия между контрастным и фазовым автофокусом

В цифровых фотоаппаратах используются две наиболее распространённые системы автофокуса: фазовый автофокус и контрастный. Разберёмся, чем они отличаются друг от друга.

Контрастный автофокус

Контрастный автофокус используется в компактных камерах, а также в зеркальных аппаратах в режиме Live View.

Контрастный автофокус не нуждается в каких-либо дополнительных фокусировочных датчиках и для фокусировки использует непосредственно матрицу фотоаппарата. Изображение, поступающее с матрицы, анализируется процессором камеры на предмет изменения контраста. При возникновении необходимости выполнить наводку на резкость процессор даёт команду фокусировочному мотору слегка переместить линзы объектива в произвольном направлении. Если контраст изображения при этом снизился, направление изменяется на противоположное. Если контраст повысился, движение линз продолжается в исходном направлении до тех пор, пока контраст снова не начнёт уменьшаться. В этот момент автофокус возвращает объектив на шаг назад, т.е. в то положение, в котором контраст был максимальным, после чего фокусировка считается завершённой.

В силу того, что контрастный автофокус не знает, насколько и в какую сторону следует переместить точку фокуса, он вынужден действовать наощупь, ориентируясь исключительно на изменение контраста, и, как следствие, совершать множество лишних движений. Именно поэтому основным недостатком контрастного автофокуса является низкая скорость фокусировки, делающая его совершенно непригодным для съёмки подвижных объектов.

Из преимуществ контрастного автофокуса следует отметить простоту конструкции, точность и возможность сфокусироваться практически в любой точке кадра.

Фазовый автофокус

Фазовый автофокус используется в зеркальных камерах, как в плёночных, так и в цифровых. Помимо основного зеркала, необходимого для направления изображения в видоискатель, зеркальная камера снабжается также небольшим дополнительным зеркалом, которое переотражает часть света на модуль фазового автофокуса. Всякий луч света, проходя через специальную оптическую систему, состоящую из светоделительной призмы и микролинз, разделяется на два луча, каждый из которых направляются затем непосредственно на датчики автофокуса. В случае точной наводки на резкость лучи должны падать на датчики на строго определённом расстоянии друг от друга. Если расстояние между лучами меньше эталона, это указывает на то, что объектив сфокусирован ближе, чем нужно (фронт-фокус), если расстояние больше – объектив сфокусирован дальше (бэк-фокус). Величина сдвига говорит о том, насколько далёк объектив от идеального фокуса. Таким образом, фазовый автофокус сразу предоставляет процессору информацию о том, в фокусе ли объект съёмки, а если нет, то куда и насколько нужно сместить фокусировочные линзы объектива. Это позволяет осуществить наводку на резкость одним быстрым движением.

Датчики фазового автофокуса бывают линейными и крестообразными. Линейные датчики в свою очередь делятся на горизонтальные и вертикальные. Горизонтальные датчики фокусировки чувствительны к вертикальным деталям (например, стволы деревьев), а вертикальные датчики – к горизонтальным деталям (например, линия горизонта). Крестообразные фокусировочные датчики универсальны и восприимчивы к деталям, ориентированным в любом направлении. Узнать, какие именно датчики автофокуса являются крестообразными, а какие линейными, можно из руководства к вашей камере. Наиболее чувствительный датчик всегда расположен в центре кадра.

Скорость фокусировки – главное преимущество фазового автофокуса, делающее его незаменимым при съёмке динамичных сюжетов. Основными же недостатками являются сложность и громоздкость системы автофокуса, необходимость тщательной юстировки всех её компонентов, меньшая точность по сравнению с контрастным автофокусом, ограниченное число фокусировочных точек, а также невозможность использовать классический фазовый автофокус в режиме Live View.

Гибридный автофокус

Попытки совместить преимущества фазового и контрастного автофокуса привели к появлению гибридных систем, которые используются во многих беззеркальных и некоторых зеркальных камерах.

Суть гибридного автофокуса заключается в том, что фазовые датчики интегрированы прямо в матрицу фотоаппарата. Фазовый автофокус обеспечивает первичную быструю наводку на резкость, которая затем корректируется за счёт анализа контраста изображения. При этом вся система весьма компактна и не требует механической юстировки.

Что ещё влияет на точность автофокуса?

Светосила

Точность автофокуса напрямую зависит от светосилы объектива . Используемый в современных объективах механизм прыгающей диафрагмы подразумевает, что экспозамер и наводка на резкость осуществляются при полностью открытой диафрагме, которая автоматически прикрывается до выбранного значения лишь непосредственно в момент спуска затвора. Чем больше максимальное относительное отверстие объектива, тем больше света попадает на датчики автофокуса в процессе фокусировки. За счёт того, что при большей светосиле лучи света проходят дальше от оптической оси объектива, они падают на датчики под большим углом друг к другу, что облегчает определение разницы фаз. Самые точные датчики фазового автофокуса расчитаны на работу при светосиле от f/2.8 и выше, а при светосиле ниже f/8 перестают работать любые датчики. Кроме того, большая светосила обеспечивает малую глубину резко изображаемого пространства, что опять-таки повышает точность фокусировки, поскольку отклонения от идеального фокуса становятся более очевидными.

Фокусное расстояние

Чем больше фокусное расстояние объектива , тем меньше глубина резкости. Казалось бы, это должно обеспечить более точную работу автофокуса с телеобъективами. Точность-то действительно повышается, но вместе с тем за счёт исчезающе малой глубины резкости любой промах автофокуса оказывается гораздо более заметным именно при использовании телеобъективов, и в действительности попасть в фокус с телеобъективом значительно сложнее, чем с объективом, имеющим небольшое фокусное расстояние. На практике широкоугольные объективы гораздо более толерантны к ошибкам автофокуса.

Детализация

Датчики автофокуса нуждаются в ясно различимых, контрастных деталях, по которым можно было бы выполнить наводку на резкость. Так, если объект имеет чёткие контуры или рельефную фактуру, автофокус прекрасно справится со своей задачей, а вот на плоских, монотонных поверхностях ему будет попросту не за что зацепиться.

Освещённость

Чем ярче освещена сцена, тем точнее работает автофокус. При падении освещённости снижается и уровень контраста, подлежащий оценке, что сильно затрудняет фокусировку. Когда яркость сцены составляет LV 1 (см. «Световые и экспозиционные числа »), автофокус работает из рук вон плохо, а при LV –2 и ниже пользоваться автофокусом практически невозможно и фокусироваться приходится исключительно вручную.

Фотограф

Основной фактор, лимитирующий точность автофокуса – это ваше умение им пользоваться. Никакие высокочувствительные датчики и сверхбыстрые фокусировочные моторы не заменят мастерства фотографа. Без должного навыка даже самая совершенная система автофокуса будет постоянно промахиваться.

Самое главное в использовании автофокуса – это регулярная практика. Вдумчивый подход к работе автоматики позволит вам фокусироваться быстро, точно и не без излишнего вольнодумства со стороны камеры.

Спасибо за внимание!

Василий А.

Post scriptum

Если статья оказалась для вас полезной и познавательной, вы можете любезно поддержать проект , внеся вклад в его развитие. Если же статья вам не понравилась, но у вас есть мысли о том, как сделать её лучше, ваша критика будет принята с не меньшей благодарностью.

Не забывайте о том, что данная статья является объектом авторского права. Перепечатка и цитирование допустимы при наличии действующей ссылки на первоисточник, причём используемый текст не должен ни коим образом искажаться или модифицироваться.

Система автоматической фокусировки камеры настраивает объектив, чтобы сфокусироваться на объекте и может обеспечить разницу между чётким снимком и упущенной возможностью. Несмотря на кажущуюся очевидность задачи «чёткость в точке фокусировки», скрытая работа, необходимая для фокусировки, к сожалению, далеко не так проста. Данная глава призвана повысить качество ваших снимков, обеспечив понимание принципов работы автофокуса и тем самым позволив вам извлечь максимум из его возможностей и избежать его недостатков.


Примечание: автофокус (AF) работает либо с использованием сенсоров контраста в камере (пассивный AF ), либо посылая сигнал для подсветки или оценки расстояния до объекта (активный AF ). Пассивный AF может осуществляться методами контрастного или фазового детектора, но оба метода для достижения точного автофокуса опираются на контраст; вследствие этого с точки зрения данной главы они считаются качественно идентичными. Если не указано обратное, данная глава рассматривает пассивный автофокус. Мы рассмотрим также метод вспомогательного луча активного AF ближе к концу.

Концепция: сенсоры автофокуса

Сенсор(ы) автофокуса камеры расположены в различных частях поля зрения изображения и являются целой системой, стоящей за достижением чёткого фокуса. Каждый сенсор измеряет относительный фокус по изменениям контраста в соответствующей области изображения, и максимальный контраст считается соответствующим максимальной резкости.

Изменение фокусировки: Размытие Полуфокус Резкость

400%


Гистограмма сенсора

Основы контраста изображений описаны в главе о гистограммах изображений .
Примечание: многие компактные цифровые камеры в качестве сенсора контраста используют собственно сенсор изображения (используя метод, называемый контрастным AF) и необязательно оборудованы несколькими дискретными сенсорами автофокуса (которые чаще встречаются при использовании фазового AF). Диаграмма вверху иллюстрирует контрастный метод AF; метод фазового детектора отличается от него, но тоже основывается на контрасте как критерии автофокуса.

Процесс фокусировки в общих чертах работает следующим образом:

  1. Процессор автофокуса (AFP) незначительно изменяет дистанцию фокусировки.
  2. AFP считывает сенсор AF и оценивает, как и насколько изменился фокус.
  3. Используя информацию из предыдущего шага, AFP настраивает объектив на новую дистанцию фокусировки
  4. AFP последовательно повторяет предыдущие шаги, пока не будет достигнут удовлетворительный фокус.

Весь процесс обычно занимает доли секунды. В сложных случаях камера может не достичь удовлетворительного фокуса и начнёт повторять вышеописанный процесс, что означает отказ автофокуса. Это ужасный случай «охоты за фокусом», когда камера постоянно гоняет фокус вперёд-назад, не достигая фокусировки. Однако, это не значит, что фокусировка на выбранном предмете невозможна. Следующий раздел рассматривает случаи и причины отказа автофокуса.

Факторы, влияющие на автофокус

Предмет съёмки может иметь огромное влияние на степень успешности автофокуса, зачастую даже большее, чем разница между моделями камер, объективов или параметров фокусировки. Три наиболее важных фактора, влияющих на автофокус, - это степень освещённости, контрастность предмета и движение камеры или предмета .

Пример, иллюстрирующий качество различных точек фокуса, показан слева; наведите курсор на изображение, чтобы увидеть преимущества и недостатки каждой из точек фокуса.

Заметьте, что все эти факторы взаимосвязаны; другими словами, автофокус достижим даже на слабо освещённом предмете, если он имеет при этом высокий контраст, и наоборот. Это имеет важные последствия для вашего выбора точки автофокуса: выбор точки фокуса, которая находится на чёткой границе или выраженной текстуре, поможет достичь лучшего автофокуса , при прочих равных условиях.

Пример слева выгодно отличается тем, что точки наилучшего автофокуса совпадают с положением предмета. Следующий пример более проблематичен, поскольку автофокус лучше работает на фоне, чем на предмете. Наведите курсор на изображение внизу, чтобы отметить области хорошей и плохой работы автофокуса.

На снимке справа, если сфокусироваться на быстродвижущихся источниках света за предметом, сам предмет может оказаться вне фокуса, если глубина резкости невелика (как обычно и бывает при съёмке в условиях низкой освещённости наподобие показанных).

Иначе, фокусировка на внешней подсветке предмета, возможно, была бы наилучшим подходом, за вычетом того, что эта подсветка быстро меняет расположение и интенсивность в зависимости от положения движущихся источников света.

Если сфокусировать камеру на внешней подсветке не удаётся, менее контрастной (но более статичной и достаточно хорошо освещённой) точкой фокуса могут быть выбраны ноги модели или листья на земле на одинаковом расстоянии с моделью.

Однако, вышеописанный выбор затрудняется тем, что его зачастую нужно сделать в течение долей секунды. Дополнительные специфические техники автофокусировки для неподвижных и движущихся объектов будут рассмотрены в соответствующих разделах ближе к концу этой главы.

Количество и тип точек автофокуса

Устойчивость и гибкость автофокуса в первую очередь являются результатом числа, положения и типа точек автофокуса, которые доступны в данной модели камеры. Зеркальные камеры высшего класса имеют 45 точек автофокуса и более, тогда как другие камеры могут иметь даже всего лишь одну центральную точку. Два примера расположения сенсоров автофокуса показаны ниже:

На примерах слева и справа приведены камеры Canon 1D MkII и Canon 50D/500D, соответственно.
Для этих камер автофокус невозможен для диафрагм, меньших чем f/8.0 и f/5.6.


Примечание: «вертикальным» сенсор называется только потому, что обнаруживает контраст
вдоль вертикальной линии. Ирония в том, что такой сенсор, как следствие,
наилучшим образом обнаруживает горизонтальные линии.

Для цифровых зеркальных камер количество и точность точек автофокуса может также меняться в зависимости от максимальной диафрагмы используемого объектива, как показано выше. Это важный фактор при выборе объектива: даже если вы не планируете использовать максимальную диафрагму объектива, она тем не менее может помочь камере достичь более высокой точности автофокуса . Далее, поскольку центральный сенсор автофокуса практически всегда наиболее точен, для предметов вне центра зачастую лучше всего сперва использовать этот сенсор для наведения на фокус (перед изменением композиции).

Несколько сенсоров AF могут работать одновременно для повышения надёжности или по отдельности для повышения своеобразия, в зависимости от выбранных параметров настройки камеры. У некоторых камер есть также «АвтоГРИП», вариант для групповых фотографий, который обеспечивает попадание всех точек кластера фокусировки в приемлемую степень фокуса.

Режимы AF: следящий (AI SERVO) или разовый (ONE SHOT)

Наиболее широко поддерживаемым режимом фокусировки камеры является разовый, который наилучшим образом подходит для статичных изображений. Этот режим подвержен ошибкам фокусировки для быстродвижущихся объектов, поскольку не рассчитан на движение, вдобавок он может затруднить отслеживание движущихся объектов видоискателем. Разовая фокусировка требует достижения фокуса, прежде чем снимок может быть сделан.

Многие камеры поддерживают также режим автофокуса, который непрерывно адаптирует дистанцию фокусировки для движущихся объектов. Камеры Canon называют этот режим «AI Servo», а камеры Nikon - «непрерывной» фокусировкой. Следящий режим работает на основе предположения о местоположении объекта в следующий момент времени на основании расчёта скорости движения объекта по данным предыдущих фокусировок. Камера затем фокусируется на предугаданную дистанцию с опережением для учёта скорости спуска (задержки между нажатием спуска и началом экспозиции). Это существенно повышает вероятность правильной фокусировки на движущихся объектах.

Примеры максимальных скоростей слежения показаны для различных камер Canon ниже:

Значения справедливы для идеальных контраста и освещённости при использовании объектива
Canon 300 мм f/2.8 IS L.

Вышеприведенный график можно использовать для приближённого подсчёта возможностей других камер. Действительные предельные скорости слежения зависят также от того, насколько неравномерно движение объекта, контраста и освещённости объекта, типа объектива и количества сенсоров автофокуса, используемых для слежения. Имейте также в виду, что использование следящего фокуса может значительно сократить время жизни батареи вашей камеры, так что применяйте его только при необходимости.

Вспомогательный луч автофокуса

Многие камеры комплектуются вспомогательным лучом AF, видимым или инфракрасным, который применяется в методе активного автофокуса. Это может быть очень полезно в ситуациях, когда объект недостаточно освещён или недостаточно контрастен для автофокуса, хотя использование вспомогательного луча имеет также и свои недостатки, поскольку автофокус в этом случае работает намного медленнее.

В большинстве компактных камер используется встроенный источник инфракрасного света для работы AF, тогда как цифровые зеркальные камеры часто используют встроенную или внешнюю вспышку для подсветки объекта. При использовании вспомогательной вспышки достичь автофокуса может быть затруднительно, если предмет заметно смещается между вспышками. Поэтому использование вспомогательной подсветки рекомендуется только для неподвижных объектов.

На практике: съёмка движения

Автофокус практически всегда будет лучше всего работать при съёмке движения в следящем (AI servo) или непрерывном режиме. Эффективность фокусировки может значительно повыситься при условии, что объективу не нужно осуществлять поиск в большом диапазоне дистанций фокусировки.

Пожалуй, наиболее универсальный способ этого добиться - это предварительно сфокусировать камеру на области, в которой вы ожидаете появления движущегося объекта . На примере с велосипедистом предфокус может быть осуществлён по обочине дороги, поскольку велосипедист наверняка появится поблизости от неё.

На некоторых объективах для зеркальных камер присутствует переключатель минимальной дистанции фокусировки, установка его на предельно возможную дистанцию (ближе которой предмет ни в коем случае не окажется) также повысит эффективность.

Учтите, однако, что в режиме непрерывного автофокуса снимки могут быть сделаны, даже если точная фокусировка ещё не достигнута.

На практике: портреты и другие статичные снимки

Статичные снимки лучше всего снимать в режиме разового фокуса, который гарантирует, что точный фокус был получен до начала экспозиции. Обычные требования к точке фокусировки касательно контраста и освещённости применимы и здесь, но требуется ещё и незначительная подвижность предмета съёмки.

Для портретов наилучшей точкой фокусировки является глаз, поскольку это стандарт и поскольку он обеспечивает хороший контраст. Несмотря на то, что центральный сенсор автофокуса обычно наиболее чувствителен, наиболее точная фокусировка для нецентральных объектов достигается использованием нецентральных точек фокусировки. Если использовать центральную точку фокусировки для фиксации фокуса (и далее изменять композицию), дистанция фокусировки всегда будет несколько меньше действительной, и эта ошибка нарастает с приближением объекта. Точная фокусировка особенно важна для портретов, поскольку они обычно имеют малую глубину резкости .

Поскольку наиболее общеупотребимые сенсоры автофокуса являются вертикальными, может быть уместно побеспокоиться о том, какой контраст преобладает в точке фокусировки, вертикальный или горизонтальный. В условиях малой освещённости порой автофокуса можно достичь, только повернув камеру на 90° на время фокусировки.

На примере слева ступеньки состоят преимущественно из горизонтальных линий. Если фокусироваться на дальней из передних ступенек (в расчёте на получение гиперфокального расстояния), чтобы избежать отказа автофокуса, можно на время фокусировки сориентировать камеру в ландшафтное положение. После фокусировки можно при желании повернуть камеру в портретное положение.

Заметьте, что эта глава рассматривает, как фокусироваться, а не на чём фокусироваться. За дальнейшей информацией по данному вопросу изучите главы о глубине резкости и гиперфокальном расстоянии .

Мы живем в век скоростей и высоких технологий, когда все спешат и хотят иметь все под рукой. Сегодня мы поговорим о камерах смартфонов, которые способны запечатлеть нужный кадр в нужный момент. А, поскольку мы все хотим, чтобы фотографии получались четкими, нужно кое-что выяснить про оснащение камеры. Последние несколько лет многие производители мобильных аппаратов стараются усовершенствовать технологию автофокусировки, и она заслуживает нашего пристального внимания. Давайте рассмотрим, какие существуют разновидности автоматической фокусировки, а также – какими достоинствами и недостатками обладает каждая из них.

Если коротко остановиться на том, в чем состоит основное различие между фокусом и автофокусом то здесь все просто. В данном случает речь идет о том, когда линза объектива фокусируется на определенном объекте, посредством преломления лучей благодаря чему свет собирается в одной точке. Когда все совпадает, сенсор матрицы находится в нужной точке, кадр получается детализированный и качественный. Когда фотограф фокусируется на главном объекте, настраивая объектив вручную, на фотографии делается акцент на переднем или заднем плане, в то время как остальная часть получается более размытой. Это и есть процесс фокусировки. Сегодня этот процесс значительно облегчен, поскольку за нас все может делать автоматика. Благодаря автофокусировке можно сделать четкие детализированный снимок без лишних усилий – просто наводим и щёлкаем. А, поскольку практически все современные смартфоны оснащены камерами с автоматической фокусировкой, стоит рассмотреть – каких разновидностей она бывает.

Фазовый автофокус

В основе этой технологии лежит дробление луча света, который проходит через объектив, на два потока, после чего свет попадает на светочувствительный сенсор. При этом замеряется расстояние между потоками, которые проходят через противоположные края объектива. Наводка считается окончательной, если разделенные лучи достигнут определенного расстояния, заданного датчиками. Устройство по сути само может определить, как нужно изменить положение линз, чтобы картинка получилась требуемого качества. Неопровержимым достоинством фазового автофокуса считается быстрота и точность фокусировки. Эта особенность очень важна, когда снимается движущаяся сцена. Также стоит отметить, что эта технология срабатывает быстрее, чем контрастный автофокус, о котором читайте ниже.

Тем не менее, автофокус фазового типа имеет некоторые недостатки, одним из которых можно считать сложность реализации. Для того, чтобы эта технология работала, нужна сверхточная физическая юстировка, а также скрупулезная цифровая настройка. Для хорошей реализации фазовой автоматической фокусировки требуется хорошее «железо», которым обладают не все смартфоны. К тому же, точность фазового автофокуса напрямую зависит от диафрагмы объектива, так что при недостаточном освещении эта технология не выдаст желаемого результата.

Контрастный автофокус

Работа этой технологии основана на применении специальных светочувствительных элементов, которые производят оценку контрастности кадра. Фокусировка в этом случае считается точной, когда картинка приобретает максимальную точность и контрастность по сравнению с фоном. Это решение используется в подавляющем большинстве смартфонов главным образом за счет сравнительной простоты в реализации технологии. Специальный сенсор замеряет количество света на объективе, после чего этот же сенсор должен переместить линзу пока не будет достигнут максимальный контраст. Когда достигнут максимальный контраст, значит снимаемый объект находится в фокусе. Еще раз отметим простоту использования данной технологии, для которой не требуется сложная аппаратная начинка.

Теперь добавим ложку дёгтя в эту бочку мёда, отметив некоторые недостатки, которые присущи технологии контрастного автофокуса. Сразу скажем, что это решение срабатывает несколько медленнее прочих технологий. Думает контрастный автофокус где-то в пределах секунды, в течении которой он фокусируется на снимаемом объекте. Если вы человек медлительный и никуда не спешите, то в принципе время, потраченное на фокусировку вас не будет напрягать или раздражать. Особенно, если снимаемый объект тоже никуда не спешит, улитка, например. Но, если вы двигаетесь со сверхскоростью, как супергерой Флэш, то секунда растянется для вас на целую вечность. Если вы хотели запечатлеть колибри с ее суперметаболизмом, то она за это время может просто улететь. Скорость в этой технологии страдает в основном из-за того, что оценка контрастности происходит в несколько этапов, для чего требуется некоторое время. Кроме того, контрастный автофокус лишен такой возможности, как следящая фокусировка, в сумерках или с плохой освещенностью качество фотографий вряд ли кого-то удовлетворит. Отметим, что технология контрастного автофокуса как правило применяется в смартфонах бюджетного уровня.

Лазерный автофокус

Данная технология работает за счет применения принципа лазерного дальномера, когда в функцию лазерного излучателя входит освещение снимаемого объекта, в то время как сенсор осуществляет замер расстояния до объекта с фиксацией времени, в течении которого поступает отраженный лазерный луч. Киллер фичей этой технологии можно считать затраченное время для фокусировки. В частности, лазерный автофокус способен справиться с этой задачей за 0,276 секунды. Вы уже конечно поняли, что фазовый и контрастный автофокус «нервно курят в сторонке».

Лазерный автофокус молниеносно быстрый и отлично себя зарекомендовал в условиях недостаточной освещенности. Однако, в работе с этим решением следует учитывать одну деталь – самый хороший результат можно достигнуть, только при расстоянии до снимаемого объекта в пределах 0,6 метров. А, если расстояние до объекта превышает 5 метров, то лазерный автофокус в данном случае бессилен. В таком случае вам светит только контрастный автофокус.

Если произвести разбор полётов, отметим, что при выборе смартфона в целом, а также его фотовозможностей в частности, каждый руководствуется собственными соображениями и предпочтениями. Не последнюю роль в выборе играет бюджет, который предполагается потратить. Более того, если вы фанат качественных фотографий, то камера в смартфоне в любом случае вас не удовлетворит, в таком случае нужно просто купить зеркалку.



← Вернуться

×
Вступай в сообщество «servizhome.ru»!
ВКонтакте:
Я уже подписан на сообщество «servizhome.ru»