Биосинтез белка и нуклеиновых кислот. Гены, генетический код. Что такое генетический код: общие сведения

Подписаться
Вступай в сообщество «servizhome.ru»!
ВКонтакте:

Генетический код – это система записи наследственной информации в молекулах нуклеиновых кислот, основанная на определённом чередовании последовательностей нуклеотидов в ДНК или РНК, образующих кодоны, соответствующие аминокислотам в белке.

Свойства генетического кода.

Генетический код имеет несколько свойств.

    Триплетность.

    Вырожденность или избыточность.

    Однозначность.

    Полярность.

    Неперекрываемость.

    Компактность.

    Универсальность.

Следует отметить, что некоторые авторы предлагают ещё и другие свойства кода, связанные с химическими особенностями входящих в код нуклеотидов или с частотой встречаемости отдельных аминокислот в белках организма и т.д. Однако эти свойство вытекают из вышеперечисленных, поэтому там мы их и рассмотрим.

а. Триплетность. Генетический код, как и многое сложно организованные система имеет наименьшую структурную и наименьшую функциональную единицу. Триплет – наименьшая структурная единица генетического кода. Состоит она из трёх нуклеотидов. Кодон – наименьшая функциональная единица генетического кода. Как правило, кодонами называют триплеты иРНК. В генетическом коде кодон выполняет несколько функций. Во-первых, главная его функция заключается в том, что он кодирует одну аминокислоту. Во-вторых, кодон может не кодировать аминокислоту, но, в этом случае, он выполняет другую функцию (см. далее). Как видно из определения, триплет – это понятие, которое характеризует элементарную структурную единицу генетического кода (три нуклеотидов). Кодон – характеризует элементарную смысловую единицу генома – три нуклеотида определяют присоединение к полипептидной цепочки одной аминокислоты.

Элементарную структурную единицу вначале расшифровали теоретически, а затем её существование подтвердили экспериментально. И действительно, 20 аминокислот невозможно закодировать одним или двумя нуклеотидом т.к. последних всего 4. Три нуклеотида из четырёх дают 4 3 = 64 варианта, что с избытком перекрывает число имеющихся у живых организмах аминокислот (см.табл. 1).

Представленные в таблице 64 сочетания нуклеотидов имеют две особенности. Во-первых, из 64 вариантов триплетов только 61 являются кодонами и кодируют какую либо аминокислоту, их называют смысловые кодоны . Три триплета не кодируют

аминокислот а являются стоп-сигналами, обозначающие конец трансляции. Таких триплетов три – УАА, УАГ, УГА , их ещё называют «бессмысленные» (нонсенс кодоны). В результате мутации, которая связана с заменой в триплете одного нуклеотида на другой, из смыслового кодона может возникнуть бессмысленный кодон. Такой тип мутации называютнонсенс-мутация . Если такой стоп-сигнал сформировался внутри гена (в его информационной части), то при синтезе белка в этом месте процесс будет постоянно прерываться – синтезироваться будет только первая (до стоп-сигнала) часть белка. У человека с такой патологией будет ощущаться нехватка белка и возникнут симптомы, связанные с этой нехваткой. Например, такого рода мутация выявлена в гене, кодирующем бета-цепь гемоглобина. Синтезируется укороченная неактивная цепь гемоглобина, которая быстро разрушается. В результате формируется молекула гемоглобина лишённая бета-цепи. Понятно, что такая молекула вряд ли будет полноценно выполнять свои обязанности. Возникает тяжёлое заболевания, развивающееся по типу гемолитической анемии (бета-ноль талассемия, от греческого слова «Таласа» — Средиземное море, где эта болезнь впервые обнаружена).

Механизм действия стоп-кодонов отличается от механизма действия смысловых кодонов. Это следует из того, что для всех кодоны, кодирующие аминокислоты, найдены соответствующие тРНК. Для нонсенс-кодонов тРНК не найдены. Следовательно, в процессе остановки синтеза белка тРНК не принимает участие.

Кодон АУГ (у бактерий иногда ГУГ) не только кодируют аминокислоту метионин и валин, но и является инициатором трансляции .

б. Вырожденность или избыточность.

61 из 64 триплетов кодируют 20 аминокислот. Такое трёхразовое превышение числа триплетов над количеством аминокислот позволяет предположить, что в переносе информации могут быть использованы два варианта кодирования. Во-первых, не все 64 кодона могут быть задействованы в кодировании 20 аминокислот, а только 20 и, во-вторых, аминокислоты могут кодироваться несколькими кодонами. Исследования показали, что природа использовала последний вариант.

Его предпочтение очевидно. Если бы из 64 варианта триплетов в кодировании аминокислот участвовало только 20, то 44 триплета (из 64) оставались бы не кодирующими, т.е. бессмысленными (нонсенс-кодонами). Ранее мы указывали, насколько опасно для жизнедеятельности клетки превращение кодирующего триплета в результате мутации в нонсенс-кодон — это существенно нарушает нормальную работу РНК-полимеразы, приводя в конечном итоге к развитию заболеваний. В настоящее время в нашем геноме три кодона являются бессмысленными, а теперь представьте, что было бы если число нонсенс-кодонов увеличится в примерно в 15 раз. Понятно, что в такой ситуации переход нормальных кодонов в нонсенс-кодоны будет неизмеримо выше.

Код, при котором одна аминокислота кодируется несколькими триплетами, называется вырожденным или избыточным. Почти каждой аминокислоте соответствует несколько кодонов. Так, аминокислота лейцин может кодироваться шестью триплетами - УУА, УУГ, ЦУУ, ЦУЦ, ЦУА, ЦУГ. Валин кодируется четырьмя триплетами, фенилаланин - двумя и только триптофан и метионин кодируются одним кодоном. Свойство, которое связано с записью одной и той же информации разными символами носит названиевырожденность.

Число кодонов, предназначенных для одной аминокислоты, хорошо коррелируется с частотой встречаемости аминокислоты в белках.

И это, скорее всего, не случайно. Чем больше частота встречаемости аминокислоты в белке, тем чаще представлен кодон этой аминокислоты в геноме, тем выше вероятность его повреждения мутагенными факторами. Поэтому понятно, что мутированный кодон имеет больше шансов кодировать туже аминокислоту при высокой его вырожденности. С этих позиций вырожденность генетического кода является механизмом защищающим геном человека от повреждений.

Необходимо отметить, что термин вырожденность используется в молекулярной генетики и в другом смысле. Так основная часть информации в кодоне приходится на первые два нуклеотида, основание в третьем положении кодона оказывается малосущественным. Этот феномен называют “вырожденностью третьего основания”. Последняя особенность сводит до минимума эффект мутаций. Например, известно, что основной функцией эритроцитов крови является перенос кислорода от легких к тканям и углекислого газа от тканей к легким. Осуществляет эту функцию дыхательный пигмент - гемоглобин, который заполняет всю цитоплазму эритроцита. Состоит он из белковой части – глобина, который кодируется соответствующим геном. Кроме белка в молекулу гемоглобина входит гем, содержащий железо. Мутации в глобиновых генах приводят к появлению различных вариантов гемоглобинов. Чаще всего мутации связаны с заменой одного нуклеотида на другой и появлением в гене нового кодона , который может кодировать новую аминокислоту в полипептидной цепи гемоглобина. В триплете, в результате мутации может быть заменён любой нуклеотид – первый, второй или третий. Известно несколько сотен мутаций, затрагивающих целостность генов глобина. Около400 из них связаны с заменой единичных нуклеотидов в гене и соответствующей аминокислотной заменой в полипептиде. Из них только100 замен приводят к нестабильности гемоглобина и различного рода заболеваниям от легких до очень тяжелых. 300 (примерно 64%) мутаций-замен не влияют на функцию гемоглобина и не приводят к патологии. Одной из причин этого является упомянутая выше “вырожденность третьего основания”, когда замена третьего нуклеотида в триплете кодирующем серин, лейцин, пролин, аргинин и некоторые другие аминокислоты приводит к появлению кодона-синонима, кодирующего ту же аминокислоту. Фенотипически такая мутация не проявится. В отличие от этого любая замена первого или второго нуклеотида в триплете в 100 % случаях приводит к появлению нового варианта гемоглобина. Но и в этом случае тяжёлых фенотипических нарушений может и не быть. Причиной этому является замена аминокислоты в гемоглобине на другую сходную с первой по физико-химическим свойствам. Например, если аминокислота, обладающая гидрофильными свойствами, заменена на другую аминокислоту, но с такими же свойствами.

Гемоглобин состоит из железопорфириновой группы гема (к ней и присоединяются молекулы кислорода и углекислоты) и белка - глобина. Гемоглобин взрослого человека (НвА) содержит две идентичные -цепи и две -цепи. Молекула -цепи содержит 141 аминокислотных остатков, -цепочка - 146, — и -цепи различаются по многим аминокислотным остаткам. Аминокислотная последовательность каждой глобиновой цепи кодируется своим собственным геном. Ген, кодирующий -цепь располагается в коротком плече 16 хромосомы, -ген - в коротком плече 11 хромосомы. Замена в гене, кодирующем -цепь гемоглобина первого или второго нуклеотида практически всегда приводит к появлению в белка новых аминокислот, нарушению функций гемоглобина и тяжёлым последствия для больного. Например, замена “Ц” в одном из триплетов ЦАУ (гистидин) на “У” - приведет к появлению нового триплета УАУ, кодирующего другую аминокислоту - тирозин Фенотипически это проявится в тяжёлом заболевании.. Аналогичная замена в 63 положении -цепи полипептида гистидина на тирозин приведет к дестабилизации гемоглобина. Развивается заболевание метгемоглобинемия. Замена, в результате мутации, глутаминовой кислоты на валин в 6-м положении -цепи является причиной тяжелейшего заболевания - серповидно-клеточной анемии. Не будем продолжать печальный список. Отметим только, что при замене первых двух нуклеотидов может появится аминокислота по физико-химическим свойствам похожая на прежнюю. Так, замена 2-го нуклеотида в одном из триплетов, кодирующего глутаминовую кислоту (ГАА) в -цепи на “У” приводит к появлению нового триплета (ГУА), кодирующего валин, а замена первого нуклеотида на “А” формирует триплет ААА, кодирующий аминокислоту лизин. Глутаминовая кислота и лизин сходны по физико-химическим свойствам - они обе гидрофильны. Валин - гидрофобная аминокислота. Поэтому, замена гидрофильной глютаминовой кислоты на гидрофобный валин, значительно меняет свойства гемоглобина, что, в конечном итоге, приводит к развитию серповидноклеточной анемии, замена же гидрофильной глютаминовой кислоты на гидрофильный лизин в меньшей степени меняет функцию гемоглобина - у больных возникает легкая форма малокровия. В результате замены третьего основания новый триплет может кодировать туже аминокислоты, что и прежней. Например, если в триплете ЦАУ урацил был заменён на цитозин и возник триплет ЦАЦ, то практически никаких фенотипических изменений у человека выявлено не будет. Это понятно, т.к. оба триплета кодируют одну и туже аминокислоту – гистидин.

В заключении уместно подчеркнуть, что вырожденность генетического кода и вырожденность третьего основания с общебиологических позиция являются защитными механизмами, которые заложены в эволюции в уникальной структуре ДНК и РНК.

в. Однозначность.

Каждый триплет (кроме бессмысленных) кодирует только одну аминокислоту. Таким образом, в направлении кодон – аминокислота генетический код однозначен, в направлении аминокислота – кодон – неоднозначен (вырожденный).

Однозначен

Кодон аминокислота

Вырожденный

И в этом случае необходимость однозначности в генетическом коде очевидна. При другом варианте при трансляции одного и того же кодона в белковую цепочку встраивались бы разные аминокислоты и в итоге формировались белков с различной первичной структурой и разной функцией. Метаболизм клетки перешёл бы в режим работы «один ген – несколько поипептидов». Понятно, что в такой ситуации регулирующая функция генов была бы полностью утрачена.

г. Полярность

Считывание информации с ДНК и с иРНК происходит только в одном направлении. Полярность имеет важное значение для определения структур высшего порядка (вторичной, третичной и т.д.). Ранее мы говорили о том, что структуры низшего порядка определяют структуры более высшего порядка. Третичная структура и структуры более высокого порядка у белков, формируются сразу же как только синтезированная цепочка РНК отходит от молекулы ДНК или цепочка полипептида отходит от рибосомы. В то время когда свободный конец РНК или полипептида приобретает третичную структуру, другой конец цепочки ещё продолжает синтезироваться на ДНК (если транскрибируется РНК) или рибосоме (если транскрибируется полипептид).

Поэтому однонаправленный процесс считывания информации (при синтезе РНК и белка) имеет существенное значение не только для определения последовательности нуклеотидов или аминокислот в синтезируемом веществе, но для жёсткой детерминации вторичной, третичной и т.д. структур.

д. Неперекрываемость.

Код может быть перекрывающимся и не перекрывающимся. У большинства организмов код не перекрывающийся. Перекрывающийся код найден у некоторых фагов.

Сущность не перекрывающего кода заключается в том, что нуклеотид одного кодона не может быть одновременно нуклеотидом другого кодона. Если бы код был перекрывающим, то последовательность из семи нуклеотидов (ГЦУГЦУГ) могла кодировать не две аминокислоты (аланин-аланин) (рис.33,А) как в случае с не перекрывающимся кодом, а три (если общим является один нуклеотид) (рис. 33, Б) или пять (если общими являются два нуклеотида) (см. рис. 33, В). В последних двух случаях мутация любого нуклеотида привела бы к нарушению в последовательности двух, трёх и т.д. аминокислот.

Однако установлено, что мутация одного нуклеотида всегда нарушает включение в полипептид одной аминокислоты. Это существенный довод в пользу того, что код является не перекрывающимся.

Поясним это на рисунке 34. Жирными линиями показаны триплеты кодирующие аминокислоты в случае не перекрывающегося и перекрывающегося кода. Эксперименты однозначно показали, что генетический код является не перекрывающимся. Не вдаваясь в детали эксперимента отметим, что если заменить в последовательности нуклеотидов (см. рис.34) третий нуклеотид У (отмечен звёздочкой) на какой-либо другой то:

1. При неперекрывающемся коде контролируемый этой последовательностью белок имел бы замену одной (первой) аминокислоте (отмечена звёздочками).

2. При перекрывающемся коде в варианте А произошла бы замена в двух (первой и второй) аминокислотах (отмечены звёздочками). При варианте Б замена коснулась бы трёх аминокислот (отмечены звёздочками).

Однако многочисленные опыты показали, что при нарушении одного нуклеотида в ДНК, нарушения в белке всегда касаются только одной аминокислоты, что характерно для неперекрывающегося кода.

ГЦУГЦУГ ГЦУГЦУГ ГЦУГЦУГ

ГЦУ ГЦУ ГЦУ УГЦ ЦУГ ГЦУ ЦУГ УГЦ ГЦУ ЦУГ

*** *** *** *** *** ***

Аланин – Аланин Ала – Цис – Лей Ала – Лей – Лей – Ала – Лей

А Б В

Не перекрывающийся код Перекрывающийся код

Рис. 34. Схема, объясняющая наличие в геноме не перекрывающегося кода (объяснение в тексте).

Неперекрываемость генетического кода связана с ещё одним свойством – считывание информации начинается с определённой точки – сигнала инициации. Таким сигналом инициации в иРНК является кодон, кодирующий метионин АУГ.

Следует отметить, что у человека всё-таки имеется небольшое число генов, которые отступают от общего правила и перекрываются.

е. Компактность.

Между кодонами нет знаков препинания. Иными словами триплеты не отделены друг от друга, например, одним ничего не значащим нуклеотидом. Отсутствие в генетической коде «знаков препинания» было доказано в экспериментах.

ж. Универсальность.

Код един для всех организмов живущих на Земле. Прямое доказательство универсальности генетического кода было получено при сравнении последовательностей ДНК с соответствующими белковыми последовательностями. Оказалось, что во всех бактериальных и эукариотических геномах используется одни и те же наборы кодовых значений. Есть и исключения, но их не много.

Первые исключения из универсальности генетического кода были обнаружены в митохондриях некоторых видов животных. Это касалось кодона терминатора УГА, который читался так же как кодон УГГ, кодирующий аминокислоту триптофан. Были найдены и другие более редкие отклонения от универсальности.

Кодовая система ДНК.

Генетический код днк состоит из 64 триплетов нуклеотидов. Эти триплеты называют кодонами. Каждый кодон кодирует одну из 20 аминокислот, используемых в синтезе белков. Это дает некоторую избыточность в коде: большинство аминокислот кодируется более чем одним кодоном.
Один кодон выполняет две взаимосвязанные функции: сигнализирует о начале перевода и кодирует включения аминокислоты метионина (Met) в растущую полипептидную цепь. Кодовая система днк устроена так, что генетический код может быть выражен либо как РНК-кодонами, либо кодонамиДНК. РНК-кодоны встречаются в РНК (мРНК) и эти кодоны способны читать информацию в процессе синтеза полипептидов (процесс, называемый переводом). Но каждая молекула мРНК приобретает последовательность нуклеотидов в транскрипции с соответствующего гена.

Все, кроме двух аминокислот (Met и Trp) могут быть закодированы посредством от 2 до 6 различных кодонов. Тем не менее, геном большинства организмов показывает, что определенные кодоны предпочтительны по сравнению с другими. У человека, например, аланин кодируется GCC четыре раза чаще, чем в GCG. Это, вероятно, свидетельствует о большей эффективности перевода аппарата трансляции (например, рибосомы) для некоторых кодонов.

Генетический код является почти универсальным. Те же кодоны назначены на тот же участок аминокислот и тем же сигналы пуска и остановки в подавляющем большинстве совпадают у животных, растений и микроорганизмов. Тем не менее, некоторые исключения были найдены. Большинство из них включают назначение одного или двух из трех стоп-кодонов к аминокислоте.

Лекция 5. Генетический код

Определение понятия

Генетический код - это система записи информации о последовательности расположения аминокислот в белках с помощью последовательности расположения нуклеотидов в ДНК.

Поскольку ДНК непосредственного участия в синтезе белка не принимает, то код записывается на языке РНК. В РНК вместо тимина входит урацил.

Свойства генетического кода

1. Триплетность

Каждая аминокислота кодируется последовательностью из 3-х нуклеотидов.

Определение: триплет или кодон - последовательность из трех нуклеотидов, кодирующая одну аминокислоту.

Код не может быть моноплетным, поскольку 4 (число разных нуклеотидов в ДНК) меньше 20. Код не может быть дуплетным, т.к. 16 (число сочетаний и перестановок из 4-х нуклеотидов по 2) меньше 20. Код может быть триплетным, т.к. 64 (число сочетаний и перестановок из 4-х по 3) больше 20.

2. Вырожденность.

Все аминокислоты, за исключением метионина и триптофана, кодируются более чем одним триплетом:

2 АК по 1 триплету = 2.

9 АК по 2 триплета = 18.

1 АК 3 триплета = 3.

5 АК по 4 триплета = 20.

3 АК по 6 триплетов = 18.

Всего 61 триплет кодирует 20 аминокислот.

3. Наличие межгенных знаков препинания.

Определение:

Ген - это участок ДНК, кодирующий одну полипептидную цепь или одну молекулу tPHK , r РНК или sPHK .

Гены tPHK , rPHK , sPHK белки не кодируют.

В конце каждого гена, кодирующего полипептид, находится, по меньшей мере, один из 3-х триплетов, кодирующих терминирующие кодоны РНК, или стоп-сигналы. В мРНК они имеют следующий вид: UAA , UAG , UGA . Они терминируют (оканчивают) трансляцию.

Условно к знакам препинания относится и кодон AUG - первый после лидерной последовательности. (См. лекцию 8) Он выполняет функцию заглавной буквы. В этой позиции он кодирует формилметионин (у прокариот).

4. Однозначность.

Каждый триплет кодирует лишь одну аминокислоту или является терминатором трансляции.

Исключение составляет кодон AUG . У прокариот в первой позиции (заглавная буква) он кодирует формилметионин, а в любой другой - метионин.

5. Компактность, или отсутствие внутригенных знаков препинания.
Внутри гена каждый нуклеотид входит в состав значащего кодона.

В 1961 г. Сеймур Бензер и Френсис Крик экспериментально доказали триплетность кода и его компактность.

Суть эксперимента: "+" мутация - вставка одного нуклеотида. "-" мутация - выпадение одного нуклеотида. Одиночная "+" или "-" мутация в начале гена портит весь ген. Двойная "+" или "-" мутация тоже портит весь ген.

Тройная "+" или "-" мутация в начале гена портит лишь его часть. Четверная "+" или "-" мутация опять портит весь ген.

Эксперимент доказывает, что код тршплетен и внутри гена нет знаков препинания. Эксперимент был проведен на двух рядом расположенных фаговых генах и показал, кроме того, наличие знаков препинания между генами.

6. Универсальность.

Генетический код един для всех живущих на Земле существ.

В 1979 г. Беррел открыл идеальный код митохондрий человека.

Определение:

«Идеальным» называется генетический код, в котором выполняется правило вырожденности квазидублетного кода: Если в двух триплетах совпадают первые два нуклеотида, а третьи нуклеотиды относятся к одному классу (оба - пурины или оба - пиримидины), то эти триплеты кодируют одну и ту же аминокислоту.

Из этого правила в универсальном коде есть два исключения. Оба отклонения от идеального кода в универсальном касаются принципиальных моментов: начала и конца синтеза белка:

Кодон

Универсальный

код

Митохондриальные коды

Позвоночные

Беспозвоночные

Дрожжи

Растения

STOP

STOP

С UA

А G А

STOP

STOP

230 замен не меняют класс кодируемой аминокислоты. к рываемость.

В 1956 г. Георгий Гамов предложил вариант перекрываемого кода. Согласно Гамовскому коду, каждый нуклеотид, начиная с третьего в гене, входит в состав 3-х кодонов. Когда генетический код был расшифрован, оказалось, что он неперекрываем, т.е. каждый нуклеотид входит в состав лишь одного кодона.

Достоинства перекрываемого генетического кода: компактность, меньшая зависимость структуры белка от вставки или делеции нуклеотида.

Недостаток: большая зависимость структуры белка от замены нуклеотида и ограничение на соседей.

В 1976 г. была секвенирована ДНК фага φХ174. У него одноцепочечная кольцевая ДНК, состоящая из 5375 нуклеотидов. Было известно, что фаг кодирует 9 белков. Для 6 из них были определены гены, располагающиеся друг за другом.

Выяснилось, что есть перекрывание. Ген Е полностью находится внутри гена D . Его инициирующий кодон появляется в результате сдвига считывания на один нуклеотид. Ген J начинается там, где кончается ген D . Инициирующий кодон гена J перекрывается с терминирующим кодоном гена D в результате сдвига на два нуклеотида. Конструкция называется "сдвиг рамки считывания" на число нуклеотидов, некратное трем. На сегодняшний день перекрывание показано только для нескольких фагов.

Информационная емкость ДНК

На Земле живет 6 миллиардов человек. Наследственная информация о них
заключена в 6x10 9 сперматозоидах. По разным оценкам у человека от 30 до 50
тысяч генов. У всех людей ~ 30x10 13 генов или 30x10 16 пар нуклеотидов, которые составляют 10 17 кодонов. Средняя книжная страница содержит 25x10 2 знаков. ДНК 6x10 9 сперматозоидов содержит информацию, равную по объему примерно

4x10 13 книжных страниц. Эти страницы заняли бы объем 6-и зданий НГУ. 6x10 9 сперматозоидов занимают половину наперстка. Их ДНК занимает менее четверти наперстка.

К серии статей, описывающих происхождение ГК, можно относиться как к расследованию событий, о которых у нас осталось очень немало следов. Однако для понимания этих статей необходимо немного приложить усилий для вникания в молекулярные механизмы синтеза белка. Данная статья является вступительной для серии автопубликаций, посвященных возникновению генетического кода, и с неё лучше всего начинать знакомство с этой темой.
Обычно генетический код (ГК) определяют как способ (правило) кодирования белка на первичной структуре ДНК или РНК. В литературе чаще всего пишут, что это - однозначное соответствие последовательности из трёх нуклеотидов в гене одной аминокислоте в синтезируемом белке или месту окончания синтеза белка. Однако в таком определении есть две ошибки. При этом подразумеваются 20, так называемых канонических аминокислот, которые входят в состав белков всех без исключения живых организмов. Эти аминокислоты являются мономерами белка. Ошибки следующие:

1) Канонических аминокислот не 20, а только 19. Аминокислотой мы можем называть вещество, которое одновременно содержит аминогруппу -NH 2 и карбоксильную группу - COOH. Дело в том, что мономер белка - пролин - аминокислотой не является, поскольку в нём вместо аминогруппы присутствует иминогруппа, поэтому пролин правильней называть иминокислотой. Однако в дальнейшем во всех статьях, посвящённых ГК, для удобства я буду писать о 20 аминокислотах, подразумевая указанный ньюанс. Структуры аминокислоты приведены на рис. 1.

Рис. 1. Структуры канонических аминокислот. Аминокислоты имеют константные части, обозначенные на рисунке чёрным цветом, и вариабельные (или радикалы), обозначенные красным.

2) Соответствие аминокислот кодонам не всегда является однозначным. О нарушении случаев однозначности см. ниже.

Возникновение ГК означает возникновение кодируемого синтеза белка. Это событие является одним из ключевых для эволюционного формирования первых живых организмов.

Структура ГК представлена в круговой форме на рис. 2.



Рис. 2. Генетический код в круговой форме. Внутренний круг - первая буква кодона, второй круг - вторая буква кодона, третий круг - третья буква кодона, четвертый круг - обозначения аминокислот в трехбуквенном сокращении; П - полярные аминокислоты, НП - неполярные аминокислоты. Для наглядности симметрии важен избранный порядок символов U - C - A - G .

Итак, приступим к описанию основных свойств ГК.

1. Триплетность. Каждая аминокислота кодируется последовательностью из трёх нуклеотидов.

2. Наличие межгенных знаков препинания. К межгенным знакам препинания относятся последовательности нуклеиновой кислоты, на которых трансляци я начинается или заканчивается.

Трансляци я может начаться не с любого кодона, а только со строго определённого - стартового . К стартовому кодону относится триплет AUG , с которого начинается трансляци я. В этом случае этот триплет кодирует или метионин, или другую аминокислоту - формилметионин (у прокариот), который может включаться только в начале синтеза белка. В конце каждого гена, кодирующего полипептид, находится, по меньшей мере, один из 3-х терминирующих кодонов , или стоп-сигналов : UAA, UAG, UGA. Они терминируют трансляци ю (так называется синтез белка на рибосоме).

3. Компактность, или отсутствие внутригенных знаков препинания. Внутри гена каждый нуклеотид входит в состав значащего кодона.

4. Неперекрываемость. Кодоны не перекрываются друг с другом, каждый имеет своё упорядочённое множестов нуклеотидов, которое не перекрывается с аналогичными множествами соседних кодонов.

5. Вырожденность. Обратное соответствие в направлении аминокислота-кодон неоднозначно. Это свойство называется вырожденностью. Серия - это множество кодонов, кодирующих одну аминокислоту, другими словами, это группа эквивалентных кодонов . Представим себе кодон в виде XYZ. Если XY определяет “смысл ” (т.е. аминокислоту), то кодон называется сильным . Если же для определения смысл а кодона нужен определенный Z, то такой кодон называется слабым .

Вырожденность кода тесно связана с неоднозначностью спаривания кодон-антикодон (под антикодоном подразумевается последовательность из трёх нуклеотидов на тРНК , которая может комплементарно спариваться с кодоном на матричной РНК (см. более подробно об этом две статьи: Молекулярные механизмы обеспечения вырожденности кода и Правило Лагерквиста. Физико-химическое обоснование симметрий и соотношений Румера ). Один антикодон на тРНК может узнавать отодного до трёх кодонов на мРНК.

6. Однозначность. Каждый триплет кодирует лишь одну аминокислоту или является терминатором трансляци и.

Известно три исключения.

Первое. У прокариот в первой позиции (заглавная буква) он кодирует формилметионин, а в любой другой - метионин.В начале гена формилметионин кодируется как обычным метиониновым кодоном AUG , так и ещё валиновым кодоном GUG или лейциновым UUG , которые внутри гена кодируют валин и лейцин, соответственно.

Во многих белках формилметионин отщепляется, либо удаляется формильная группа, в результате чего формилметионин превращается в обычный метионин.

Второе. В 1986 году сразу несколько групп исследователей обнаружили, что на мРНК терминирующий кодон UGA может кодировать селеноцистеин (см. рис. 3) при условии, что за ним следует особая последовательность нуклеотидов.

Рис. 3. Структура 21-й аминокислоты - селеноцистеина.

У E. coli (это латинское название кишечной палочки) селеноцистеил-тРНК в процессе трансляци и распознает в мРНК кодон UGA, но лишь в определенном контекст е: для узнавания UGA-кодона как осмысл енного важна последовательность длиной в 45 нуклеотидов, расположенная вслед за UGA-кодоном.

Рассмотренный пример показывает, что при необходимости живой организм может изменять смысл стандартного генетического кода. В этом случае генетическая информация, заключенная в генах, кодируется более сложным образом. Смысл кодона определяется в контекст е с определенной протяженной последовательностью нуклеотидов и при участии нескольких высокоспецифических белковых факторов. Важно, что селеноцистеиновая тРНК обнаружена в представителях всех трёх ветвей жизни (архей, эубактерий и эукариот), что указывает на древность происхождения селеноцистеинового синтеза, и возможно на присутствие его ещё в последнем универсальном общем предке (о нём речь пойдёт в других статьях). Скорей всего селеноцистеин встречается у всех без исключения живых организмов. Но в каждом отдельном организме селеноцистеин встречается не более, чем в паред есятков белков. Он входит в состав активных центров ферментов, в ряде гомологов которых на аналогичной позиции может функционировать обычный цистеин.

До недавнего времени считалось, что кодон UGA может считываться либо как селеноцистеин, либо кактерминальный, но недавно было показано, что у инфузории Euplotes кодон UGA кодирует или цистеин, илиселеноцистеин. См. " Генетический код допускает разночтения "

Третье исключение. У некоторых прокариот (5 видов архей и одной эубактерии - в Википедии информация сильно устарела) встречается особая кислота - пирролизин (рис. 4). Она кодируется триплетом UAG , который в каноническом коде служит терминатором трансляци и. Предполагается, что в этом случае, подобно случаю с кодированием селеноцистеина, считывание UAG как пирролизинового кодона происходит благодаря особой структуре на мРНК. Пирролизиновая тРНК содержит антикодон CTA и аминоацилируется АРСаз ой 2-го класса (про классификацию АРСаз см. статью "Кодазы помогают понять, как возник генетический код ").

UAG в качестве стоп-кодона используется редко, а если и используется, то часто за ним следует другой стоп-кодон.

Рис. 4. Структура 22-й аминокислоты пирролизина.

7. Универсальность. После того, как в середине 60-х годов прошлого века расшифровка ГК была завершена, долгое время считалось, что код одинаков во всех организмах, что указывает на единство происхождения всего живого на Земле.

Попробуем понять, почему ГК универсален. Дело в том, что если бы в организме изменилось хотя бы одно правило кодирования, то это привело бы к тому, что изменилась структура значительной части белков. Такое изменение было бы слишком кардинальным и поэтому практически всегда летальное, так как изменение смысл а только одного кодона может затронуть в среднем 1/64 часть всех аминокислотных последовательностей.

Отсюда следует одна очень важная мысль - ГК почти не менялся со времени своего формирования более 3,5 млрд. лет назад. А, значит, его структура несёт в себе след его возникновения, и анализ этой структуры может помочь понять, как именно мог возникнуть ГК.

В действительности ГК может несколько отличаться у бактерий, митохондрий, ядерный код некоторых инфузорий и дрожжей. Cейчас насчитывают не менее 17 генетических кодов, отличающихся от канонического на 1-5 кодонов Суммарно во всех известных вариантах отклонений от универсального ГК используются 18 различных замен смысл а кодона. Больше всего отклонений от стандартного кода известно у митохондрий - 10. Примечательно, что митохондрии позвоночных, плоских червей, иглокожих, кодируются разными кодами, а плесневых грибков, простейших и кишечнополостных - одним.

Эволюционная близость видов - отнюдь не гарант того, чтобы у них были сходные ГК. Генетические коды могут различаться даже у разных видов микоплазм (одни виды имеют канонический код, а другие - отличающиеся). Аналогичная ситуация наблюдается и для дрожжей.

Важно отметить, что митохондрии - потомки симбиотических организмов, которые приспособились жить внутри клеток. Они имеют сильно редуцированный геном , часть генов переселилась в ядро клетки. Поэтому изменения ГК в них становятся уже не столь кардинальными.

Обнаруженные позднее исключения представляют особый интерес с точки зрения эволюции, поскольку могу помочь пролить свет на механизмы эволюции кода.

Таблица 1.

Митохондриальные коды у различных организмов.

Кодон

Универсальный код

Митохондриальные коды

Позвоночные

Беспозвоночные

Дрожжи

Растения

UGA

STOP

Trp

Trp

Trp

STOP

AUA

Ile

Met

Met

Met

Ile

CUA

Leu

Leu

Leu

Thr

Leu

AGA

Arg

STOP

Ser

Arg

Arg

AGG

Arg

STOP

Ser

Arg

Arg

Три механизма смены аминокислоты, кодируемой кодом.

Первый - когда какой-то кодон не используется (или почти не используется) каким-то организмом в силу неравномерности встречаемости каких-то нуклеотидов (GC -состав), или комбинаций нуклеотидов. В результате такой кодон может вовсе исчезнуть из употребления (например, благодаря потере соответствующей тРНК ), а в дальнейшем может использоваться для кодирования другой аминокислоты без нанесения существенного ущерба организму. Этот механизм возможно отвечает за появление некоторых диалектов кодов у митохондрий.

Второй - превращение стоп-кодона в смысл овой. В этом случае часть у части транслируемых белков могут появиться дополнения. Однако ситуацию частично спасает то, что многие гены часто заканчиваются не одним, а двумя стоп-кодонами, поскольку возможны ошибки трансляци и, при которых стоп-кодоны считываются как аминокислоты.

Третий - возможно неоднозначное считывание определённых кодонов, как это имееют место у некоторых грибов.

8 . Связность. Группы эквивалентных кодонов (то есть кодонов, кодирующих одну и ту же аминокислоту) называются сериями . ГК содержит 21 серию, включая стоп-кодоны. В дальнейшем для определенности любая группа кодонов будет называться связной, если от каждого кодона этой группы можно перейти ко всем другим кодонам этой же группы путем последовательных замен нуклеотидов. Из 21 серии связны 18. 2 серии содержат по одному кодону, и лишь 1 серия для аминокислоты серин является несвязной и распадается на 2 две связные подсерии.


Рис. 5. Графы связности для некоторых кодовых серий. а - связная серия валина; б - связная серия лейцина; серия серина несвязная, распадается на две связных подсерии. Рисунок взят из статьи В.А. Ратнера " Генетический код как система ".

Свойство связности можно объяснить тем, что в период формирования ГК захватывал новые кодоны, которые минимально отличались от уже используемых.

9. Регулярность свойств аминокислот по корням триплетов. Все аминокислоты, кодируемые триплетами скорнем U, являются неполярными, не крайних свойств и размеров, имеюталифатические радикалы. Все триплеты с корнем C имеют сильные основы, ааминокислоты, кодируемые ими, имеют относительно малые размеры. Все триплеты с корнем A имеют слабые основы, кодируют полярные аминокислоты не малых размеров. Кодоны с корнем G характеризуются крайними и аномальнными вариантами аминокислот и серий. Они кодируют самую маленькую аминокислоту (глицин), самую длинную и плоскую (триптофан), самую длинную и «корявую» (аргинин), самую реактивную (цистеин), образует аномальную подсерию для серина.

10. Блочность. Универсальный ГК является «блоковым» кодом. Это означает, что аминокислоты со сходными физико-химическими свойствами, кодируются кодонами, отличающимися друг от друга одним основанием. Блочность кода хорошо видна на следующем рисунке.


Рис. 6. Блочная структура ГК. Белым цветом обозначены аминокислоты с алкильной группой.


Рис. 7. Цветовое представление физико-химических свойств аминокислот, основанное на значениях, описанных в кн книге Стайерса "Биохимия" . Слева - гидрофобность. Справа - способность к формированию альфа-спирали в белке. Красный, жёлтый и голубой цвета обозначают аминокислоты с большой, средней и малой гидрофобностью (слева) или соответствующей степенью способности к формированию альфа-спирали (справа).

Свойство блочности и регулярности также можно объяснить тем, что в период формирования ГК захватывал новые кодоны, которые минимально отличались от уже используемых.

Кодоны с одинаковыми первыми основаниями (приставками кодонов) кодируют аминокислоты с близкими путями биосинтеза . Кодоны аминокислот, принадлежащих к шикиматному , пируватному , аспартатному и глутаматному семействам, имеют в качестве приставок U, G, A и C, соответственно. О путях древнего биосинтеза аминокислот и его связи со свойствами современного кода см. "Древний дублетный генетический код был предопределён путями синтеза аминокислот ". На основе этих данных некоторые исследователи делают вывод о том, что на формирование кода большое влияние оказали биосинтетические взаимоотношения между аминокислотами . Однако сходство биосинтетических путей вовсе не означает сходство физико-химических свойств .

11. Помехоустойчивость. В самом общем виде помехоустойчивость ГК означает, что при случайных точковых мутациях и ошибках трансляци и не очень сильно меняются физико-химические свойства аминокислот.

Замена одного нуклеотида в триплете в большинстве случаев или не приводит к замене кодируемой аминокислоты, или приводит к замене на аминокислоту с той же полярностью.

Один из механизмов, обеспечивающих помехоустойчивость ГК - его вырожденность. Средняя вырожденность равна - число кодируемых сигналов/общее число кодонов, где к кодируемым сигналам относятся 20 аминокислот и знак терминации трансляци и. Усредненная вырожденность для всех аминокислот и знака терминации составляет три кодона на кодируемый сигнал.

Для того, чтобы количественно оценить помехоустойчивость, введём два понятия. Мутации замен нуклеотидов, не приводящие к смене класса кодируемой аминокислоты, называют консервативными. Мутации замен нуклеотидов, приводящие к смене класса кодируемой аминокислоты, называют радикальными .

Каждый триплет допускает 9 однократных замен. Всего кодирующих аминокислоты триплетов 61. Поэтому количество возможных замен нуклеотидов для всех кодонов -

61 x 9 = 549. Из них:

23 замены нуклеотидов приводят к появлению стоп-кодонов.

134 замены не меняют кодируемую аминокислоту.
230 замен не меняют класс кодируемой аминокислоты.
162 замены приводят к смене класса аминокислоты, т.е. являются радикальными.
Из 183 замен 3-его нуклеотида, 7 приводят к появлению терминаторов трансляци и, а 176 - консервативны.
Из 183 замен 1-ого нуклеотида, 9 приводят к появлению терминаторов, 114 - консервативны и 60 - радикальны.
Из 183 замен 2-го нуклеотида, 7 приводят к появлению терминаторов, 74 -консервативны, 102 - радикальны.

На основе этих расчётов получим количественную оценку помехоустойчивости кода, как отношение числа консервативных замен к числу радикальных замен. Оно равно 364/162=2.25

При реальной оценке вклада вырожденности в помехоустойчивость необходимо учитывать частоту встречаемости аминокислот в белках, которая варьирует в разных видах.

В чем причина помехоустойчивости кода? Большинство исследователей считают, что это свойство является следствием селекции альтернативных ГК .

Стивен Фриленд и Лоренс Херст генерировали случайные такие коды и выясняли, что только один из ста альтернативных кодов обладает не меньшей помехоустойчивостью по сравнению с универсальным ГК.
Еще более интересный факт обнаружился, когда эти исследователи ввели дополнительное ограничение, с тем чтобы учесть реально существующие тенденции в характере мутирования ДНК и появлении ошибок при трансляци и. При таких условиях лучше канонического кода оказался ТОЛЬКО ОДИН КОД ИЗ МИЛЛИОНА ВОЗМОЖНЫХ.
Столь беспрецедентную жизнестойкость генетического кода проще всего объяснить тем, что он сформировался в результате естественного отбора. Возможно когда-то в биологическом мире существовало множество кодов, каждый со своей чувствительностью к ошибкам. Организм, лучше справлявшийся с ними, имел больше шансов выжить, и канонический код просто победил в борьбе за существование. Это предположение кажется вполне реальным - ведь мы знаем, что альтернативные коды действительно существуют. Подробнее о помехоустойчивости см. Закодированная эволюция (С.Фриленд, Л. Херст "Закодированная эволюция".//В мире науки. - 2004, №7).

В заключение, предлагаю посчитать число возможных генетических кодов, которые можно сгенерировать для 20 канонических аминокислот. Почему-то это число нигде мне не попадалось. Итак, нам необходимо, чтобы в генерируемых ГК были обязательно 20 аминокислот и стоп-сигнал, кодируемые ХОТЯ БЫ ОДНИМ КОДОНОМ.

Мысленно будем нумеровать кодоны в каком-то порядке. Рассуждать будем следующим образом. Если у нас имеется ровно 21 кодон, то тогда каждая аминокислота и стоп-сигнал будут занимать ровно по одному кодону. В этом случае возможных ГК будет 21!

Если будет 22 кодона, то появляется лишний кодон, который может иметь один из любых 21 смысл ов, причём этот кодон может располагаться на любом из 22 мест, тогда как остальные кодоны имеют ровно по одному разному смысл у, как и для случая 21 кодонов. Тогда получим число комбинаций 21!х(21х22).

Если кодонов будет 23, то рассуждая аналогично, получим, что 21 кодон имеют ровно по одному разных смысл ов (21! вариантов), а два кодона - по 21 разных смысл а (21 2 смысл ов при ФИКСИРОВАННОМ положении этих кодонов). Число различных положений для этих двух кодонов будет 23х22. Общее число вариантов ГК для 23 кодонов - 21!х21 2 х23х22

Если кодонов будет 24 - то число ГК будет равно 21!х21 3 х24х23х22,...

....................................................................................................................

Если кодонов будет 64, то число возможных ГК будет 21!х21 43 х64!/21! = 21 43 х64! ~ 9.1х10 145

Генетический код, выраженный в кодонах, это система кодирования информации о строении белков, присущая всем живым организмам планеты. Его расшифровка заняла десятилетие, а вот то, что он существует, наука понимала почти столетие. Универсальность, специфичность, однонаправленность, а особенно вырожденность генетического кода имеют важное биологическое значение.

История открытий

Проблема кодирования всегда была ключевой в биологии. К матричному строению генетического кода наука продвигалась довольно неспешно. С момента обнаружения Дж. Уотсоном и Ф. Криком в 1953 году двойной спиральной структуры ДНК начался этап разгадывания самой структуры кода, который побудил веру в величие природы. Линейная структура белков и такая же структура ДНК подразумевала наличие генетического кода как соответствия двух текстов, но записанных при помощи разных алфавитов. И если алфавит белков был известен, то знаки ДНК стали предметом изучения биологов, физиков и математиков.

Нет смысла описывать все шаги в решении этой загадки. Прямой эксперимент, доказавший и подтвердивший, что между кодонами ДНК и аминокислотами белка существует четкая и последовательная соответственность, провели в 1964 году Ч. Яновски и С. Бреннер. А далее - период расшифровки генетического кода in vitro (в пробирке) с использованием техник синтеза белка в бесклеточных структурах.

Полностью расшифрованный код E. Coli был обнародован в 1966 году на симпозиуме биологов в Колд-Спринг-Харборе (США). Тогда и открылась избыточность (вырожденность) генетического кода. Что это значит, объяснилось довольно просто.

Раскодирование продолжается

Получение данных о расшифровке наследственного кода стало одним из самых значительных событий прошлого столетия. Сегодня наука продолжает углубленно исследовать механизмы молекулярных кодировок и его системных особенностей и переизбытка знаков, в чем выражается свойство вырожденности генетического кода. Отдельная отрасль изучения - возникновение и эволюционирование системы кодирования наследственного материала. Доказательства связи полинуклеотидов (ДНК) и полипептидов (белки) дали толчок развитию молекулярной биологии. А та, в свою очередь, биотехнологиям, биоинженерии, открытиям в селекции и растениеводстве.

Догмы и правила

Главная догма молекулярной биологии - информация передается с ДНК на информационную РНК, а после с нее на белок. В обратном направлении передача возможна с РНК на ДНК и с РНК на другую РНК.

Но матрицей или основой всегда остается ДНК. И все остальные фундаментальные особенности передачи информации - это отражение этого матричного характера передачи. А именно передачи путем осуществления синтеза на матрице других молекул, которые и станут структурой воспроизводства наследственной информации.

Генетический код

Линейное кодирование структуры белковых молекул осуществляется с помощью комплементарных кодонов (триплетов) нуклеотидов, которых всего 4 (адеин, гуанин, цитозин, тимин (урацил)), что спонтанно приводит к образованию другой цепочки нуклеотидов. Одинаковое число и химическая комплиментарность нуклеотидов - это главное условие такого синтеза. Но при образовании белковой молекулы качества соответствия количества и качества мономеров нет (ДНК нуклеотиды - аминокислоты белка). Это и есть природный наследственный код - система записи в последовательности нуклеотидов (кодонах) последовательности аминокислот в белке.

Генетический код обладает несколькими свойствами:

  • Триплетность.
  • Однозначность.
  • Направленность.
  • Неперекрываемость.
  • Избыточность (вырожденность) генетического кода.
  • Универсальность.

Приведем краткую характеристику, концентрируя внимание на биологическом значении.

Триплетность, непрерывность и наличие стоп-сигналов

Каждой из 61 аминокислоты соответствует один смысловой триплет (тройка) нуклеотидов. Три триплета не несут информацию об аминокислоте и являются стоп-кодонами. Каждый нуклеотид в цепочке входит в состав триплета, а не существует сам по себе. В конце и в начале цепочки нуклеотидов, отвечающих за один белок, находятся стоп-кодоны. Они запускают или останавливают трансляцию (синтез белковой молекулы).

Специфичность, неперекрываемость и однонаправленность

Каждый кодон (триплет) кодирует только одну аминокислоту. Каждый триплет не зависит от соседнего и не перекрывается. Один нуклеотид может входить только в один триплет в цепочке. Синтез белка идет всегда только в одном направлении, что регулируют стоп-кодоны.

Избыточности генетического кода

Каждый триплет нуклеотидов кодирует одну аминокислоту. Всего 64 нуклеотида, из них 61 - кодируют аминокислоты (смысловые кодоны), а три - бессмысленные, то есть аминокислоту не кодируют (стоп-кодоны). Избыточность (вырожденность) генетического кода заключается в том, что в каждом триплете могут быть произведены замены - радикальные (приводят к замене аминокислоты) и консервативные (не меняют класс аминокислоты). Легко посчитать, что если в триплете можно провести 9 замен (1, 2 и 3 позиция), каждый нуклеотид можно заменить на 4 - 1 = 3 других варианта, то общее количество возможных вариантов замен нуклеотида будет 61 по 9 = 549.

Вырожденность генетического кода проявляется в том, что 549 вариантов - это намного больше, чем необходимо для закодировки информации о 21 аминокислоте. При этом из 549 вариантов 23 замены приведут к образованию стоп-кодонов, 134 + 230 замены - консервативны, и 162 замены - радикальны.

Правило вырожденности и исключения

Если два кодона имеют два одинаковых первых нуклеотида, а оставшиеся представлены нуклеотидами одного класса (пуриновые или пиримидиновые), то они несут информацию об одной и той же аминокислоте. Это и есть правило вырожденности или избыточности генетического кода. Два исключения - АУА и УГА - первый кодирует метионин, хотя должен был бы изолейцин, а второй - стоп-кодон, хотя должен был бы кодировать триптофан.

Значение вырожденности и универсальности

Именно эти два свойства генетического кода имеют наибольшее биологическое значение. Все свойства, перечисленные выше, характерны для наследственной информации всех форм живых организмов на нашей планете.

Вырожденность генетического кода имеет приспособительное значение, как многократное дублирование кода одной аминокислоты. Кроме того, это означает снижение значимости (вырождение) третьего нуклеотида в кодоне. Такой вариант сводит к минимуму мутационные повреждения в ДНК, которые повлекут за собой грубые нарушения в структуре белка. Это защитный механизм живых организмов планеты.

Генетический код – единая система записи наследственной информации в молекулах нуклеиновых кислот в виде последовательности нуклеотидов. Генетический код основан на использовании алфавита, состоящего всего из четырех букв А, Т, Ц, Г, соответствующих нуклеотидам ДНК. Всего 20 видов аминокислот. Из 64 кодонов три – УАА, УАГ, УГА – не кодируют аминокислот, они были названы нонсенс-кодонами,выполняют функцию знаков- препинания. Кодо́н (кодирующий тринуклеотид) - единица генетического кода, тройка нуклеотидных остатков (триплет) в ДНК или РНК, кодирующих включение одной аминокислоты. Сами гены не принимают участие в синтезе белка. Посредником между геном и белком является иРНК. Структура генетического кода характеризуется тем, что он является триплетным, т. е. состоит из триплетов (троек) азотистых оснований ДНК, получивших название кодонов. Из 64

Свойства ген. кода
1) Триплетность: одна аминокислота кодируется тремя нуклеотидами. Эти 3 нуклеотида в ДНК
называются триплет, в иРНК – кодон, в тРНК – антикодон.
2) Избыточность (вырожденность): аминокислот всего 20, а триплетов, кодирующих аминокислоты 61, поэтому каждая аминокислота кодируется несколькими триплетами.
3) Однозначность: каждый триплет (кодон) кодирует только одну аминокислоту.
4) Универсальность: генетический код одинаков для всех живых организмов на Земле.
5.) непрерывность и непререкаемость кодонов при считывании. Это означает, что последовательность нуклеотидов считывается триплет за триплетом без пропусков, при этом соседние триплеты не перекрывают друг друга.

88. Наследственность и изменчивость – фундаментальные свойства живого. Дарвинское понимание явлений наследственности и изменчивости.
Наследственностью называют общее свойство всех организмов сохранять и передавать признаки от родительской особи к потомству. Наследственность – это свойство организмов воспроизводить в поколениях сходный тип обмена веществ, сложившийся в процессе исторического развития вида и проявляется при определенных условиях внешней среды.
Изменчивость есть процесс возникновения качественных различий между особями одного и того же вида, который выражается либо в изменении под влиянием внешней среды только одного фенотипа, либо в генетически обусловленных наследственных вариациях, возникающих в результате комбинаций, рекомбинаций и мутаций, имеющих место в ряде сменяющих друг друга поколений и популяций.
Дарвинское понимание наследственности и изменчивости.
Под наследственностью Дарвин понимал способность организмов сохранять в потомстве свои видовые, сортовые и индивидуальные особенности. Эта особенность была хорошо известна и представляла собой наследственную изменчивость. Дарвин подробно проанализировал значение наследственности в эволюционном процессе. Он обратил внимание на случаи одномастности гибридов первого поколения и расщепления признаков во втором поколении, ему была известна наследственность, связанная с полом, гибридные атавизмы и ряд других явлений наследственности.
Изменчивость. Производя сравнение многих пород животных и сортов растений Дарвин заметил, что в пределах любого вида животных и растений, а в культуре в пределах любого сорта и породы нет одинаковых особей. Дарвин сделал вывод о том, что всем животным и растениям присуща изменчивость.
Анализируя материал по изменчивости животных, ученый заметил, что достаточно любой перемены в условиях содержания, чтобы вызвать изменчивость. Таким образом, под изменчивостью Дарвин понимал способность организмов приобретать новые признаки под влиянием условий окружающей среды. Он различал следующие формы изменчивости:
Определенная (групповая) изменчивость (теперь называется модификационной ) - сходное изменение всех особей потомства в одном направлении вследствие влияния определенных условий. Определенные изменения, как правило, бывают ненаследственными.
Неопределенная индивидуальная изменчивость (теперь называют генотипической ) - появление разнообразных незначительных отличий у особей одного и того же вида, сорта, породы, которыми, существуя в сходных условиях, одна особь отличается от других. Такая разнонаправленная изменчивость - следствие неопределенного влияния условий существования на каждый отдельный индивид.
Коррелятивная (или соотносительная) изменчивость. Дарвин понимал организм как целостную систему, отдельные части которой тесно связаны между собой. Поэтому изменение структуры или функции одной части нередко обусловливает изменение другой или других. Примером такой изменчивости может служить связь между развитием функционирующей мышцы и образованием гребня на кости, к которой она прикрепляется. У многих болотных птиц наблюдается корреляция между длиной шеи и длиной конечностей: птицы с длинной шеей имеют и длинные конечности.
Компенсационная изменчивость состоит в том, что развитие одних органов или функций часто является причиной угнетения других, т. е. наблюдается обратная корреляция, например между молочностью и мясистостью скота.

89. Модификационная изменчивость. Норма реакции генетически детерминированных признаков. Фенокопии.
Фенотипическая
изменчивость охватывает изменения состояния непосредственно признаков, которые происходят под влиянием условий развития или факторов внешней среды. Размах модификационной изменчивости ограничен нормой реакции. Возникшее конкретное модификационное изменение признака не наследуется, но диапазон модификационной изменчивости обусловлен наследственностью.Наследственный материал при этом в изменении не вовлекается.
Норма реакции - это предел модификационной изменчивости признака. Наследуется норма реакции, а не сами модификации, т.е. способность к развитию признака, а форма его проявления зависит от условий окружающей среды. Норма реакции - конкретная количественная и качественная характеристика генотипа. Различают признаки с широкой нормой реакции, узкой () и однозначной нормой. Норма реакции имеет пределы или границы для каждого биологического вида (нижний и верхний) - например, усиленное кормление приведет к увеличению массы животного, однако она будет находиться в пределах нормы реакции, характерной для данного вида или породы. Норма реакции генетически детерминирована и наследуется. Для разных признаков пределы нормы реакции сильно различаются. Например, широкие пределы нормы реакции имеют величина удоя, продуктивность злаков и многие другие количественные признаки, узкие пределы - интенсивность окраски большинства животных и многие другие качественные признаки. Под влиянием некоторых вредных факторов, с которыми человек не сталкивается в процессе эволюции, возможности модификационной изменчивости, определяющей нормы реакции исключаются.
Фенокопии - изменения фенотипа под влиянием неблагоприятных факторов среды, по проявлению похожие на мутации. Возникшие фенотипические модификации не наследуются. Установлено, что возникновение фенокопий связано с влиянием внешних условий на определенную ограниченную стадию развития. Более того, один и тот же агент в зависимости от того, на какую фазу он действует, может копировать разные мутации, или же одна стадия реагирует на один агент, другая на другой. Для вызывания одной и той же фенокопии могут быть использованы разные агенты, что указывает на отсутствие связи между результатом изменения и воздействующим фактором. Относительно легко воспроизводятся сложнейшие генетические нарушения развития, тогда как копировать признаки значительно труднее.

90. Адаптивный характер модификации. Роль наследственности и среды в развитии, обучении и воспитании человека.
Модификационная изменчивость соответствует условиям обитания, носит приспособительный характер. Модификационной изменчивости подвержены такие признаки, как рост растений и животных, их масса, окраска и т.д. Возникновение модификационных изменений связано с тем, что условия среды воздействуют на ферментативные реакции, протекающие в развивающемся организме, и в известной мере изменяют его течение.
Т. к. фенотипическое проявление наследственной информации может модифицироваться условиями среды, в генотипе организма запрограммировано лишь возможность их формирования в определенных пределах, называемых нормой реакции. Норма реакции представляет собой пределы модификационной изменчивости признака, допускаемой при данном генотипе.
Степень выраженности признака при реализации генотипа в различных условиях получила название экспрессивности. Она связана с изменчивостью признака в пределах нормы реакции.
Один и тот же признак может проявляться у некоторых организмов и отсутствовать у других, имеющих тот же ген. Количественный показатель фенотипического проявления гена называется пенетрантностью.
Экспрессивность и пенетрантность поддерживается естественным отбором. Обе закономерности необходимо иметь в виду при изучении наследственности у человека. Изменяя условия среды, можно влиять на пенетрантность и экспрессивность. Тот факт, что один и тот же генотип может явиться источником развития различных фенотипов, имеет существенное значение для медицины. Это означает, что отягощенная не обязательно должна проявиться. Многое зависит от тех условий, в которых находится человек. В ряде случаев болезни как фенотипическое проявление наследственной информации можно предотвратить соблюдением диеты или приемом лекарственных препаратов. Реализация наследственной информации находится в зависимости от среды Формируясь на основе исторически сложившегося генотипа, модификации обычно носят адаптивный характер, так как они всегда являются результатом ответных реакций развивающегося организма на воздействующие на него экологические факторы. Иной характер мутационных изменений: они являются результатом изменений в структуре молекулы ДНК, что вызывает нарушение в сложившемся ранее процессе синтеза белка. при содержании мышей в условиях повышенной температуры у них рождается потомство е удлиненными хвостами и увеличенными ушами. Такая модификация носит адаптивный характер, так как выступающие части (хвост и уши) играют в организме терморегулирующую роль: увеличение их поверхности позволяет увеличить теплоотдачу.

Генетический потенциал человека ограничен во времени, причем довольно жестко. Если пропустить срок ранней социализации, он угаснет, не успев реализоваться. Ярким примером этого утверждения являются многочисленные случаи, когда младенцы силой обстоятельств попадали в джунгли и проводили среди зверей несколько лет. После возвращения их в человеческое сообщество они не могли уже в полной мере наверстать упущенное: овладеть речью, приобрести достаточно сложные навыки человеческой деятельности, у них плохо развивались психические функции человека. Это и есть свидетельство того, что характерные черты человеческого поведения и деятельности приобретаются только через социальное наследование, только через передачу социальной программы в процессе воспитания и обучения.

Одинаковые генотипы (у однояйцевых близнецов), оказавшись в различных средах, могут давать различные фенотипы. С учетом всех факторов воздействия фенотип человека можно представить состоящим из нескольких элементов.

К ним относятся: биологические задатки, кодируемые в генах; среда (социальная и природная); деятельность индивида; ум (сознание, мышление).

Взаимодействие наследственности и среды в развитии человека играет важную роль на протяжении всей его жизни. Но особую важность оно приобретает в периоды формирования организма: эмбрионального, грудного, детского, подросткового и юношеского. Именно в это время наблюдается интенсивный процесс развития организма и формирования личности.

Наследственность определяет то, каким может стать организм, но развивается человек под одновременным влиянием обоих факторов - и наследственности, и среды. Сегодня становится общепризнанным, что адаптация человека осуществляется под влиянием двух программ наследственности: биологической и социальной. Все признаки и свойства любого индивида являются результатом взаимодействия его генотипа и среды. Поэтому каждый человек есть и часть природы, и продукт общественного развития.

91. Комбинативная изменчивость. Значение комбинативной изменчивости в обеспечении генотипического разнообразия людей: Системы браков. Медико-генетические аспекты семьи.
Комбинативная изменчивость
связана с получением новых сочетаний генов в генотипе. Достигается это в результате трех процессов: а) независимого расхождения хромосом при мейозе; б) случайного их сочетания при оплодотворении; в) рекомбинации генов благодаря Кроссинговеру. Сами наследственные факторы (гены) при этом не изменяются, но возникают их новые сочетания, что приводит к появлению организмов с другими генотипическими и фенотипическими свойствами. Благодаря комбинативной изменчивости создаётся разнообразие генотипов в потомстве, что имеет большое значение для эволюционного процесса в связи с тем, что: 1) увеличивается разнообразие материала для эволюционного процесса без снижения жизнеспособности особей; 2) расширяются возможности приспособления организмов к изменяющимся условиям среды и тем самымобеспечивается выживание группы организмов (популяции, вида) в цело

Состав и частота аллелей у людей, в популяциях во многом зависят от типов браков. В связи с этим изучение типов браков и их медико-генетических последствий имеет важное значение.

Браки могут быть: избирательными , неизбирательными.

К неизбирательным относятся панмиксные браки. Панмиксия (греч.nixis – смесь) – сводные браки между людьми с различными генотипами.

Избирательные браки: 1.Аутбридинг – браки между людьми, не имеющими родственных связей по заранее известным генотипом, 2.Инбридинг – браки между родственниками, 3.Положительно-ассортативные – браки между индивидами со сходными фенотипами между (глухонемыми, низкорослые с низкорослыми, высокие с высокими, слабоумные со слабоумными и др.). 4.Отрицательно-ассортативные -браки между людьми с несходными фенотипами (глухонемые-нормальные; низкорослые-высокие; нормальные – с веснушками и др.). 4.Инцесты – браки между близкими родственниками (между братом и сестрой).

Инбредные и инцестные браки во многих странах запрещены законом. К сожалению, встречаются регионы с высокой частотой инбредных браков. До недавнего времени частота инбредных браков в некоторых регионах Центральной Азии достигала 13-15%.

Медико-генетическое значение инбредных браков весьма отрицательное. При таких браках наблюдается гомозиготизация, частота аутосомно-рецессивных болезней увеличивается в 1,5-2 раза. В инбредных популяциях наблюдается инбредная депрессия, т.е. резко возрастает частота возрастает частота неблагоприяиных рецессивных аллелей, увеличивается детская смертность. Положительно-ассортативные браки тоже приводят к подобным явлениям. Аутбридинги имеют положительное значение в генетическом отношении. При таких браках наблюдается гетерозиготизация.

92. Мутационная изменчивость, классификация мутаций по уровню изменения поражения наследственного материала. Мутации в половых и соматических клетках.
Мутацией
называется изменение, обусловленное реорганизацией воспроизводящих структур, изменением его генетического аппарата. Мутации возникают скачкообразно и передаются по наследству. В зависимости от уровня изменения наследственного материала все мутации делятся на генные, хромосомные и геномные.
Генные мутации , или трансгенации, затрагивают структуру самого гена. Мутации могут изменять участки молекулы ДНК различной длины. Наименьший участок, изменение которого приводит к появлению мутации, назван мутоном. Его может составить только пара нуклеотидов. Изменение последовательности нуклеотидов в ДНК обусловливает изменение в последовательности триплетов и в конечном итоге – программу синтеза белка. Следует помнить, что нарушения в структуре ДНК приводят к мутациям только тогда, когда не осуществляется репарация.
Хромосомные мутации , хромосомные перестройки или аберрации заключаются в изменении количества или перераспределении наследственного материала хромосом.
Перестройки подразделяют на внутрихромосомные и межхромосомные . Внутрихромосомные перестройки заключаются в утрате части хромосомы (делеция), удвоении или умножении некоторых ее участков (дупликация), повороте фрагмента хромосомы на 180° с изменением последовательности расположения генов(инверсия).
Геномные мутации связаны с изменением числа хромосом. К геномным мутациям относят анеуплоидию, гаплоидию и полиплоидию.
Анеуплоидией называют изменение количества отдельных хромосом – отсутствие (моносомия) или наличие дополнительных (трисомия, тетрасомия, в общем случае полисомия) хромосом, т. е. несбалансированный хромосомный набор. Клетки с измененным числом хромосом появляются вследствие нарушений в процессе митоза или мейоза, в связи с чем различают митотическую и мейотическую анеуплодию. Кратное уменьшение числа хромосомных наборов соматических клеток по сравнению с диплоидным называется гаплоидией . Кратное увлечение числа хромосомных наборов соматических клеток по сравнению с диплоидным, называется полиплоидией.
Перечисленные виды мутаций встречаются как в половых клетках, так и в соматических. Мутации, возникающие в половых клетках, называются генеративными . Они передаются последующим поколениям.
Мутации, возникающие в телесных клетках на той или иной стадии индивидуального развития организма, называются соматическими . Такие мутации наследуются потомками только той клетки, в которой она произошла.

93. Генные мутации, молекулярные механизмы возникновения, частота мутаций в природе. Биологические антимутационные механизмы.
Современная генетика подчеркивает, что генные мутации заключаются в изменении химической структуры генов. Конкретно, генные мутации являются заменами, вставками, выпадениями и потерями пар нуклеотидов. Наименьший участок молекулы ДНК, изменение которого приводит к мутации, называется мутоном. Он равен одной паре нуклеотидов.
Существует несколько классификаций генных мутаций. Спонтанной (самопроизвольной) называют мутацию, которая происходит вне прямой связи с каким-либо физическим или химическим фактором внешней среды.
Если мутации вызываются намеренно, воздействием на организм факторами известной природы, они называются индуцированными . Агент, индуцирующий мутации, называют мутагеном.
Природа мутагенов разнообразна - это физические факторы, химические соединения. Установлено мутагенное действие некоторых биологических объектов – вирусов, простейших, гельминтов при проникновении их в организм человека.
В результате доминантных и рецессивных мутаций в фенотипе появляются доминантные и рецессивные измененные признаки. Доминантные мутации проявляются в фенотипе уже в первом- поколении. Рецессивные мутации укрыты в гетерозиготах от действия естественного отбора, поэтому они накапливаются в генофондах видов в большом количестве.
Показателем интенсивности мутационного процесса служит частота мутирования, которую рассчитывают в среднем на геном или отдельно для конкретных локусов. Средняя частота мутирования сопоставима у широкого круга живых существ(от бактерий до человека) и не зависит от уровня и типа морфофизиологической организации. Она равна 10 -4 - 10 -6 мутации на 1 локус за поколение.
Антимутационные механизмы .
Фактором защиты против неблагоприятных последствий генных мутаций служит парность хромосом в диплоидном кариотипе соматических клеток эукариот. Парность аллейных генов препятствует фенотипическому проявлению мутаций, если они имеют рецессивный характер.
В снижение вредных последствий генных мутаций вносит явление экстракопирование генов, кодирующих жизненно важные макромолекулы. Пример, гены рРНК, тРНК, гистоновых белков, без которых жизнедеятельность любой клетки невозможна.
Перечисленные механизмы способствуют сохранению отобранных в ходе эволюции генов и одновременно накоплению в генофонде популяции различных ей аллелей, формируя резерв наследственной изменчивости.

94. Геномные мутации: полиплоидия, гаплоидия, гетероплоидия. Механизмы их возникновения.
Геномные мутации связаны с изменением числа хромосом. К геномным мутациям относят гетероплоидию , гаплоидию и полиплоидию .
Полиплоидия – увеличение диплоидного числа хромосом путем добавления целых хромосомных наборов в результате нарушения мейоза.
У полиплоидных форм отмечается увеличение числа хромосом, кратное гаплоидному набору: 3n – триплоид; 4n – тетраплоид, 5n – пентаплоид и т.д.
Полиплоидные формы фенотипически отличаются от диплоидных: вместе с изменением числа хромосом изменяются и наследственные свойства. У полиплоидов клетки обычно крупные; иногда растения имеют гигантские размеры.
Формы, возникшие в результате умножения хромосом одного генома, называют автоплоидными. Однако известна и другая форма полиплоидии – аллоплоидия, при которой умножается число хромосом двух разных геномов.
Кратное уменьшение числа хромосомных наборов соматических клеток по сравнению с диплоидным называется гаплоидией . Гаплоидные организмы в естественных условиях обитания обнаруживаются в основном среди растений, в том числе высших (дурман, пшеница, кукуруза). Клетки таких организмов имеют по одной хромосоме каждой гомологичной пары, поэтому все рецессивные аллели проявляются в фенотипе. Этим объясняется сниженная жизнеспособность гаплоидов.
Гетероплоидия . В результате нарушения митоза и мейоза число хромосом может изменяться и не становиться кратным гаплоидному набору. Явление, когда какая-либо из хромосом, вместо того чтобы быть парной, оказывается в тройном числе, получило название трисомии . Если наблюдается трисомия по одной хромосоме, то такой организм называется трисомиком и его хромсомный набор 2п+1. Трисомия может быть по любой из хромосом и даже по нескольким. При Двойной трисомии имеет набор хромосом 2п+2, тройной – 2п+3 и т.д.
Явление, противоположное трисомии , т.е. утрата одной из хромосомы из пары в диплоидном наборе, называется моносомией , организм же – моносомиком; его генотипическая формула 2п-1. При отсутствии двух различных хромосом организм является двойным моносомиком с генотипической формулой 2п-2 и т.д.
Из сказанного видно, что анэуплоидия , т.е. нарушение нормального числа хромосом, приводит к изменениям в строении и к снижению жизнеспособности организма. Чем больше нарушение, тем ниже жизнеспособность. У человека нарушение сбалансированного набора хромосом влечет за собой болезненные состояния, известные под общим названием хромосомных болезней.
Механизм возникновения геномных мутаций связан с патологией нарушения нормального расхождения хромосом в мейозе, в результате чего образуются аномальные гаметы, что и ведет к мутации. Изменения в организме связаны с присутствием генетически разнородных клеток.

95. Методы изучения наследственности человека. Генеалогический и близнецовый методы, их значение для медицины.
Основными методами изучения наследственности человека являются генеалогический , близнецовый, популяционно-статистический , метод дерматоглифики , цитогенетический, биохимический, метод генетики соматических клеток, метод моделирования
Генеалогический метод.
В основе этого метода лежит составление и анализ родословных. Родословная – это схема, отражающая связи между членами семьи. Анализируя родословные, изучают какой-либо нормальный или (чаще) патологический признак в поколениях людей, находящихся в родственных связях.
Генеалогические методы используются для определения наследственного или ненаследственного характера признака, доминантности или рецессивности, картирования хромосом, сцепления с полом, для изучения мутационного процесса. Как правило, генеалогический метод составляет основу для заключений при медико-генетическом консультировании.
При составлении родословных применяют стандартные обозначения. Персона с которого начинается исследование - пробандом. Потомок брачной пары называется сиблингом, родные братья и сестры – сибсами, кузены – двоюродными сибсами и т.д. Потомки, у которых имеется общая мать (но разные отцы), называются единоутробными, а потомки, у которых имеется общий отец (но разные матери) – единокровными; если же в семье имеются дети от разных браков, причем, у них нет общих предков (например, ребенок от первого брака матери и ребенок от первого брака отца), то их называют сводными.
С помощью генеалогического метода может быть установлена наследственная обусловленность изучаемого признака, а также тип его наследования. При анализе родословных по нескольким признакам может быть выявлен сцепленный характер их наследования, что используют при составлении хромосомных карт. Этот метод позволяет изучать интенсивность мутационного процесса, оценить экспрессивность и пенетрантность аллеля.
Близнецовый метод . Он заключается в изучении закономерностей наследования признаков в парах одно- и двуяйцовых близнецов. Близнецы – это два и более ребенка, зачатые и рожденные одной матерью почти одновременно. Различают однояйцевых и разнояйцевых близнецов.
Однояйцевые (монозиготные, идентичные) близнецы возникают на самых ранних стадиях дробления зиготы, когда два или четыре бластомера сохраняют способность при обособлении развиться в полноценный организм. Поскольку зигота делится митозом, генотипы однояйцевых близнецов, по крайней мере, исходно, совершенно идентичны. Однояйцевые близнецы всегда одного пола, в период внутриутробного развития у них одна плацента.
Разнояйцевые (дизиготные, неидентичные) возникают при оплодотворении двух или нескольких одновременно созревших яйцеклеток. Таким образом, они имеют около 50% общих генов. Другими словами, они подобны обычным братьям и сестрам по своей генетической конституции и могут быть как однополыми, так и разнополыми.
При сравнении однояйцевых и разнояйцевых близнецов, воспитанных в одной и той же среде, можно сделать заключение о роли генов в развитии признаков.
Близнецовый метод позволяет делать обоснованные заключения о наследуемости признаков: роли наследственности, среды и случайных факторов в определении тех или иных признаков человека
Профилактика и диагностика наследственной патологии
В настоящее время профилактика наследственной патологии проводится на четырех уровнях: 1)прегаметическом ; 2) презиготическом ; 3) пренатальном; 4) неонатальном .
1.)Прегаметический уровень
Осуществляется:
1.Санитарный контроль за производством – исключение влияния на организм мутагенов.
2.Освобождение женщин детородного возраста от работы на вредном производстве.
3.Создание перечней наследственных заболеваний, которые распространены на определенной
территории с опр. частатой.
2.Презиготический уровень
Важнейшим элементом этого уровня профилактики является медико-генетическое консультирование(МГК) населения, информирующая семью о степени возможного риска рождения ребенка снаследственной патологией и оказать помощь в принятии правильного решения о деторождении..
Пренатальный уровень
Заключается в проведении пренатальной (дородовой) диагностики.
Пренатальная диагностика – это комплекс мероприятий, который осуществляется с целью определения наследственной патологии у плода и прерывания данной беременности. К методам пренатальной диагностики относятся:
1. Ультразвуковое сканирование (УЗС).
2. Фетоскопия – метод визуального наблюдения плода в полости матки через эластичный зонд, оснащенный оптической системой.
3. Биопсия хориона . Метод основан на взятии ворсин хориона, культивировании клеток и исследовании их с помощью цитогенетических, биохимических и молекулярногенетических методов.
4. Амниоцентез – пункция околоплодного пузыря через брюшную стенку и взятие
амниотической жидкости. Она содержит клетки плода, которые могут быть исследованы
цитогенетически или биохимически в зависимости от предполагаемой патологии плода.
5. Кордоцентез – пункция сосудов пуповины и взятие крови плода. Лимфоциты плода
культивируют и подвергают исследованию.
4.Неонатальный уровень
На четвертом уровне проводится скрининг новорожденных на предмет выявления аутосомно рецессивных болезней обмена в доклинической стадии, когда своевременно начатое лечение дает возможность обеспечить нормальное умственное и физическое развитие детей.

Принципы лечения наследственных заболеваний
Различают следующие виды лечения
.
1. Симптоматическое (воздействие на симптомы болезни).
2. Патогенетическое (воздействие на механизмы развития заболевания).
Симптоматическое и патогенетическое лечение не устраняет причины заболевания, т.к. не ликвидирует
генетический дефект.
В симптоматическом и патогенетическом лечении могут использоваться следующие приемы.
· Исправление пороков развития хирургическими методами (синдактилия, полидактилия,
незаращение верхней губы…
· Заместительная терапия, смысл которой заключается во введении в организм
отсутствующих или недостаточных биохимических субстратов.
· Индукция метаболизма – введение в организм веществ, которые усиливают синтез
некоторых ферментов и, следовательно, ускоряют процессы.
· Ингибиция метаболизма – введение в организм препаратов, связывающих и выводящих
аномальные продукты обмена.
· Диетотерапия (лечебное питание) – устранение из пищевого рациона веществ, которые
не могут быть усвоены организмом.
Перспективы: В ближайшее время генетика будет усиленно развиваться, хотя она и в наши дни
очень широко распространена в сельскохозяйственных культурах (селекции, клонировании),
медицине (медицинской генетике, генетике микроорганизмов). В будущем учёные надеются
использовать генетику для устранения дефектных генов и уничтожения болезней, передаваемых
по наследству, иметь возможность лечить такие тяжелые заболевания как рак, вирусные
инфекции.

При всех недостатках современной оценки радиогенетического эффекта не остается сомнений в серьезности генетических последствий, ожидающих человечество в случае бесконтрольного повышения радиоактивного фона в окружающей среде. Опасность дальнейших испытаний атомного и водородного оружия очевидна.
В тоже время применение атомной энергии в генетике и селекции позволяет создать новые методы управления наследственностью растений, животных и микроорганизмов, глубже понять процессы генетической адаптации организмов. В связи с полетами человека в космическое пространство возникает необходимость исследовать влияние космической реакции на живые организмы.

98. Цитогенетический метод диагностики хромосомных нарушений человека. Амниоцентез. Кариотип и идиограмма хромосом человека. Биохимический метод.
Цитогенетический метод заключается в изучении хромосом при помощи микроскопа. Чаще объектом исследования служат митотические (метафазные), реже мейотические (профазные и метафазные) хромосомы. Цитогенетические методы используются, при изучении кариотипов отдельных индивидов
Получение материала развивающегося внутриутробно организма осуществляют разными способами. Одним из них является амниоцентез , с помощью которого а 15-16 неделе беременности получают амниотическую жидкость, содержащую продукты жизнедеятельности плода и клетки его кожи и слизистых
Забираемый при амниоцентезе материал используют для биохимических, цитогенетических и молекулярно-химических исследований. Цитогенетическими методами определяют пол плода и выявляют хромосомные и геномные мутации. Изучение амниотической жидкости и клеток плода с помощью биохимических методов позволяет обнаружить дефект белковых продуктов генов, однако не дает возможности определять локализацию мутаций в структурной или регуляторной части генома. Важную роль в выявлении наследственных заболеваний и точной локализации повреждения наследственного материала плода играет использование ДНК-зондов.
В настоящее время с помощью амниоцентеза диагностируются все хромосомные аномалии, свыше 60 наследственных болезней обмена веществ, несовместимость матери и плода по эритроцитарным антигенам.
Диплоидный набор хромосом клетки, характеризующийся их числом, величиной и формой, называется кариотипом . Нормальный кариотип человека включает 46 хромосом, или 23 пары: из них 22 пары аутосом и одна пара – половых хромосом
Для того, чтобы легче разобраться в сложном комплексе хромосом, составляющем кариотип, их располагают в виде идиограммы . В идиограмме хромосомы располагаются попарно в порядке убывающей величины, исключение делается для половых хромосом. Самой крупной паре присвоен №1, самой мелкой - №22. Идентификация хромосом только по величине встречает большие затруднения: ряд хромосом имеет сходные размеры. Однако в последнее время путем использования разного рода красителей установлена четкая дифференцировка хромосом человека по их длине на красящиеся специальными методами и не красящиеся полосы. Умение точно дифференцировать хромосомы имеет большое значение для медицинской генетики, так как позволяет точно установить характер нарушений в кариотипе человека.
Биохимический метод

99. Кариотип и идиограмма человека. Характеристика кариотипа человека в норме
и патологии.

Кариоти́п
- совокупность признаков (число, размеры, форма и т. д.) полного набора хромосом,
присущая клеткам данного биологического вида (видовой кариотип), данного организма
(индивидуальный кариотип) или линии (клона) клеток.
Для определения кариотипа используют микрофотографию или зарисовку хромосом при микроскопии делящихся клеток.
У каждого человека 46 хромосом, две из которых половые. У женщины это две X хромосомы
(кариотип: 46, ХХ), а у мужчин одна Х хромосома, а другая – Y (кариотип: 46, ХY). Исследование
кариотипа проводится с помощью метода, называемого цитогенетика.
Идиограмма - схематическое изображение гаплоидного набора хромосом организма, которые
располагают в ряд в соответствии с их размерами, попарно в порядке убывания их размеров. Исключение делается для половых хромосом, которые выделяются особо.
Примеры наиболее частых хромосомных патологий .
Синдром Дауна представляет собой трисомию по 21-й паре хромосом.
Синдром Эдвардса и представляет собой трисомиюпо 18-й паре хромосом.
Синдром Патау представляет собой трисомию по 13-й паре хромосом.
Синдром Клайнфельтера представляет собой полисомию по Х хромосоме у мальчиков.

100.Значение генетики для медицины. Цитогенетический, биохимический, популяционно-статистический методы изучения наследственности человека.
Очень важна роль генетики в жизни человека. Реализуется она с помощью медико-генетического консультирования. Медико-генетическое консультирование призвано избавить человечество от страданий, связанных с наследственными (генетическими) заболеваниями. Главные цели медико-генетического консультирования заключаются в установлении роли генотипа в развитии данного заболевания и прогнозировании риска иметь больных потомков. Рекомендации, даваемые в медико-генетических консультациях в отношении заключения брака или прогноза генетической полноценности потомства, направлены на то, чтобы они учитывались консультируемыми лицами, которые добровольно принимают соответствующее решение.
Цитогенетический (кариотипический) метод. Цитогенетический метод заключается в изучении хромосом при помощи микроскопа. Чаще объектом исследования служат митотические (метафазные), реже мейотические (профазные и метафазные) хромосомы. Так же этот метод используется для изучения полового хроматина (тельца барра ) Цитогенетические методы используются, при изучении кариотипов отдельных индивидов
Применение цитогенетического метода позволяет не только изучать нормальную морфологию хромосом и кариотипа в целом, определять генетический пол организма, но, главное, диагностировать различные хромосомные болезни, связанные с изменением числа хромосом или нарушением их структуры. Кроме того этот метод позволяет изучать процессы мутагенеза на уровне хромосом и кариотипа. Применение его в медико-генетическом консультировании для целей пренатальной диагностики хромосомных болезней дает возможность путем своевременного прерывания беременности предупредить появление потомства с грубыми нарушениями развития.
Биохимический метод заключается в определении в крови или моче активности ферментов или содержания некоторых про­дуктов метаболизма. С помощью данного метода выявляют наруше­ния в обмене веществ и обусловленные наличием в генотипе неблагоприятного сочетания аллельных генов, чаще рецессивных аллелей в гомозигот­ном состоянии. При своевременной диагностики таких наследственных заболеваний профилактические меры позволяют избегать серьёзных нарушений развития.
Популяционнно-статистический метод. Этот метод позволяет оценить вероятность рождения лиц с определенным фенотипом в данной группе населения или в близкородствен­ных браках; рассчитать частоту носительства в гетерозиготном состоянии рецессивных аллелей. В основе метода лежит закон Харди - Вайнберга. Закон Харди-Вайнберга – это закон популяционной генетики. Закон гласит: «В условиях идеальной популяции частоты генов и генотипов остаются постоянными от поколения к поколению»
Главными чертами человеческих популяций являются: общность территориии возможность свободного вступления в брак. Факторами изоляции, т. е. ограничения свободы выбора супругов, у человека могут быть не только геогра­фические, но и религиозные и социальные барьеры.
Кроме того, этот метод позволяет изучать мутационный процесс, роль наследственности и среды в формировании фенотипического полиморфизма человека по нормальным признакам, а также в возникновении болезней, особенно с наследственной предрасположенностью. Популяционно-статистический метод используют для выяснения значения генетических факторов в антропогенезе, в частности в расообразовании.

101.Структурные нарушения (аберрации) хромосом. Классификация в зависимости от изменения генетического материала. Значение для биологии и медицины.
Хромосомные аберрации возникают в результате перестройки хромосом. Они являются следствием разрыва хромосомы, приводящего к образованию фрагментов, которые в дальнейшем воссоединяются, но при этом нормальное строение хромосомы не восстанавливается. Различают 4 основных типа хромосомных аберраций: нехватки , удвоения, инверсии , транслокации , делеция – утрата хромосомой определенного участка, который затем обычно уничтожается
Нехватки возникают вследствие потери хромосомой того или иного участка. Нехватки в средней части хромосомы принято называть делециями. Потеря значительной части хромосомы приводят организм к гибели, утрата незначительных участков вызывает изменение наследственных свойств. Так. При нехватке одной из хромосом у кукурузы её проростки лишены хлорофилла.
Удвоение связано с включением лишнего, дублирующего участка хромосомы. Это также ведет к появлению новых признаков. Так, у дрозофилы ген полосковидных глаз обусловлен удвоением участка одной из хромосомы.
Инверсии наблюдаются при разрыве хромосомы и переворачивании оторвавшегося участка на 180 градусов. Если разрыв произошел в одном месте, оторвавшийся фрагмент прикрепляется к хромосоме противоположным концом, если же в двух местах, то средний фрагмент, перевернувшись, прикрепляется к местам разрыва, но другими концами. По мнению Дарвина инверсии играют важную роль в эволюции видов.
Транслокации возникают в тех случаях, когда участок хромосомы из одной пары прикрепляется к негомологичной хромосоме, т.е. хромосоме из другой пары. Транслокация участков одной из хромосом известна у человека; она может быть причиной болезни Дауна. Большинство транслокаций, затрагивающих крупные участки хромосом, делает организм нежизнеспособным.
Хромосомные мутации изменяют дозу некоторых генов, вызывают перераспределение генов между группами сцепления, меняют локализацию их в группе сцепления. Этим они нарушают генный баланс клеток организма, в результате чего происходят отклонения в соматическом развитии особи. Как правило, изменения распространяются на несколько систем органов.
Хромосомные аберрации имеют немало важное значение в медицине. При хромосомных аберрациях наблюдается задержка общего физического и умственного развития. Хромосомные болезни характеризуются сочетанием многих врожденных пороков. Таким пороком является проявление синдрома Дауна, которое наблюдается в случае трисомии по небольшому сегменту длинного плеча 21 хромосомы. Картина синдрома кошачьего крика развивается при утрате участка короткого плеча 5 хромосомы. У человека наиболее часто отмечаются пороки развития головного мозга, опорно-двигательной, сердечно-сосудистой, мочеполовой систем.

102. Понятие вида, современные взгляды на видообразование. Критерии вида.
Вид
– это совокупность особей, сходных по критериям вида до такой степени, что они могут в
естественных условиях скрещиваться и давать плодовитое потомство.
Плодовитое потомство – то, которое само может размножаться. Пример неплодовитого потомства – мул (гибрид осла и лошади), он бесплоден.
Критерии вида – это признаки, по которым сравнивают 2 организма, чтобы определить, относятся они к одному виду или к разным.
· Морфологический – внутреннее и внешнее строение.
· Физиолого-биохимический – как работают органы и клетки.
· Поведенческий – поведение, особенно в момент размножения.
· Экологический – совокупность факторов внешней среды, необходимых для жизни
вида (температура, влажность, пища, конкуренты и т.п.)
· Географический – ареал (область распространения), т.е. территория, на которой живет данный вид.
· Генетико-репродуктивный – одинаковое количество и строение хромосом, что позволяет организмам давать плодовитое потомство.
Критерии вида относительны, т.е. по одному критерию нельзя судить о виде. Например, существуют виды-двойники (у малярийного комара, у крыс и т.д.). Они морфологически друг от друга не отличаются, но имеют разное количество хромосом и поэтому не дают потомства.

103.Популяция. Ее экологические и генетические характеристики и роль в видообразовании.
Популяция
– минимальная самовоспроизводящаяся группировка особей одного вида, более или менее изолированная от других подобных группировок, населяющая определенный ареал в течение длительного ряда поколений, образующая собственную генетическую систему и формирующая собственную экологическую нишу.
Экологические показатели популяции.
Численность - общее количество особей в популяции. Эта величина характеризуется широким диапазоном изменчивости, однако она не может быть ниже некоторых пределов.
Плотность - число особей на единицу площади или объема. При увеличении численности плотность популяции, как правило, возрастает
Пространственная структура популяции характеризуется особенностями размещения особей на занимаемой территории. Она определяется свойствами местообитания и биологическими особенностями вида.
Половая структура отражает определенное соотношение мужских и женских особей в популяции.
Возрастная структура отражает соотношение различных возрастных групп в популяциях, зависящее от продолжительности жизни, времени наступления половой зрелости, числа потомков.
Генетические показатели популяции . Генетически популяция характеризуется её генофондом. Он представлен совокупностью аллелей, образующих генотипы организмов данной популяции.
При описании популяций или их сравнении между собой используют целый ряд генетических характеристик. Полиморфизм . Популяция называется полиморфной по данному локусу, если в ней встречается два или большее число аллелей. Если локус представлен единственным аллелем, говорят о мономорфизме. Исследуя много локусов, можно определить среди них долю полиморфных, т.е. оценить степень полиморфизма, которая является показателем генетического разнообразия популяции.
Гетерозиготность . Важной генетической характеристикой популяции является гетерозиготность – частота гетерозиготных особей в популяции. Она отражает также генетическое разнообразие.
Коэфициент инбридинга . С помощью этого коэффициента оценивают распространенность близкородственных скрещиваний в популяции.
Ассоциация генов . Частоты аллелей разных генов могут зависеть друг от друга, что характеризуется коэффициентами ассоциации.
Генетические расстояния. Разные популяции отличаются друг от друга по частоте аллелей. Для количественной оценки этих различий предложены показатели, называемые генетическими расстояниями

Популяция – элементарная эволюционная структура. В ареале любого вида особи распространены неравномерно. Участки густой концентрации особей перемежаются с пространствами, где их не много или же отсутствуют. В результате возникают более или менее изолированные популяции, в которых систематически происходит случайное свободное скрещивание (панмиксия). Скрещивание с другими популяциями происходит очень редко и нерегулярно. Благодаря панмиксии в каждой популяции создается характерный для нее генофонд, отличный от других популяций. Имено популяцию и следует признать элементарной единицей эволюционного процесса

Роль популяций велика, так как практически все мутации происходят внутри нее. Эти мутации, прежде всего, связаны с изолированностью популяций и генофондом, который различается из-за их обособленности друг от друга. Материалом для эволюции служит мутационная изменчивость, которая начинается в популяции и заканчивается образованием вида.



← Вернуться

×
Вступай в сообщество «servizhome.ru»!
ВКонтакте:
Я уже подписан на сообщество «servizhome.ru»