Кто считается создателем нейтронной бомбы. Нейтронная бомба: как на самом деле она взрывается. Продолжительность радиоактивного излучения нейтронной бомбы такая же как у атомной

Подписаться
Вступай в сообщество «servizhome.ru»!
ВКонтакте:

Прямое действие гамма-излучения уступает по боевому эффекту и ударной волне, и свету. Лишь огромные дозы гамма-излучения (десятки миллионов рад) могут причинить неприятности электронике. При таких дозах плавятся металлы, а ударная волна с куда меньшей плотностью энергии уничтожит цель без подобных излишеств. Если плотность энергии гамма-излучения меньше, оно становится безвредным для стальной техники, а ударная волна и тут может сказать свое слово.

С «живой силой» тоже не все очевидно: во‑первых, гамма-излучение существенно ослабляется, например, броней, а во-вторых — особенности радиационных поражений таковы, что даже получившие абсолютно смертельную дозу в тысячи бэр (биологический эквивалент рентгена, доза любого вида излучения, производящая такое же действие в биологическом объекте, как 1 рентген) экипажи танков оставались бы боеспособными в течение нескольких часов. За это время подвижные и сравнительно малоуязвимые машины успели бы сделать многое.

Смерть электронике

Хотя прямое гамма-облучение существенного боевого эффекта не обеспечивает, он возможен за счет вторичных реакций. В результате рассеяния гамма-квантов на электронах атомов воздуха (Комптон-эффект) возникают электроны отдачи. От точки взрыва расходится ток электронов: их скорость существенно выше, чем скорость ионов. Траектории заряженных частиц в магнитном поле Земли закручиваются (а значит, двигаются с ускорением), формируя при этом электромагнитный импульс ядерного взрыва (ЭМИ ЯВ).

Любое соединение, содержащее тритий, нестабильно, потому что половина ядер этого изотопа сама по себе распадается на гелий-3 и электрон за 12 лет, и чтобы поддерживать готовность многочисленных термоядерных зарядов к применению, необходимо непрерывно нарабатывать тритий в реакторах. В нейтронной трубке трития немного, и гелий-3 поглощается там специальными пористыми материалами, а вот из ампулы этот продукт распада надо откачивать насосом, иначе ее просто разорвет давлением газа. Подобные трудности привели, например, к тому, что английские специалисты, получив в 1970-х годах из США ракеты Polaris, предпочли отказаться от американского термоядерного боевого оснащения в пользу разработанных в своей стране по программе Chevaline менее мощных однофазных зарядов деления. В предназначенных для борьбы с танками нейтронных боеприпасах была предусмотрена замена ампул с существенно уменьшившимся количеством трития на «свежие», производимая в арсеналах в процессе хранения. Могли такие боеприпасы применяться и с «холостыми» ампулами — как однофазные ядерные снаряды килотонной мощности. Можно использовать термоядерное топливо и без трития, только на основе дейтерия, но тогда, при прочих равных условиях, энерговыделение существенно снизится. Схема работы трехфазного термоядерного боеприпаса. Взрыв заряда деления (1) превращает ампулу (2) в плазму, сжимающую термоядерное топливо (3). Для усиления взрывного эффекта за счет потока нейтронов используется оболочка (4) из урана-238.

В энергию ЭМИ ЯВ переходит лишь 0,6% энергии гамма-квантов, а ведь их доля в балансе энергии взрыва сама по себе мала. Вклад вносит и дипольное излучение, возникающее за счет изменения плотности воздуха с высотой, и возмущение магнитного поля Земли проводящим плазмоидом. В результате образуется непрерывный частотный спектр ЭМИ ЯВ — совокупность колебаний огромного числа частот. Существенен энергетический вклад излучения с частотами от десятков килогерц до сотен мегагерц. Эти волны ведут себя по‑разному: мегагерцевые и более высокочастотные затухают в атмосфере, а низкочастотные — «ныряют» в естественный волновод, образованный поверхностью Земли и ионосферой, и могут не раз обогнуть земной шар. Правда, «долгожители» эти напоминают о своем существовании лишь хрипением в приемниках, похожим на «голоса» грозовых разрядов, а вот их более высокочастотные родственники заявляют о себе мощными и опасными для аппаратуры «щелчками».

Казалось бы, такие излучения вообще должны быть безразличны военной электронике — ведь любое устройство с наибольшей эффективностью принимает волны того диапазона, в каком их излучает. А принимает и излучает военная электроника в гораздо более высокочастотных, чем ЭМИ ЯВ, диапазонах. Но ЭМИ ЯВ действует на электронику не через антенну. Если ракету длиной в 10 м «накрывала» длинная волна с не поражающей воображение напряженностью электрического поля в 100 В/см, то на металлическом ракетном корпусе наводилась разность потенциалов в 100 000 В! Мощные импульсные токи через заземляющие связи «затекают» в схемы, да и сами точки заземления на корпусе оказывались под существенно отличающимися потенциалами. Токовые перегрузки опасны для полупроводниковых элементов: для того чтобы «сжечь» высокочастотный диод, достаточно импульса мизерной (в десятимиллионную долю джоуля) энергии. ЭМИ занял почетное место могущественного поражающего фактора: иногда им выводилась из строя аппаратура за тысячи километров от ядерного взрыва — такое было не по силам ни ударной волне, ни световому импульсу.

Понятно, параметры вызывающих ЭМИ взрывов были оптимизированы (в основном высота подрыва заряда данной мощности). Разрабатывались и меры защиты: аппаратура снабжалась дополнительными экранами, охранными разрядниками. Ни один образец боевой техники не принимался на вооружение, пока не была доказана испытаниями — натурными или на специально созданных имитаторах — его стойкость к ЭМИ ЯВ, по крайней мере такой интенсивности, которая характерна для не слишком уж больших дистанций от взрыва.


Бесчеловечное оружие

Однако вернемся к двухфазным боеприпасам. Их основной поражающий фактор — потоки быстрых нейтронов. Это породило многочисленные легенды о «варварском оружии» — нейтронных бомбах, которые, как писали в начале 1980-х советские газеты, при взрыве уничтожают все живое, а материальные ценности (здания, технику) оставляют практически неповрежденными. Настоящее мародерское оружие — взорвал, а потом приходи и грабь! На самом деле любые предметы, подвергшиеся воздействию значительных нейтронных потоков, опасны для жизни, потому что нейтроны после взаимодействия с ядрами инициируют в них разнообразные реакции, становящиеся причиной вторичного (наведенного) излучения, которое испускается в течение длительного времени после того, как распадется последний из облучавших вещество нейтронов.

Для чего же было предназначено это «варварское оружие»? Двухфазными термоядерными зарядами оснащались боевые части ракет Lance и 203-мм гаубичные снаряды. Выбор носителей и их досягаемость (десятки километров) указывают на то, что создавалось это оружие для решения оперативно-тактических задач. Нейтронные боеприпасы (по американской терминологии — «с повышенным выходом радиации») предназначались для поражения бронетехники, по численности которой Варшавский пакт превосходил НATO в несколько раз. Танк достаточно стоек к воздействию ударной волны, поэтому после расчетов применения ядерного оружия различных классов против бронетехники, с учетом последствий заражения местности продуктами деления и разрушений от мощных ударных волн, основным поражающим фактором решили сделать нейтроны.

Абсолютно чистый заряд

В стремлении получить такой термоядерный заряд попытались отказаться от ядерного «запала», заменив деление сверхскоростной кумуляцией: головной элемент струи, состоявшей из термоядерного топлива, разогнали до сотни километров в секунду (в момент столкновения температура и плотность значительно возрастают). Но на фоне взрыва килограммового кумулятивного заряда «термоядерная» прибавка оказалась ничтожной, и эффект зарегистрировали лишь косвенно — по выходу нейтронов. Отчет об этих проведенных в США экспериментах был опубликован в 1961 году в сборнике «Атом и оружие», что при тогдашней параноидальной секретности само по себе свидетельствовало о неудаче.
В семидесятых, в «неядерной» Польше, Сильвестр Калиский теоретически рассмотрел сжатие термоядерного топлива сферической имплозией и получил весьма благоприятные оценки. Но экспериментальная проверка показала, что, хотя выход нейтронов, по сравнению со «струйным вариантом», возрос на много порядков, нестабильности фронта не позволяют достичь нужной температуры в точке схождения волны и реагируют только те частицы топлива, скорость которых, из-за статистического разброса, значительно превышает среднее значение. Так что совсем «чистый» заряд создать не удалось.

Рассчитывая остановить навал «брони», в штабах НАТО разработали концепцию «борьбы со вторыми эшелонами», стараясь отнести подальше рубеж применения нейтронного оружия по противнику. Основная задача бронетанковых войск — развитие успеха на оперативную глубину, после того как их бросят в брешь в обороне, пробитую, например, ядерным ударом большой мощности. В этот момент применять радиационные боеприпасы уже поздно: хотя 14-МэВ нейтроны незначительно поглощаются броней, поражения экипажей излучением сказываются на боеспособности не сразу. Поэтому такие удары планировались по выжидательным районам, где изготавливались к введению в прорыв основные массы бронетехники: за время марша к линии фронта на экипажах должны были проявиться последствия облучения.

При взрыве нейтронной бомбы основным поражающим фактором является поток нейтронов. Он проходит сквозь большинство предметов, но причиняет вред живым организмам на уровне атомов и частиц. Радиация воздействует, прежде всего, на ткани головного мозга, вызывая шок, конвульсии, паралич и кому. Кроме того, нейтроны преобразуют атомы внутри человеческого тела, создавая радиоактивные изотопы, облучающие организм изнутри. Смерть при этом наступает не мгновенно, а в течение 2 суток.

Если сбросить нейтронный заряд на город, основная часть построек в радиусе 2 километров от эпицентра взрыва сохранится, в то время, как люди и животные погибнут. Например, для уничтожения всего населения Парижа, как было подсчитано, достаточно 10-12 бомб. Те жители, которым удастся выжить, годами будут страдать от лучевой болезни.

«Зловещим прообразом такого оружия была атомная бомба, сброшенная американским лётчиком 6 августа 1945 года на Хиросиму. Теперь установлено, что эта бомба (урановая) при взрыве дала в 4-5 раз больше нейтронов, чем бомба, взорванная в Нагасаки (плутониевая). И как результат – в Хиросиме погибло почти в 3 раза больше людей, чем в Нагасаки, хотя мощность бомбы, сброшенной на Хиросиму, была в два раза меньше», - писал в 1986 году автор книги «За пределами законности», Иван Арцибасов.

Использовать бомбу с источником быстрых нейтронов (изотопом беррилия) в 1958 году предложил американский физик Сэмюэль Коэн. Впервые подобный заряд военные США испытали через 5 лет на подземном полигоне в штате Невада.

Как только общественность узнала о новом виде оружия, мнения по поводу допустимости его применения разделились. Одни приветствовали «рациональный» способ ведения войны, позволяющий избежать лишних разрушений и экономических потерь. Подобным образом рассуждал и сам Коэн, который был свидетелем уничтожения Сеула во время Корейской войны. Критики нейтронного оружия, напротив, утверждали, что с его появлением человечество дошло до «полного изуверства». В 1970-80-х годах при поддержке Москвы левая интеллигенция развернула движение против нейтронных бомб, производство которых запустила в 1981 год администрация Рональда Рейгана. Страх перед «нейтронной смертью» настолько укоренился, что военные пропагандисты США даже прибегали к эвфемизмам, называя нейтронную бомбу «устройством повышенной радиации» (enhanced radiation device).

Заряд конструктивно представляет собой обычный ядерный заряд малой мощности, к которому добавлен блок, содержащий небольшое количество термоядерного топлива (смесь дейтерия и трития). При подрыве взрывается основной ядерный заряд, энергия которого используется для запуска термоядерной реакции . Большая часть энергии взрыва при применении нейтронного оружия выделяется в результате запущенной реакции синтеза . Конструкция заряда такова, что до 80 энергии взрыва составляет энергия потока быстрых нейтронов , и только 20 % приходится на остальные поражающие факторы (ударную волну , ЭМИ , световое излучение).

Действие, особенности применения

Мощный поток нейтронов не задерживается обычной стальной бронёй и намного сильнее проникает сквозь преграды, чем рентгеновское или гамма-излучение , не говоря уже об альфа- и бета- частицах. Благодаря этому нейтронное оружие способно поражать живую силу противника на значительном расстоянии от эпицентра взрыва и в укрытиях, даже там, где обеспечивается надёжная защита от обычного ядерного взрыва .

Поражающее действие нейтронного оружия на технику обусловлено взаимодействием нейтронов с конструкционными материалами и радиоэлектронной аппаратурой, что приводит к появлению наведённой радиоактивности и, как следствие, нарушению функционирования. В биологических объектах под действием излучения происходит ионизация живой ткани, приводящая к нарушению жизнедеятельности отдельных систем и организма в целом, развитию лучевой болезни . На людей действует как само нейтронное излучение , так и наведённая радиация. В технике и предметах под действием потока нейтронов могут образовываться мощные и долго действующие источники радиоактивности, приводящие к поражению людей в течение длительного времени после взрыва. Так, например, экипаж танка Т-72 , находящегося в 700 от эпицентра нейтронного взрыва мощностью в 1 кт , мгновенно получит безусловно смертельную дозу облучения (8000 рад), мгновенно выйдет из строя и погибнет в течение нескольких минут . Но если этот танк после взрыва начать использовать снова (физически он почти не пострадает), то наведённая радиоактивность приведёт к получению новым экипажем смертельной дозы радиации в течение суток .

Из-за сильного поглощения и рассеивания нейтронов в атмосфере дальность поражения нейтронным излучением, по сравнению с дальностью поражения незащищённых целей ударной волной от взрыва обычного ядерного заряда той же мощности , невелика. Поэтому изготовление нейтронных зарядов высокой мощности нецелесообразно - излучение всё равно не дойдёт дальше, а прочие поражающие факторы окажутся снижены. Реально производимые нейтронные боеприпасы имеют мощность не более 1 кт. Подрыв такого боеприпаса даёт зону поражения нейтронным излучением радиусом около 1,5 км (незащищённый человек получит опасную для жизни дозу радиации на расстоянии 1350 м). Вопреки распространённому мнению, нейтронный взрыв вовсе не оставляет материальные ценности невредимыми: зона сильных разрушений ударной волной для того же килотонного заряда имеет радиус около 1 км.

Защита

Нейтронное оружие и политика

Опасность нейтронного оружия, как и вообще ядерного оружия малой и сверхмалой мощности, заключается не столько в возможности массового уничтожения людей (это можно сделать и многими другими, в том числе давно существующими и более эффективными для этой цели видами ОМП), сколько в стирании грани между ядерной и обычной войной при его использовании. Поэтому в ряде резолюций Генеральной Ассамблеи ООН отмечаются опасные последствия появления новой разновидности оружия массового поражения - нейтронного, и содержится призыв к его запрещению. В 1978 г. , когда в США ещё не был решён вопрос о производстве нейтронного оружия, СССР предложил договориться об отказе от его применения и внёс на рассмотрение Комитета по разоружению проект международной конвенции о его запрещении. Проект не нашёл поддержки у США и других западных стран. В 1981 г. в США начато производство нейтронных зарядов, в настоящее время они стоят на вооружении.

Ссылки

Смотреть что такое "Нейтронная бомба" в других словарях:

    НЕЙТРОННАЯ БОМБА, см. АТОМНОЕ ОРУЖИЕ … Научно-технический энциклопедический словарь

    Это статья о боеприпасах. Для получения информации о других значениях термина смотрите Бомба (значения) Авиабомба АН602 или «Царь бомба» (СССР) … Википедия

    Сущ., ж., употр. сравн. часто Морфология: (нет) чего? бомбы, чему? бомбе, (вижу) что? бомбу, чем? бомбой, о чём? о бомбе; мн. что? бомбы, (нет) чего? бомб, чему? бомбам, (вижу) что? бомбы, чем? бомбами, о чём? о бомбах 1. Бомбой называют снаряд,… … Толковый словарь Дмитриева

    Ы; ж. [франц. bombe] 1. Разрывной снаряд, сбрасываемый с самолёта. Сбросить бомбу. Зажигательная, фугасная, осколочная б. Атомная, водородная, нейтронная б. Б. замедленного действия (также: о том, что чревато в будущем большими неприятностями,… … Энциклопедический словарь

    бомба - ы; ж. (франц. bombe) см. тж. бомбочка, бомбовый 1) Разрывной снаряд, сбрасываемый с самолёта. Сбросить бомбу. Зажигательная, фугасная, осколочная бо/мба. Атомная, водородная, нейтронная бо/мба … Словарь многих выражений

    Оружие большой разрушительной силы (порядка мегатонн в тротиловом эквиваленте), принцип действия которого основан на реакции термоядерного синтеза легких ядер. Источником энергии взрыва являются процессы, аналогичные процессам, протекающим на… … Энциклопедия Кольера

    Евгений Евтушенко Имя при рождении: Евгений Александрович Гангнус Дата рождения … Википедия

    В отличие от обычного оружия, оказывает разрушающее действие за счет ядерной, а не механической или химической энергии. По разрушительной мощи только взрывной волны одна единица ядерного оружия может превосходить тысячи обычных бомб и… … Энциклопедия Кольера

Всадники Апокалипсиса обрели новые черты и стали реальными как никогда прежде. Ядерные и термоядерные бомбы , биологическое оружие , «грязные » бомбы, баллистические ракеты – все это несло угрозу массового уничтожения для многомиллионных мегаполисов, стран и континентов.

Одной из самых впечатляющих «страшилок» того периода была нейтронная бомба – разновидность ядерного оружия, специализирующаяся на уничтожении биологических организмов при минимальном воздействии на неорганические объекты. Советская пропаганда уделила много внимания этому ужасному оружию, изобретению «сумрачного гения» заокеанских империалистов.

От этой бомбы невозможно спрятаться: не спасет ни бетонный бункер, ни бомбоубежище, никакие средства защиты. При этом после взрыва нейтронной бомбы здания, предприятия и прочие объекты инфраструктуры останутся нетронутыми и попадут прямиком в лапы американской военщины. Рассказов о новом страшном оружии было так много, что в СССР про него начали сочинять анекдоты.

Что из этих рассказов правда, а что вымысел? Как работает нейтронная бомба? Есть ли подобные боеприпасы на вооружении российской армии или вооруженных сил США? Ведутся ли разработки в этой области в наши дни?

Как работает нейтронная бомба — особенности ее поражающих факторов

Нейтронная бомба – это разновидность ядерного оружия, основным поражающим фактором которого является поток нейтронного излучения. Вопреки распространенному мнению, после взрыва нейтронного боеприпаса образуется и ударная волна, и световое излучение, но большая часть выделяемой энергии превращается в поток быстрых нейтронов. Нейтронная бомба относится к тактическому ядерному оружию.

Принцип действия бомбы основан на свойстве быстрых нейтронов гораздо свободнее проникать через различные преграды, по сравнению с рентгеновским излучением, альфа, бета и гамма-частицами. Например, 150 мм брони способны удержать до 90% гамма-излучения и только 20% нейтронной волны. Грубо говоря, спрятаться от проникающего излучения нейтронного боеприпаса гораздо сложнее, чем от радиации «обычной» ядерной бомбы. Именно это свойство нейтронов и привлекло внимание военных.

Нейтронная бомба имеет ядерный заряд относительно небольшой мощности, а также специальный блок (его обычно изготавливают из бериллия), который и является источником нейтронного излучения. После подрыва ядерного заряда большая часть энергии взрыва преобразуется в жесткое нейтронное излучение. На остальные факторы поражения - ударная волна, световой импульс, электромагнитное излучение - приходится лишь 20% энергии.

Однако все вышесказанное всего лишь теория, практическое применение нейтронного оружия имеет некоторые особенности.

Земная атмосфера очень сильно гасит нейтронное излучение, поэтому дальность действия этого поражающего фактора не больше, чем радиус поражения ударной волны. По этой же причине нет смысла изготавливать нейтронные боеприпасы большой мощности – излучение все равно быстро затухнет. Обычно нейтронные заряды имеют мощность около 1 кТ. При его подрыве происходит поражение нейтронным излучением в радиусе 1,5 км. На дистанции до 1350 метров от эпицентра оно остается опасным для жизни человека.

Кроме того, поток нейтронов вызывает в материалах (например, в броне) наведенную радиоактивность. Если посадить в танк, попавший под действие нейтронного оружия (на дистанциях около километра от эпицентра), новый экипаж, то он получит летальную дозу радиации в течение суток.

Не соответствует действительности распространенное мнение, что нейтронная бомба не уничтожает материальные ценности. После взрыва подобного боеприпаса образуется и ударная волна, и импульс светового излучения, зона сильных разрушений от которых имеет радиус примерно в один километр.

Нейтронные боеприпасы не слишком подходят для использования в земной атмосфере, зато они могут быть весьма эффективны в космическом пространстве. Там нет воздуха, поэтому нейтроны распространяются беспрепятственно на весьма значительные расстояния. Благодаря этому различные источники нейтронного излучения рассматриваются в качестве эффективного средства противоракетной обороны. Это так называемое пучковое оружие. Правда, в качестве источника нейтронов обычно рассматривается не нейтронные ядерные бомбы, а генераторы направленных нейтронных пучков – так называемые нейтронные пушки.

Использовать их в качестве средства поражения баллистических ракет и боевых блоков предлагали еще разработчики рейгановской программы Стратегической оборонной инициативы (СОИ) . При взаимодействии пучка нейтронов с материалами конструкции ракет и боеголовок возникает наведенная радиация, которая надежно выводит из строя электронику этих устройств.

После появления идеи нейтронной бомбы и начала работ по ее созданию стали разрабатываться методы защиты от нейтронного излучения. В первую очередь они были направлены на уменьшение уязвимости боевой техники и экипажа, находящегося в ней. Основным методом защиты от подобного оружия стало изготовление специальных видов брони, хорошо поглощающих нейтроны. Обычно в них добавляли бор – материал, прекрасно улавливающий эти элементарные частицы. Можно добавить, что бор входит в состав поглощающих стрежней ядерных реакторов. Еще одним способом уменьшить поток нейтронов является добавление в броневую сталь обедненного урана.

Кстати, практически вся боевая техника, созданная в 60-е – 70-е годы прошлого столетия, максимально защищена от большинства поражающих факторов ядерного взрыва.

История создания нейтронной бомбы

Атомные бомбы, взорванные американцами над Хиросимой и Нагасаки, принято относить к первому поколению ядерного оружия. Принцип его работы основан на реакции деления ядер урана или плутония. Ко второму поколению относится оружие, в принцип работы которого положены реакции ядерного синтеза – это термоядерные боеприпасы, первое из них было взорвано США в 1952 году.

К ядерному оружию третьего поколения относятся боеприпасы, после взрыва которых энергия направляется на усиление того или иного фактора поражения. Именно к таким боеприпасам относятся нейтронные бомбы.

Впервые о создании нейтронной бомбы заговорили в середине 60-х годов, хотя его теоретическое обоснование обсуждалось гораздо раньше – еще в середине 40-х. Считается, что идея создания подобного оружия принадлежит американскому физику Самуэлю Коену. Тактическое ядерное оружие, несмотря на его значительную мощь, не слишком эффективно против бронетехники, броня хорошо защищает экипаж практически от всех поражающих факторов классического ЯО.

Первое испытание нейтронного боевого устройства было проведено в США в 1963 году. Однако мощность излучения оказалась гораздо ниже той, на которую рассчитывали военные. На доводку нового оружия потребовалось более десяти лет, и в 1976 году американцы провели очередные испытания нейтронного заряда, результаты оказались весьма впечатляющими. После этого было принято решение о создании 203-мм снарядов с нейтронной боевой частью и боеголовок для тактических баллистических ракет «Ланс».

В настоящее время технологиями, которые позволяют создавать нейтронное оружие, владеют США, Россия и Китай (возможно, и Франция). Источники сообщают, что массовый выпуск подобных боеприпасов продолжался примерно до середины 80-х годов прошлого века. Именно тогда в броню боевой техники стали повсеместно добавлять бор и обедненный уран, что практически полностью нейтрализовало основной поражающий фактор нейтронных боеприпасов. Это привело к постепенному отказу от данного вида оружия. Но как обстоит ситуация на самом деле — неизвестно. Информация такого рода находится под многими грифами секретности и практически не доступна широкой общественности.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Целью создания нейтронного оружия в 60-х-70-х годах являлось получение тактической боеголовки, главным поражающим фактором в котором являлся бы поток быстрых нейтронов, излучаемых из области взрыва.

Создание такого оружия обусловила низкая эффективность обычных тактических ядерных зарядов против бронированных целей, таких как танки, бронемашины и т. п. Благодаря наличию бронированного корпуса и системы фильтрации воздуха бронетехника способна противостоять всем поражающим факторам ядерного взрыва. Поток нейтронов же с легкостью проходит даже через толстую стальную броню. При мощности в 1 кт смертельная доза облучения в 8000 рад, которая ведет к немедленной и быстрой смерти (минуты), будет получена экипажем танка на расстоянии в 700 м. Опасный для жизни уровень достигается на дистанции 1100. также дополнительно, нейтроны создают в конструкционных материалах (например, броне танка) наведенную радиоактивность.

Из-за очень сильного поглощения и рассеивания нейтронного излучения в атмосфере делать мощные заряды с увеличенным выходом излучения нецелесообразно. Максимальная мощность боеголовок составляет ~1Кт. Хотя о нейтронных бомбах и говорят, что они оставляют материальные ценности неразрушенными, это не совсем так. В пределах радиуса нейтронного поражения (около 1 километра) ударная волна может уничтожить или сильно повредить большинство зданий.

Из особенностей конструкции стоит отметить отсутствие плутониевого запального стержня. Из-за малого количества термоядерного топлива и низкой температуры начала реакции необходимость в нем отсутствует. Весьма вероятно, что зажигание реакции происходит в центре капсулы, где в результате схождения ударной волны развивается высокое давление и температура.

Нейтронный заряд конструктивно представляет собой обычный ядерный заряд малой мощности, к которому добавлен блок, содержащий небольшое количество термоядерного топлива (смесь дейтерия и трития с большим содержанием последнего, как источника быстрых нейтронов). При подрыве взрывается основной ядерный заряд, энергия которого используется для запуска термоядерной реакции. При этом нейтроны не должны поглощаться материалами бомбы и, что особо важно, необходимо предотвратить их захват атомами делящегося материала.

Большая часть энергии взрыва при применении нейтронного оружия выделяется в результате запущенной реакции синтеза. Конструкция заряда такова, что до 80 % энергии взрыва составляет энергия потока быстрых нейтронов, и только 20 % приходится на остальные поражающие факторы (ударную волну, электромагнитный импульс, световое излучение).

Общее количество делящихся материалов для 1-кт нейтронной бомбы где-то 10 кг. 750-тонный энергетический выход синтеза означает наличие 10 граммов дейтерий-тритиевой смеси.



← Вернуться

×
Вступай в сообщество «servizhome.ru»!
ВКонтакте:
Я уже подписан на сообщество «servizhome.ru»