Батискаф - что такое? Конструкция. Батисферы и батискафы. Исследования океана

Подписаться
Вступай в сообщество «servizhome.ru»!
ВКонтакте:

При испытаниях моделей р/у подводных лодок в естественных водоемах есть вероятность их потери из-за низкой прозрачности воды. Поэтому возникла необходимость постройки батискафа, оборудованного видеокамерой.

Я дважды терял подводные лодки на карьере. К счастью, оба раза с помощью трала я их находил. Для более комфортного поиска утонувших лодок было принято решение о строительстве батискафа, оборудованного видеокамерой.
Корпус батискафа сделан из листа латуни толщиной 0,5 мм. С двух концов установлены стальные кольца с отверстиями по периметру в количестве 12 штук. В отверстиях нарезана резьба м4 для крепления крышек, сделанных из оргстекла толщиной 5 мм. Крышки крепятся с помощью задраек. Со стороны передней крышки установлена видеокамера с диодами подсветки.В задней крышке установлены разъемы для питания ходовых электромоторов, выход шланга для цистерны, антенны и кабеля видеокамкры, а также ходовых огней и электромагнита для отдачи буя. Электродвигатели установлены в герметичных капсулах с дейдвудами. Два ходовых злектромотора установлены по бокам батискафа. Они служат также и для поворотов. Еще два электромотора установлены вертикально- они предназначены для маневрмрования по глубине в небольших пределах. Система погружения представляет собой компрессор от одометра, воздушного клапана и пластмассового пакета от кетчупа емкостью 05 литра установленного вне прочного корпуса. Работает система таким образом: изначально батискаф загружается балластом до полного его погружения при пустом пакете. Для всплытия включается компрессор, который набувает пакет воздухом из корпуса, объем батискафа увеличивается и он всплывает. При погружении открывается клапан, который находится внутри корпуса и воздух из пакета стравливается в корпус. Батискаф погружается.Управляется батискаф по 4 каналам сервомашинками.Регулятора оборотов нет. Поскольку масса батискафа достаточно большая, ти и энерция приличная.Поэтому скорость можно регулировать кратковременным манипулированием стиком. Рывков скорости батискафа не ощущается.Все комплектующие установлены на фанерной панели, которая крепится к задней крышке. Батискаф оборудован буем, который всплывает в случае потери сигнала передатчика. Имеется контроль разряда аккумуляторов.Всего используется 3 группы аккумуляторов.Первая- 12 вольт для питания ходовых и вертикальных моторов, вторая- 6 вольт для питания приемника, сервомашинок и компрессора, третья-6 вольт для питания видеокамеры. Видеокамера подключена к телевизору 30 метровым кабелем.Кабель очень тонкий, посеребреный, намотан на бабине. При проверке качества выяснилось, что сигнал хороший, нареканий нет. К сожалению, испытания батискафа проходило без подключения кабеля так- как в бассейне смотреть нечего. Сверху батискафа крепиться надстройка имитирующая водолазный бот. Сделано это для прикола. Плывет бот и вдруг он тонет, потом поплавает под водой и всплывает.Это интересно, особенно для детей.















Батискафы

Батискаф ФНРС-2 Огюста Пикара был первой из построенных камер этого типа. Он совершил всего несколько погружений, достигнув в ходе одного из них в 1948 г. глубины 1360 м (хотя и был рассчитан на глубину погружения 4000 м).

Батискаф состоял из прочной сферы, несущего корпуса, устройства для хранения и отдачи твердого балласта, прожекторного, сигнального и некоторых других устройств.

Прочная сфера ФНРС-2 внутренним диаметром 2 м и толщиной 90 мм была рассчитана на пребывание двух человек в течение 24 ч и размещение специального оборудования. В ней имелись отверстия: большие - для входного люка диаметром 550 мм и для иллюминатора со стеклом из плексигласа толщиной 150 мм и несколько мелких - для прохода кабелей, трубки глубиномера и вентиляционного воздухопровода, через который в батискаф поступал свежий воздух в надводном положении.

Несущий корпус батискафа длиной 6940, шириной 3180 и высотой 5770 мм (вместе со сферой) состоял из одной малой и шести больших цилиндрических цистерн общей емкостью 32 м 3 , выполненных из алюминиевого сплава толщиной 3,5 мм и предназначенных для заполнения бензином. Вес батискафа с полным запасом бензина был равен 40 т.

Для обеспечения батискафу положительной плавучести в шести больших цистернах (диаметром 1500 и высотой 3000 мм) размещался основной запас бензина. В малой цистерне диаметром 850 мм, выполнявшей роль уравнительной, также находился бензин. Все цистерны были заключены в один обтекаемый стальной защитный корпус с толщиной обшивки 1 мм.

Во избежание разрушения цистерн при погружении, когда с резким возрастанием гидростатического давления изменяется температура воды и, естественно, объем бензина, одна из цистерн имела постоянное сообщение с забортной водой, а другие цистерны соединялись с ней системой трубопроводов для свободного перетекания бензина.

Для уменьшения плавучести батискафа в случае необходимости в его уравнительной цистерне имелся вентиль выпуска бензина. Однако при заклинивании этого вентиля в открытом положении существовала угроза утечки бензина из цистерны. На этот случай предусматривалась отдача твердого балласта, благодаря чему восстанавливалась потерянная плавучесть.

Твердый балласт весом 8 т предназначался главным образом для регулирования скорости погружения батискафа в пределах 0,1–1,0 м/сек, которая изменяется в зависимости от температуры забортной воды. Он состоял из железной дроби, помещавшейся снаружи прочной сферы в двух воронкообразных выгородках. Нижнюю часть балластных выгородок окружали витки катушек. При пропускании электрического тока через витки катушек создавалось магнитное поле, удерживавшее балласт от выхода из выгородок и создававшее как бы «пробки» из соединившихся дробинок. При размыкании тока в цепи катушек дробинки высыпались из своих выгородок, а при замыкании отдача балласта прекращалась.

Помимо твердого балласта, могла быть отдана и аккумуляторная батарея весом 360 кг, которая служила для питания двух электродвигателей, приводивших в движение два трехлопастных гребных винта. С помощью винтов батискаф мог развивать ход до 0,2 уз, делать повороты и разворачиваться на месте.

В аварийном случае для всплытия мог быть отдан также уравновешивающий трос (гайдроп) весом 80- 100 кг, основным назначением которого являлось уменьшение скорости погружения батискафа при подходе к грунту (при этом вес батискафа уменьшался на величину выпущенного уравновешивающего троса).

Для автоматического всплытия батискафа с грунта предусматривались специальные устройства с отдачей балласта. К ним относился глубиномер, заранее установленный на глубину, при достижении которой размыкалась цепь электромагнитного устройства отдачи балласта. Если по какой-либо причине батискаф достигал грунта в месте менее глубоком, чем предусмотрено глубиномером, в момент касания дна уравновешивающим тросом размыкались соответствующие контакты, удерживающие твердый балласт. На случай отказа первых двух устройств имелся часовой механизм, установленный на определенное время срабатывания.

При попадании воды внутрь прочной сферы происходило замыкание цепи устройства из-за электропроводимости соленой морской воды, что приводило к отдаче балласта.

Три последних типа устройства автоматической отдачи твердого балласта были проверены во время испытания батискафа.

Для освещения морского дна и фотографирования снаружи батискафа было смонтировано специальное прожекторное устройство. Прожектор, лампы внутреннего освещения и приборы батискафа питались от аккумуляторной батареи, установленной в несущем корпусе.

Для обнаружения всплывшего на поверхность батискафа средствами радиолокации на нем устанавливались уголковые отражатели и имелось устройство для запуска сигнальных ракет, приводившееся в действие изнутри сферы с помощью электрических замыкателей.

На батискафе были установлены механические манипуляторы («клешни») для захвата различных предметов и взятия проб с грунта и гарпунная пушка на случай встречи с крупными морскими животными. Однако из-за малого числа погружения ФНРС-2 действие манипуляторов и глубинных пушек проверить не удалось.

В процессе испытаний батискафа ФНРС-2 были выявлены существенные недостатки этой камеры. Во-первых, конструкция несущего корпуса исключала буксировку батискафа морем, что требовало наличия мощного спуско-подъемного оборудования на судне-носителе и штилевой погоды при спусках, так как даже небольшое волнение моря приводило к серьезным разрушениям несущего корпуса. Во-вторых, отсутствовала возможность входа экипажа в батискаф и выхода из него непосредственно перед погружением и после всплытия, так как крышка входного люка сферы закрывалась снаружи. В связи с последним недостатком исследователи (Пикар и Моно) были вынуждены находиться внутри сферы по нескольку часов до спуска и после всплытия в ожидании, пока задраят люк, спустят батискаф на воду, перекачают бензин с обеспечивающего судна, загрузят твердый балласт и т. д.

Батискаф ФНРС-3 , построенный в 1953 г. во Франции под руководством профессора О. Пикара и корабельного инженера П. Вильма, по сути дела, является модернизированным вариантом батискафа ФНРС-2 (рис. 14).

Рис. 14. Батискаф ФНРС-3.

Он предназначен для проведения океанографических исследований и рассчитан на глубину погружения до 6500 м с экипажем, состоящим из двух человек.

Водоизмещение батискафа 100 т, вес в воздухе без бензина 28 т, запас бензина 90 000 л, скорость хода под двумя электромоторами мощностью по 1 л. с. каждый до 0,5 уз при дальности плавания 4 мили, автономность 24 ч.

Для батискафа ФНРС-3 был создан новый обтекаемый несущий корпус (напоминавший по форме обводы подводной лодки периода второй мировой войны), к которому с помощью специальных стальных связей присоединялась прочная сфера батискафа ФНРС-2 (рис. 15).

Рис. 15. Устройство батискафа ФНРС-3: 1 - вертушка лага; 2 - компас; 3 - наружные батареи аккумуляторов; 4 - компенсационные цистерны; 5 - шахта шлюза; 6 - гребные электродвигатели и винты; 7 - носовая воздушная цистерна; 8-носовая переборка поплавка; 9 - отсеки с бензином; 10 - трубопровод для выравнивания давления в отсеке; 11- аварийный балласт; 12 - трап; 13 - маневровая цистерна; 14 - гайдроп; 15 -бункера с балластом для маневрирования; 16 - прожекторы; 17 - боковой киль-стабилизатор; 18 - направляющие для сбрасывания батарей.

Следует отметить, что подобное крепление несущего корпуса и прочной сферы не исключало опасности задевания последней за острые выступы скалистого дна или лежащие на грунте затонувшие суда.

Несущий корпус, разделенный плоскими водонепроницаемыми переборками на 13 отсеков, заполненных бензином, имеет длину 16 м и диаметр 3,45 м. Повышенная прочность его конструкции и мореходные обводы допускают буксировку батискафа в надводном положении даже при свежей погоде.

Сквозь несущий корпус проходит шахта со скоб-трапом, позволяющая экипажу спускаться в прочную сферу при нахождении батискафа на поверхности воды в крейсерском положении.

Крышка входного люка, весящая 140 кг, задраивается изнутри.

Под бензиновыми цистернами несущего корпуса размещены балластные цистерны, улучшающие мореходные качества батискафа. При заполнении водой балластные цистерны придают батискафу небольшую отрицательную плавучесть, что позволяет ему в отличие от ФНРС-2 начинать погружение без дополнительного приема твердого балласта.

Твердый балласт в виде дроби диаметром 3 мм предназначен для уравновешивания камеры при погружении с целью компенсации веса батискафа, возрастающего на величину веса объема воды, вливающейся в уравнительную цистерну из-за сжатия бензина. Весь твердый балласт расположен в четырех бункерах-цилиндрах, которые заканчиваются воронками с электромагнитными затворами.

Кроме того, имеется еще и аварийный балласт, состоящий из 2 т дроби и размещенный в специальных бункерах. Его отдают при поступлении воды в бензиновые отсеки или при закупорке дроби. В случае необходимости могут быть отданы две аккумуляторные батареи весом по 600 кг каждая, размещенные снаружи корпуса на специальных спусковых полозьях и удерживаемые четырьмя электромагнитами, а также цепь-гайдроп весом 150 кг и длиной 10 м.

На батискафе установлены два прожектора мощностью по 2000 вт, лампа для фотографирования, радиотелефон, работающий только на поверхности, ультразвуковые приборы для определения расстояния до грунта или до поверхности моря и ультразвуковой телеграф для подводной связи. Остальные специальные устройства аналогичны установленным на батискафе ФНРС-2.

Батискаф «Триест» (рис. 16, 17) был построен О. Пикаром в 1953 г. в Италии, а в 1957 г. его купили ВМС США.

Рис. 16. Батискаф «Триест».

Рис. 17. Схематический продольный разрез батискафа «Триест»: 1- носовая балластная цистерна; 2 - цистерна с бензином; 3 - лампа для освещения дна; 4 - бункер для дроби; 5 - магнитный клапан отдачи дроби; 6 - электронная Вспышка; 7 - иллюминатор; 8 - прочная сфера; 9 - входной люк; 10-шахта; 11 - гайдроп; 12 - кормовая балластная цистерна; 13 - клапан вентиляции; 14 - магнитный клапан отдачи гайдропа; 15 - магнитный клапан отдачи бункера; 16-клапан стравливания бензина; 17 - устройство для подачи воздуха; 18 - винт.

Этот батискаф получил широкую известность после того, как исследователи Пикар и Д. Уолт в 1960 г. достигли на нем рекордной глубины 10 919 м в районе Марианской впадины.

Батискаф «Триест» конструктивно похож на ФНРС-3. Он обладает удовлетворительной мореходностью, позволяющей буксировать его даже в небольшой шторм, что достигнуто благодаря форме поплавка (несущего корпуса), выполненного в виде цилиндра с заостренными оконечностями. Длина поплавка 15,24 м, диаметр 3,5 м, толщина стальных листов обшивки 5 мм, вес без бензина 15 т. Внутри поплавок разделен на отсеки двенадцатью поперечными жесткими гофрированными переборками толщиной 3 мм. Его оригинальной особенностью являются внутренние кили, погруженные в бензин. Их эффективность, как показали испытания, оказалась выше, чем у наружных скуловых килей, так как бензин оказывает сопротивление бортовой качке, в то время как сами внутренние кили (в отличие от обычных наружных килей) никакой качки не вызывают, ибо они не подвержены непосредственному воздействию волн.

В средней части корпуса поплавка расположена вертикальная цилиндрическая уравнительная цистерна.

Концевые цистерны (каждая объемом по 6 м 3) являются балластными, а остальные двенадцать цистерн бензиновыми.

Шесть средних цистерн, соединенных одна с другой системой отверстий и трубопроводов, связаны с цистернами концевых групп, сообщающимися также между собой. Сечения отверстий и трубопроводов обеспечивают быстрое перетекание бензина в любых эксплуатационных случаях.

Наибольшая из бензиновых цистерн - уравнительная (объем бензина 4,35 м 3); посредством специального трубопровода она сообщается через вентиль с забортной водой. Связанная с остальными цистернами, она служит для автоматического выравнивания давления во всех бензиновых цистернах с забортным.

В нижней части уравнительной цистерны имеется отверстие для сообщения с забортной водой, а в верхней части - вентиль для выпуска бензина за борт при необходимости увеличения отрицательной плавучести поплавка.

Уравнительная цистерна представляет собой стальную трубу диаметром 1,25 м с толщиной стенок 10 мм и является стержневой конструкцией батискафа. Снизу к ней крепится прочная сфера, а сверху поперечная балка с рымом для подъема батискафа без бензина (вес 30 т).

Для повышения устойчивости батискафа в движении снизу в носовой части поплавка имеется вертикальный киль (стабилизатор).

Входная шахта батискафа «Триест» диаметром 650 мм позволяет входить в прочную сферу, погруженную на 4 м. В нижней части шахты имеется иллюминатор из плексигласа высотой 850 мм, шириной 600 мм и толщиной 30 мм; верхняя часть шахты с крышкой закрыта специальным ограждением рубки.

Погружение и всплытие батискафа происходит всегда с заполненной шахтой. После всплытия вода из шахты может быть продута как средствами самого батискафа, так и сжатым воздухом обеспечивающего судна.

Твердый балласт состоит из 9 т железной дроби, заключенной в два специальных бункера весом 2 т, которые также являются балластом. Отдача балласта регулируется магнитными клапанами, расположенными в нижней части бункеров. Последние могут быть отданы в аварийном случае размыканием цепи тока в удерживающих электромагнитах. Кроме того, в случае выхода из строя магнитных клапанов или для экстренного всплытия батискафа можно сбросить сразу весь балласт с бункерами.

Прочная сфера батискафа «Триест», как и батискафа ФНРС-2, выполнена из двух полусфер и имеет те же размеры. Ее вес 10,5 т. Она изготовлена не из литой, а из кованой легированной стали (с временным сопротивлением на разрыв 9000 кг/см 2), что повысило физико-механические свойства материала корпуса. Для уменьшения концентрации напряжений у вырезов иллюминатора и входного люка при сжатии сферы толщина стенки корпуса увеличена до 150 мм. Полная герметичность уплотнения между полусферами достигнута точной пригонкой стыка фланцев, прижатых специальными кольцами.

Вырезы для иллюминатора и входного люка расположены в диаметрально противоположных сторонах сферы. Коническая форма иллюминатора и крышки люка обеспечивает их плотное прижатие к стенкам сферы давлением воды и создает необходимую водонепроницаемость. Диаметр внутренней кромки выреза входного люка 430 мм, внешней кромки 550 мм; диаметр внутренней кромки иллюминатора 100 мм, внешней кромки 400 мм. Большая конусность иллюминатора создает угол обзора изнутри сферы до 150°.

Для прохода кабелей и труб различного назначения вокруг иллюминатора просверлено 12 отверстий наружным диаметром 50 и внутренним 20 мм каждое. Отверстия уплотнены специальной синтетической смолой.

Крышка входного люка весит 160 кг. Для облегчения ее отдраивания и задраивания применено шарнирное крепление со специальной пружиной. В центре крышки имеется второй иллюминатор.

Прочная сфера подвешена к несущему корпусу на двух стальных полотенцах шириной 100 мм и толщиной 10 мм, охватывающих прочную сферу крест-накрест. В верхней части полотенца крепятся к петлям, приваренным на уравнительной цистерне. Специальные замки соединяют прочную сферу с несущим корпусом. Кроме того, полотенца подкреплены стальным тросом. Для придания эластичности соединению сферы с полотенцами между ними проложена листовая резина.

Для освещения батискафа используются наружные прожекторы мощностью по 1000 вт каждый; два из них установлены в носу и один в корме. Лампы прожекторов заключены в прочные оболочки с иллюминатором из плексигласа. Для охлаждения ламп используются вода и экран из специального стекла, поглощающего инфракрасные лучи.

Внутри сфера освещается шестью лампами накаливания 1х30 и 5х5 вт, расположенными в верхней части сферы. Кроме того, имеются две переносные аккумуляторные лампы.

В качестве источника электроэнергии использованы две серебряно-цинковые аккумуляторные батареи емкостью 900 а ч и весом около 300 кг, размещенные внутри сферы. Одна из них напряжением 6-12–25 в служит для внутреннего освещения и питания приборов, другая напряжением 250–500 в питает прожекторы и два гребных реверсивных электродвигателя мощностью по 2 л. с. каждый.

В качестве движителей применены два трехлопастных гребных винта, которые позволяют батискафу развивать скорость хода 0,25 уз в течение 16 ч. Гребные винты, установленные на палубе несущего корпуса, работают только под водой; в надводном положении батискаф надо буксировать.

Электродвигатели гребных винтов сообщаются с забортной водой посредством специальной изолирующей среды - триолина, представляющего собой жидкость тяжелее воды. Это позволило обойтись без обычного уплотнения места выхода вала электродвигателя.

На батискафе «Триест» имеется уравновешивающая цепь весом 250 кг, которая крепится к прочной сфере и отдается с помощью электромагнитного устройства. Остальное оборудование батискафа «Триест» в основном сходно с оборудованием батискафа ФНРС-2.

В 1958 и в 1961 г. батискаф «Триест» прошел модернизации в США, в результате которых глубина его погружения была увеличена до максимальных глубин Мирового океана, а автономность стала равна 24 ч.

На батискаф была поставлена новая прочная сфера с толщиной стенок 120 мм и толщиной металла в районах вырезов 180 мм вместо 150 мм. Мощность аккумуляторной батареи возросла с 33 до 60 квт, что позволило повысить скорость хода до 1 уз. Усовершенствование электродвигателей, установка руля и трех дополнительных гребных винтов для движения в вертикальной и горизонтальной плоскостях значительно улучшили также и мореходные качества батискафа. В связи с модернизацией длина несущего корпуса увеличилась до 17,7 м, а объем принимаемого бензина до 113,3 м 3 . Резко возрос и удельный вес научно-исследовательской аппаратуры, установленной на батискафе. Если в 1958 г. он составлял 226 кг, то в 1961 г. он уже равнялся 700 кг. В 1961 г. на «Триесте» были установлены манипуляторы грузоподъемностью 22,6 кг.

Наряду с улучшением ходовых качеств «Триеста» была создана также специальная система, обеспечивающая нулевую плавучесть батискафа при движении возле грунта. Эта система представляет собой трос из нержавеющей стали, опущенный на 2,2 м ниже прочной сферы, к нижнему концу которого прикреплен шар весом около 70 кг. Во время движения батискафа вблизи грунта шар перемещается непосредственно по морскому дну, что значительно уменьшает вероятность повреждения прочной сферы.

Батискаф «Архимед» , построенный в 1961 г. во Франции инженером П. Вильмом, предназначен для проведения комплексных океанографических исследований на предельных глубинах Мирового океана (рис. 18).

Рис. 18. Батискаф «Архимед».

Батискаф имеет следующие основные тактико-технические элементы:

Длина наибольшая 21,3 м;

Ширина наибольшая 4,0 м;

Высота наибольшая 7,8 м;

Осадка в надводном положении 5,2 м;

Вес без бензина 60,5 т;

Полное подводное водоизмещение 198,8 м 3;

Максимальная скорость хода 3 уз;

Мощность гребного электродвигателя 30 л. с.

Кроме основного электродвигателя и гребного винта, обеспечивающих движение в горизонтальном направлении, установлены два электродвигателя мощностью по 5 л. с. каждый и соответственно два гребных винта для обеспечения движения батискафа в вертикальном и поперечном направлениях.

Для поворотов батискафа применен винт, поскольку на малых скоростях хода обычные рули обладают низкой эффективностью.

Питание гребных электродвигателей и остальных потребителей электроэнергии обеспечивает установленная вне прочного корпуса аккумуляторная батарея, состоящая из двух групп: напряжением 110 в для питания гребных электродвигателей и напряжением 24 в для питания бортовой аппаратуры.

Для обеспечения погружений и всплытий на батискафе имеется 19 т балласта в виде дроби, удерживаемой, как и на «Триесте», с помощью электромагнитов.

В несущем корпусе батискафа, помимо бензиновых цистерн, размещены балластные цистерны, все три электродвигателя (каждый в своей выгородке) и прочее оборудование.

В целях улучшения мореходности батискафа в надводном положении над его несущим корпусом установлена надстройка для прохода экипажа и имеется легкое ограждение рубки высотой в 1900 мм.

Прочная сфера наружным диаметром 2100 мм и толщиной стенок 150 мм изготовлена из специальной никельхромомолибденовой стали с пределом текучести 10 500 кг/см 2 , что при принятой конструкции корпуса обеспечивает глубину погружения до наибольших глубин Мирового океана. Сфера имеет вырез для входного люка диаметром 450 мм и три выреза под иллюминаторы из плексигласа диаметром 100 мм каждый. Два иллюминатора размещены побортно и один в носовой части сферы. Внутри прочной сферы могут разместиться два человека и находиться в ней в течение 20 ч.

Батискаф оборудован специальной аппаратурой для производства замеров и регистрации изменений температуры, солености, радиоактивности и содержания кислорода в воде, распространения ультразвуковых волн, изучения характера придонных течений. На батискафе смонтированы две фотосъемочные лампы мощностью по 1000 вт каждая. Кроме того, имеются специальные насосы и фильтры для отбора планктона и 22 размещенных снаружи металлических сосуда для взятия проб воды.

В остальном оборудование, системы и устройства батискафа «Архимед» ничем не отличаются от тех, что были установлены на батискафах ФНРС-3 и «Триест».

К настоящему времени батискаф «Архимед» совершил десятки погружений. В 1962 г. на нем была достигнута глубина 9400 м в районе Японской впадины.

Батискаф «Сетасе» был спроектирован в 1959 г. в США и рассчитан на глубину погружения 6000 м. Его водоизмещение 53 т, длина 13 м, высота борта 5 м.

Для надводного плавания на батискафе установлены два дизеля, позволяющие развивать скорость хода до 10 уз. Запас топлива для дизелей рассчитан на дальность плавания более 3000 км. Для движения под водой используются два гребных электродвигателя с питанием от аккумуляторной батареи. Подводная скорость хода батискафа 7 уз, дальность плавания 40 миль. Экипаж батискафа состоит из пяти человек, в том числе из двух кинооператоров.

Батискаф фирмы «Дуглас» (рис. 19), проект которого разработан в США в 1961 г., рассчитан на погружения на максимальные глубины Мирового океана.

Рис. 19. Батискаф фирмы «Дуглас»: 1 - прочная сфера; 2 - аккумуляторная батарея; 3 - устройство для покладки на грунт; 4 - электродвигатель; 5 - бункер с дробью; 6 - телевизионная камера; 7 - устройство для взятия проб грунта; 8 - подводный телеграф; 9 - гидроакустическая станция.

Основные тактико-технические данные батискафа:

Длина 20,3 м;

Диаметр поплавка 3,05 м;

Высота батискафа 5,0 м;

Вес 33–45 т;

Скорость хода 5 уз;

Дальность плавания 100 миль;

Автономность плавания 36 ч;

Экипаж 2 человека.

Прочную сферу батискафа предполагается выполнить сварной, что, по мнению проектировщиков, позволит значительно увеличить надежность конструкции и снизить ее вес за счет отказа от больших утолщений в районе входного люка и иллюминаторов. Относительный вес сферы (отношение веса сферы к объему вытесняемой ею воды) должен снизиться с 4 до 2 при незначительном уменьшении запаса прочности, равного 2 вместо 2,2 для батискафов прежних конструкций. Изготовление поплавка из сваривающегося алюминиевого сплава заметно уменьшит его вес при сохранении большого объема легкой жидкости (150 м 3).

Для увеличения свободного объема прочной сферы батискафа и уменьшения ее отрицательной плавучести аккумуляторная батарея и электродвигатели батискафа фирмы «Дуглас» выносятся в поплавок, причем они будут размещены в специальных контейнерах, заполненных трансформаторным маслом. В контейнерах на всех глубинах должно поддерживаться постоянное избыточное давление, создаваемое специальным многоступенчатым насосом.

Приборы управления и контроля должны монтироваться в прочной сфере с таким расчетом, чтобы каждый член экипажа в любой момент мог взять на себя управление батискафом.

Впервые предусматривается установка на батискаф системы кондиционирования воздуха весом 14,5 кг и потребляемой мощностью 1 квт, которая позволит вместе с системой регенерации поддерживать нормальные условия обитаемости экипажа в течение 36 ч.

Для уменьшения сопротивления воды при плавании в подводном положении и улучшения пропульсивных качеств поплавку батискафа придается обтекаемая форма, напоминающая обводы корпуса современной подводной лодки. Большая часть прочной сферы должна находиться внутри поплавка, и лишь ее незначительная часть будет выступать за килевую линию.

Предусматривается прикрытие шахты входного люка легким ограждением обтекаемой формы.

Для увеличения маневренности и надежности эксплуатации батискафа на нем проектируют установить двухвальную энергетическую установку. Каждая линия вала состоит из свинцово-кислотной батареи, электродвигателя постоянного тока мощностью 10 л. с., редуктора и винта в насадке.

Применение телевизионной аппаратуры позволит расширить район наблюдения и проводить выборочные наблюдения в отдельных узких секторах. Для автоматической регистрации замеров будет использована разнообразная современная аппаратура.

В нижней части конструкции батискафа предполагается установить специальные полозья для безопасной покладки камеры на морское дно. Среди аварийно-спасательных средств предусмотрен радиобуй, который отделяется от камеры и всплывает на поверхность воды при аварии.

Использование батискафа предполагается со специального судна-дока (рис. 20), которое сможет одновременно перевозить в трюме до десяти батискафов и обеспечивать проведение всех необходимых работ по их обслуживанию.

Рис. 20. Судно - носитель батискафов фирмы «Дуглас».

Фирма «Дуглас Эйркрафт» выдвинула идею создания флотилии из десяти батискафов. Полагают, что такая флотилия батискафов, базирующихся на судно-док, будет способна не только выполнять обычные океанографические исследования, но и обслуживать глубоководные установки и устройства, используемые в системах противолодочной обороны ВМС США.

Батискаф ДРВ , проект которого разработан на испытательной станции Чайна-Лейк в штате Калифорния (США), предполагается использовать для проведения океанографических работ на глубине 6500 м.

По форме он напоминает торпеду диаметром 2,8 м. Его водоизмещение 80 т, экипаж 3 человека, скорость хода 6 уз, дальность плавания 200 миль. Двигатель мощностью 40 л. с., размещенный вне прочного корпуса, питается от химической серебряно-кадмиевой батареи, рассчитанной на работу в течение 48 ч. Для смягчения возможных ударов батисферы о грунт предусматривается тормозная цепь.

Батискаф ДРВ должен обладать рядом преимуществ по сравнению с батискафом «Триест»; он будет иметь в два раза большую полезную площадь прочной сферы, легко передвигаться как самостоятельно, так и при буксировке, иметь более эффективную систему балласта.

В отличие от существующих батискафов в батискафе ДРВ вместо дроби в качестве основного твердого балласта проектируется использовать обыкновенную соль, а вместо бензина, играющего роль жидкого балласта, - водный раствор аммония (70 %), который на глубине сжимается в меньшей степени, чем бензин. Для компенсации положительной плавучести аммония, потерянной при сжатии, будет применена растворяющаяся в морской воде соль.

Батискаф конструктора В. Потапова (рис. 21), созданный в лаборатории Клайпедского института Гипрорыбфлота, предназначен для наблюдения за новыми конструкциями тралов, за поведением промысловых рыб в зоне траления и выполнения океанографических исследований.

Рис. 21. Батискаф лаборатории Клайпедского института Гипрорыбфлота перед спуском на воду.

Вес подводной камеры около 2 т, глубина погружения до 200 м. Она обладает положительной плавучестью и в случае аварии самостоятельно всплывает на поверхность. В небольшой кабине прочного корпуса батискафа размещается один человек, который управляет камерой, ведет наблюдение через иллюминаторы и производит фотокиносъемку.

Батискаф успешно прошел серию производственных испытаний в Балтийском море и в Атлантическом океане.

- (от греч. bathys глубокий и skaphos судно) глубоководный самоходный аппарат для океанографических и т. п. исследований. Состоит из стального шара гондолы (экипаж 1 3 человека, приборы) и поплавка корпуса, заполненного более легким, чем вода,… … Большой Энциклопедический словарь

Оса Словарь русских синонимов. батискаф сущ., кол во синонимов: 3 аппарат (109) мезоскаф … Словарь синонимов

Глубоководный океанографический снаряд в виде обитаемого автономного самоходного аппарата. Батискаф состоит из шара гондолы, где размещается экипаж и различное оборудование, и легкого корпуса, заполненного жидкостью, менее плотной, чем вода.… … Морской словарь

БАТИСКАФ, смотри Подводный аппарат … Современная энциклопедия

- (от греч. bathys глубокий и skaphos судно * a. bathyscaph; н. Bathyskaph; ф. bathyscaphe; и. batiscafo) глубоководный автономный самоходный аппарат для океанографии, и др. исследований, см. в ст. Подводный аппарат. Горная э … Геологическая энциклопедия

БАТИСКАФ, а, муж. Самоходный аппарат для глубоководных исследований. | прил. батискафный, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

См. Глубоководные подводные аппараты. EdwART. Словарь терминов МЧС, 2010 … Словарь черезвычайных ситуаций

батискаф - БАТИСКАФ, а, м. Унитаз … Словарь русского арго

- (от бати... и греч. skaphos судно), самоходный аппарат, снабженный специальной аппаратурой и предназначенный для глубоководных океанографических (в том числе экологических биоценозов пелагиали, батиали, абиссали) исследований. Экологический… … Экологический словарь

батискаф - Самоходный аппарат для подводных исследований предельных глубин моря. [ГОСТ 18458 84] Тематики средства навигации, наблюдения, управления EN bathyscaphe … Справочник технического переводчика

Книги

  • Батискаф , Иванов Андрей Вячеславович. "Батискаф" Андрея Иванова погружает на дно существования. Читатель смотрит сквозь толстое стекло на странных людей, на их жизнь - и внезапно понимает, что он - один из них, что нет разницы…
  • Батискаф , Иванов А.В.. "Батискаф" Андрея Иванова погружает на дно существования. Читатель смотрит сквозь толстое стекло на странных людей, на их жизнь – и внезапно понимает, что он – одиниз них, что нет разницы…

Если вы когда-нибудь смотрели знаменитые фильмы команды Кусто про подводный мир, то вы не могли не запомнить удивительные, похожие на космические корабли подводные аппараты - батискафы. Так чем интересен батискаф, что такое можно с помощью него исследовать? С помощью этих судов человек может погрузиться в океанские пучины для научных наблюдений и познания загадочнх глубин Мирового океана.

Этимология названия

Своим названием батискаф обязан Огюсту Пиккару - изобретателю, придумавшему этот аппарат. Слово образовано от пары греческих слов, которые обозначают "судно" и "глубокий". В 2018 году "глубоководное судно" будет отмечать 80-летний юбилей.

Изобретение батискафа

Пиккар изобрел глубоководный аппарат вскоре после окончания Второй мировой войны, в 1948 году. Предшественниками батискафов были батисферы - глубоководные аппараты в форме шара. Первое такое судно было изобретено в Америке в 30-х годах ХХ века и умело погружаться на глубины до 1000 метров.

Отличие батискафа и батисферы заключается в том, что первые умеют самостоятельно двигаться в толще воды. Хотя скорость перемещения невелика и составляет 1-3 узла, но этого достаточно для выполнения возложенных на аппарат научно-технических задач.

До войны швейцарец работал над стратостатом, и ему пришла идея сделать подводное судно схожее по принципам устройства с такими летательными аппаратами, как дирижабль и аэростат. Только у батискафа вместо аэростатного баллона, который заполняется газом, баллон должен быть заполнен каким-либо веществом, имеющим плотность, меньшую, чем плотность воды. Таким образом, принцип работы батискафа напоминает поплавок.

Устройство батискафа

Как же устроен батискаф, что такое гондола и поплавок? Конструкция различных моделей батискафов схожа друг с другом и включает в себя две части:

  • легкий корпус, или как его еще называют - поплавок;
  • прочный корпус, или так называемая гондола.

Основное назначение поплавка - удерживать батискаф на необходимой глубине. Для этого в легком корпусе оборудуются несколько отсеков, наполняемых веществом, имеющим меньшую, чем у соленой воды, плотность. Первые батискафы наполнялись бензином, а современные используют уже другие наполнители - различные композитные материалы.

Научное оборудование, различные системы управления и обеспечения, экипаж батискафа размещаются внутри прочного корпуса. Сферические гондолы первоначально изготавливались из стали.

Современные подводные судна имеют прочный корпус, изготовленный из титановых, алюминиевых сплавов или композитных материалов. Они не подвержены коррозии и удовлетворяют требованиям по прочности.

Чем рискованно погружение на батискафе?

Основная проблема всех глубоководных аппаратов и субмарин - огромное давление воды, увеличивающееся с глубиной. Корпус сдавливает все сильннее и сильнее, а локатор батискафа равномерно погружается вниз.

Недостаточно прочный корпус подводного судна может быть деформирован или разрушен, что приведет к затоплению судна и потере дорогостоящего исследовательского оборудования и гибели людей. Недостаточно качественно спроектированные аккумуляторные батареи, большое количество сложной электроники, химических веществ и материалов от сжатия корпуса на больших глубинах повышают вероятность возгорания и возникновения аварийных ситуаций.

Кроме того, ограниченные возможности в обзоре пространства вокруг аппарата несут в себе угрозу столкновения батискафа со скалами или другими препятствиями. Локатор батискафа, равномерно погружающегося вертикально в толщу воды, не всегда может их обнаружить в связи с особенностями распространения акустических волн в водной среде.

Так что погружение этого судна - сложная и ответственная операция, требующая тщательной и заблаговременной подготовки.

Первые батискафы

Первый батискаф, изобретенный О. Пиккаром, имел название "FNRS-2", прослужил на французском флоте 5 лет и был выведен из строя в 1953 году. В качестве наполнителя в данном аппарате был использован бензин, который имеет в 1,5 раза меньшую, чем у воды, плотность.

Кабина батискафа, как и в воздухоплавании, называемая гондола, имела сферическую форму и толщину стенок в 90 мм. В ней достаточно свободно могли расположиться два человека.

Основной недостаток FNRS-2 заключался в месторасположения люка для входа в батискаф. Он был в подводной части аппарата. Войти и покинуть гондолу батискафа можно было лишь в том случае, если аппарат находился на судне-носителе.

Второй моделью батискафа стал FNRS-3. Этот аппарат стал использоваться для глубоководных исследований с 1953 года и вплоть до 70-х годов двадцатого века. Это судно стало музеем. В настоящее время FNRS-3 находится во Франции, в г. Тулоне.

По инженерным расчётам, аппарат, как и его предшественник, мог погружаться на глубины до 4 километров. Судно имело одинаковую с FNTS-2 конструкцию гондолы, но в остальном модель была значительно доработана.

Технические характеристики

Батискафы разных поколений можно сравнить с помощью их технических характеристик.

"Триест" (модернизированный)

"Архимед"

"Цзяолун"

Deepsea Chalanger

Год начала эксплуатации

Италия, Германия, затем США

Частная компания из Австралии

Диаметр гондолы (наружний/ внутрений), мм.

Толщина стенок гондолы, мм

Сухой вес, т

Используемая жидкость в поплавке

синтактическая пена

Объем жидкости в поплавке, л

Экипаж, чел

Глубина погружения, м

Батискаф "Триест"

Чем знаменит этот батискаф, что такое это за судно можно более детально понять дале? На "Триесте" в начале 1960 года было совершено первое погружение на дно Марианской впадины в Тихом океане. Эту операцию под кодовым названием "Проект Нектон" проводило ВМС США в сотрудничестве с сыном изобретателя батискафа Жаком Пикаром.

Несмотря на штормовую погоду 26 января состоялось первое в истории человечества погружение на 10900 метров. Главное открытие, сделанное исследователями в этом день - на дне Марианской впадины есть жизнь.

Батискаф Deepsea Chalanger

Этот аппарат, названный в честь глубоководной впадины, знаменит тем, что на нём в марте 2012 года совершил Джеймс Кэмерон. Знаменитый кинорежиссер 26 марта достиг дна Бездны Челленджера - еще одно название Марианской впадины.

Это был четвертый по счету спуск в самой глубокой точке океана в истории человечества примечательный тем, что оказался самым длительным по времени и совершался одним человеком. Локатор батискафа, равномерно погружающегося вертикально в пучину, обследовал дно, а режиссёр набрался вдохновения для создания продолжения фантастического фильма «Аватар».

Локатор батискафа

Гидроакустическая станция - это локатор батискафа, равномерно обследующий толщу воды и обнаруживающий скалы, дно и другие препятствия. Это, пожалуй, единственное средство, позволяющее «видеть», а точнее "слышать" под водой. Локатор батискафа, равномерно погружающегося на глубину, по сути, является ушами аппарата.

Происшествия с батискафами

В августе 2005 года у берегов Камчатки случилось затопление батискафа ВМФ Российской Федерации. Глубоководный аппарат с экипажем из семи человек запутался в рыболовецких сетях на глубине около 200 метров.

На место происшествия прибыли спасательные корабли, которые попытались переместить батискаф в меньшие глубины, чтобы затем осуществить спасательную операцию с помощью водолазов. После безуспешных попыток, российские моряки обратились к британским коллегам.

Совместная российско-британская спасательная операция с использованием глубоководного робота завершилась успехом, весь экипаж оказался спасен, а батискаф поднят на поверхность.

И названной в честь английского судна «Челленджер», с которого в 1951 году были получены первые данные о ней. Погружение продолжалось 4 ч 48 мин и завершилось на отметке 10911 м относительно уровня моря (mean sea level). На этой страшной глубине, где чудовищное давление в 108,6 МПа (что более чем в 1100 раз больше нормального атмосферного) сплющивает все живое, исследователи сделали важнейшее океанологическое открытие: увидели, как мимо иллюминатора проплывают две 30-сантиметровые рыбки, похожие на камбалу. До этого считалось, что на глубинах, превышающих 6000 м, никакой жизни не существует.

Пробыв на дне около двадцати минут, Trieste начал подниматься наверх. Подъем занял 3 ч 15 мин. На поверхности врачи не зафиксировали каких бы то ни было отклонений состояния здоровья двух смельчаков от нормы.

Таким образом был установлен абсолютный рекорд глубины погружения, превзойти который невозможно даже теоретически. Пикар и Уолш были единственными людьми, побывавшими на дне бездны Челленджера. Все последующие погружения к самой глубокой точке мирового океана с исследовательскими целями совершали уже беспилотные батискафы-роботы. Но и их было не так много, поскольку «посещение» бездны Челленджера — дело и трудоемкое, и дорогостоящее. В 90-е годы три погружения совершил японский аппарат Kaiko , управлявшийся дистанционно с «материнского» судна по волоконно-оптическому кабелю. Однако в 2003 году при исследовании другой части океана во время шторма оборвался буксировочный стальной трос, и робот был утерян.

На смену Kaiko пришел американский беспилотный батискаф Nereus , конструктивно представляющий собой катамаран, способный перемещаться на глубине со скоростью 3 узлов. Им управляют посредством волоконно-оптического кабеля. Однако возможно и радиоуправление. Первое погружение в бездну Nereus совершил 31 мая прошлого года, подняв со дна пробу грунта, в котором была обнаружена органическая жизнь. На нынешний момент это единственный в мире аппарат, способный достигать бездны Челленджера.

С небес в пучину морскую

Всякое рекордное техническое достижение имеет длительную предысторию. В данном случае сюжет уложился лишь в два человеческих поколения. Все началось с Огюста Пикара (Auguste Piccard , 1884-1962), швейцарского физика и изобретателя, отца одного из покорителей бездны Челленджера. Будучи профессором университета в Брюсселе , в 20-е годы прошлого века он занимался исследованиями в области геофизики и геохимии, изучал радиоактивные свойства урана . В 1930 году, «оторвавшись от почвы», переключился на исследование верхних слоев атмосферы , для чего сконструировал уникальный для своего времени стратостат . Его герметичная гондола имела сферическую форму и позволяла экипажу совершать полеты чуть ли ни в безвоздушном пространстве.

Стратостат, построенный при поддержке Бельгийского национального фонда научных исследований (Fonds National de la Recherche Scientifique, FNRS), получил название FNRS-1. В мае 1931 года Огюст Пикар вместе с ассистентом Паулем Кипфером (Paul Kipfer) совершил первый в истории полет в стратосферу, достигнув высоты 15 785 м. Штурм воздушного океана на FNRS-1 продолжался до середины 30-х годов, а рекорд высоты подъема был доведен до 23 000 м.

А в 1937 году Пикар, вдохновившись идеей погружения в пучины морские, начал разрабатывать принципиально новый тип подводного плавcредства, получившего название батискафа. Дело в том, что субмарины в надводном положении имеют «положительную» плавучесть, батискаф — всегда только «отрицательную». Подводная лодка погружается за счет того, что открываются клапаны вентиляции в балластных системах, воздух замещается забортной водой, и положительная плавучесть становится отрицательной. Для перемещения по вертикали рулями создается дифферент (наклон продольной оси относительно горизонтали), а воздух в балластных системах либо стравливается, давая место воде, либо расширяется, выдавливая воду наружу.

Батискаф же плавает по принципу утюга. В надводном состоянии его удерживает находящийся над гондолой с экипажем громадный поплавок, заполненный бензином. Поплавок имеет и еще одну важную функцию: в подводном положении он стабилизирует батискаф по вертикали, предотвращая раскачивание и переворачивание. Когда из поплавка начинают медленно выпускать бензин, который замещается водой, батискаф начинает погружение. С этого момента у аппарата только один путь — вниз, на дно. При этом, естественно, возможно и перемещение в горизонтальном направлении при помощи приводимых в движение двигателем гребных винтов.

Для того чтобы подняться на поверхность, в батискафе предусмотрен металлический балласт, который может быть дробью, пластинками или болванками. Постепенно освобождаясь от «избыточного веса», аппарат поднимается. Металлический балласт удерживается электромагнитами, так что если с системой энергоснабжения что-то случается, то батискаф сразу, словно стартующий в небо аэростат, «взмывает» вверх.

С конструированием своего первого океанического детища, которое было названо FNRS-2, Пикар провозился до 1946 года, что было связано с бушевавшей в Европе мировой войной. А спустя два года он был изготовлен. FNRS-2, рассчитанный на экипаж из двух человек, весил 10 т. Емкость сравнительно компактного поплавка составляла 30 м³, а диаметр гондолы — 2,1 м. Расчетная глубина погружения составляла 4000 м.

Ввиду принципиальной новизны аппарата и опасения за прочность гондолы довольно долго проводились его испытания в Дакаре без экипажа на борту. Вначале батискаф опустился на 25 м. А через год глубину погружения довели до 1380 м. Однако на этом все и завершилось: во время буксировки батискафа тросом был серьезно поврежден поплавок. Предстояло не только его отремонтировать, но и продолжить доработки по результатам испытаний. Однако Бельгийский национальный фонд научных исследований отказался от дальнейшего финансирования проекта. И в 1950 году FNRS-2 передали французскому ВМФ. Французские инженеры в итоге добились, чтобы в 1954 году модернизированный батискаф, получивший новое имя FNRS-3, погрузился на 4176 м с экипажем на борту.

Между тем Огюст вместе с подросшим сыном Жаком, успевшим поучиться в Женевском (Université de Genève, UNIGE) и Базельском (Die Universität Basel) университетах, в 1952 году приступил к созданию батискафа-рекордсмена Trieste. Аппарат был назван в честь итальянского города Триеста, на верфи которого он был произведен в 1953 году. Столь короткие сроки объяснялись тем, что «Триест» не имел принципиальных конструктивных отличий от FNRS-2. Разве что были увеличены габариты прототипа да усилена конструкция гондолы.

С 1953 по 1957 год Trieste, пилотом которого стал молодой Пикар, совершил несколько погружений в Средиземном море, достигнув глубины 3150 м. Причем в первых из них принимал участие и отец, которому тогда было уже 69 лет.

В 1958 году батискаф купили ВМС США. После его доработки на заводе Круппа в Германии , где гондола была упрочнена высококачественной легированной сталью, Trieste обрел способность погружаться на глубину до 13 000 м. Именно на этой конструкции в 1960 году и был установлен непобиваемый рекорд.

Одним из достижений этого погружения, благотворно повлиявшим на экологическое будущее планеты, стал отказ ядерных держав от захоронения радиоактивных отходов на дне Марианской впадины. Дело в том, что Жак Пикар экспериментально опроверг бытовавшее в то время мнение о том, что на глубинах свыше 6000 м не происходит восходящего перемещения водных масс.

Trieste в его последнем, «чемпионском» варианте имел поплавок длиной 15 м и объемом 85 м³. Толщина стенок поплавка, укрепленных внутри шпангоутами, составляла всего 5 мм. Толщина стенок гондолы диаметром 2,16 м равнялась 127 мм. Вес гондолы на воздухе составлял 13 тc, а в воде (при нормальных условиях) — 8 тc. Балласт из металлической дроби, которая порционно сбрасывалась электромагнитами для всплытия, обладал массой в 9 т. Имелся один иллюминатор для наблюдений, изготовленный из оргстекла, а также прожектор с кварцевой дуговой лампой.

Батискаф имел автономную систему регенерации воздуха, которая используется на космических аппаратах. При этом имелась возможность голосового общения с поверхностью при помощи гидроакустической системы связи.

В дальнейшем при помощи Trieste в Атлантическом океане безрезультатно пытались найти пропавшую субмарину Thresher, а также проводили обследование различных участков океанского дна. В 1963 году легендарный батискаф был разобран и помещен в Морском музее США в Вашингтоне .

Нынешний наследник легендарного Trieste — батискаф Nereus — создан в американском Вудхолсовском океанографическом институте (Woods Hole Oceanographic Institution). Это катамаран, имеющий размеры 4,25 м × 2,3 м и весящий менее трех тонн, плавучесть которого обеспечивают полторы тысячи полых сфер из особо прочной керамики. При помощи двух винтов он может перемещаться под водой со скоростью трех узов на протяжении десяти часов, что обеспечивается батареей из 4 тыс. аккумуляторов общей емкостью 15 кВт-час. Полезная нагрузка составляет 25 кг. К ней относятся манипулятор, сонар, камеры, приборы для химического анализа и контейнеры для забора проб.

Аппарат уходит на дно со скоростью утюга и на заданной глубине отстреливает часть балласта, что обеспечивает его плавучесть. Для подъема отстреливается остаток балласта.

Весь остальной мировой парк батискафов, куда входят как пилотируемые машины, так и роботизированные, не способен опуститься глубже 6500 м. Что предопределено прагматическими соображениями: более глубоководная часть мирового океана составляет лишь 12% его общей площади.

Наш ответ Чемберлену

В Советском Союзе проектирование глубоководных батискафов началось в конце 60-х годов. И предназначались они для ВМФ как спасательные аппараты, применяющиеся для ликвидации аварий субмарин. Батискафы классического поплавкового типа серии АС со стравливанием в воду бензина преодолели двухкилометровый рубеж лишь в 1975 году. Через четыре года появился пилотируемый супергигант АС-7 водоизмещением 950 т. За одно погружение он пожирал 240 т бензина, в связи с чем «материнский» корабль сопровождал танкер. И лишь в июле 1987 года он опустился чуть ниже глубины в 6035 м, заданной в ТЗ. Через год он разбился, и его ремонтировали два года. А в конце 90-х АС-7 затонул в бухте Раковая на Дальнем Востоке .

Всего было выпущено около тридцати батискафов серии АС. Сейчас «в живых» осталось около пяти, и все они не «ныряют» глубже 1000 м. Один из них — АС-28, разработанный в КБ «Лазурит» в 1987 году. Им управляет экипаж из четырех человек, конструкция предполагает прием на борт до двадцати спасаемых. В 2005 году АС-28 потерпел аварию, спасти спасательный аппарат удалось при помощи британского подводного робота.

Мирные исследования морских пучин, как в научных интересах, так и по заказу рыбопромыслового ведомства, до середины 80-х годов осуществлялись на глубинах менее 800 м. И лишь в 1987 году в результате совместной разработки АН СССР и финской компании Lokomo отечественные ученые получили два полноценных глубоководных батискафа «Мир-1» и «Мир-2» . Каждый из них на испытаниях преодолел отметку 6100 м. Батискафы базируются на научно-исследовательском судне «Академик Мстислав Келдыш».

Длина аппаратов — 7,8 м, ширина — 3,8 м, высота — 3 м, сухой вес — 18,6 т. Корпус изготовлен из высокопрочной легированной никелевой стали, имеющей предел текучести вдвое больший, чем у титана. Аппаратом управляет экипаж из 3 человек. Принцип погружения и всплытия «Мира» такой же, как и у субмарины, использующей систему водных балластных цистерн.

Электродвигатели получают питание от аккумуляторов емкостью 100 кВт-час и позволяют развивать под водой скорость 5 узлов. Продолжительность автономной работы — 80 часов. На борту установлена исследовательская аппаратура. Связь с поверхностью поддерживается как через волоконно-оптический кабель, так и с помощью гидроакустической аппаратуры.

В советский период, до 1991 года, «Академик Келдыш» принял участие в тридцати пяти экспедициях в Атлантический, Тихий и Индийский океаны. Затем активность исследовательской деятельности резко снизилась. Более того, «Миры» стали выступать в не совсем свойственных им ролях. При их участии сняли три голливудских фильма, один из которых — «Титаник» (как писали отечественные СМИ, эти съемки принесли «Мирам» мировую известность.) Они, не обладая спасательными функциями, принимали участие в обследовании потерпевших аварии подводных лодок «Комсомолец» и «Курск». И, наконец, с их помощью на дне Северного Ледовитого океана был установлен титановый вымпел с символикой РФ. Два последних сезона батискафы исследуют дно Байкала , погружаясь на глубину до 1600 м. Одной из многочисленных задач, поставленных перед исследователями, является поиск золота руководителя Белого движения Колчака . Однако на настоящий момент на дне обнаружены лишь ящики с патронами времен Гражданской войны.

Новости партнёров



← Вернуться

×
Вступай в сообщество «servizhome.ru»!
ВКонтакте:
Я уже подписан на сообщество «servizhome.ru»