Тесеракт.Четырёхмерное пространство. Что такое Тессеракт

Подписаться
Вступай в сообщество «servizhome.ru»!
ВКонтакте:

Эволюция человеческого мозга проходила в трехмерном пространстве. Поэтому нам сложно представить себе пространства с размерностью больше трех. Фактически человеческий мозг не может себе представить геометрические объекты с размерностью более трех. И в то же время мы без труда представляем себе геометрические объекты с размерностью не только три, но и с размерностью два и один.

Различие и аналогия между одномерным и двумерным пространствами, а также различие и аналогия между двумерным и трехмерным пространствами позволяют нам чуть-чуть приоткрыть ширму таинственности, которая отгораживает нас от пространств большей размерности. Чтобы понять, как используется эта аналогия, рассмотрим очень простой четырехмерный объект - гиперкуб, то есть четырехмерный куб. Пусть для определенности, допустим, мы хотим решить конкретную задачу, а именно, посчитать количество квадратных граней четырехмерного куба. Всё рассмотрение далее будет очень нестрогим, без всяких доказательств, чисто по аналогии.

Чтобы понять, как строится гиперкуб из обычного куба, надо сначала посмотреть, как строится обычный куб из обычного квадрата. Для оригинальности изложения этого материала, будем здесь обычный квадрат называть СубКубом (и не будем путать его с суккубом).

Чтобы построить куб из субкуба, надо протянуть субкуб в направлении перпендикулярном плоскости субкуба по направлению третьего измерения. При этом из каждой стороны первоначального субкуба вырастет субкуб, который является боковой двумерной гранью куба, которые ограничат с четырех сторон трехмерный объем куба, по две перпендикулярно каждому направлению в плоскости субкуба. И вдоль новой третьей оси тоже имеются два субкуба, ограничивающие трехмерный объем куба. Это та двумерная грань, где первоначально находился наш субкуб и та двумерная грань куба, куда субкуб пришел под конец строительства куба.

То, что Вы сейчас прочитали, изложено чрезмерно подробно и с массой уточнений. И не спроста. Сейчас мы сделаем такой фокус, заменим в предыдущем тексте некоторые слова формально таким образом:
куб -> гиперкуб
субкуб -> куб
плоскость -> объем
третьего -> четвертого
двумерной -> трехмерной
четырех -> шести
трехмерный -> четырехмерный
две -> три
плоскости -> пространстве

В результате получаем следующий осмысленный текст, который уже не кажется излишне подробным.

Чтобы построить гиперкуб из куба, надо протянуть куб в направлении перпендикулярном объему куба по направлению четвертого измерения. При этом из каждой стороны первоначального куба вырастет куб, который является боковой трехмерной гранью гиперкуба, которые ограничат с шести сторон четырехмерный объем гиперкуба, по три перпендикулярно каждому направлению в пространстве куба. И вдоль новой четвертой оси тоже имеются два куба, ограничивающие четырехмерный объем гиперкуба. Это та трехмерная грань, где первоначально находился наш куб и та трехмерная грань гиперкуба, куда куб пришел под конец строительства гиперкуба.

Почему у нас такая уверенность, что мы получили правильное описание построения гиперкуба? Да потому что точно такой же формальной заменой слов мы получаем описание построения куба из описания построения квадрата. (Проверьте это сами.)

Вот теперь понятно, что если из каждой стороны куба должен вырасти еще один трехмерный куб, то значит, из каждого ребра начального куба должна вырасти грань. Всего у куба ребер 12, значит, появится дополнительно 12 новых граней (субкубов) у тех 6 кубов, которые ограничивают четырехмерный объем по трем осям трехмерного пространства. И остались еще два куба, которые ограничивают этот четырехмерный объем снизу и сверху вдоль четвертой оси. В каждом из этих кубов есть по 6 граней.

Итого получаем, что гиперкуб имеет 12+6+6=24 квадратных граней.

На следующей картинке показано логическое строение гиперкуба. Это как бы проекция гиперкуба на трехмерное пространство. При этом получается трехмерный каркас из ребер. На рисунке, естественно, Вы видите проекцию этого каркаса еще и на плоскость.



На этом каркасе внутренний куб это как бы начальный куб, с которого началось построение и который ограничивает четырехмерный объем гиперкуба по четвертой оси снизу. Мы этот начальный куб протягиваем вверх вдоль четвертой оси измерения и он переходит во внешний куб. Итак внешний и внутренний кубы из этого рисунка ограничивают гиперкуб по четвертой оси измерения.

А между этими двумя кубами видно еще 6 новых кубов, которые соприкасаются общими гранями с первыми двумя. Эти шесть кубов ограничивают наш гиперкуб по трем осям трехмерного пространства. Как видите, они соприкасаются не только с первыми двумя кубами, которые на этом трехмерном каркасе внутренний и внешний, но они еще соприкасаются друг с другом.

Можно прямо на рисунке посчитать и убедиться, что у гиперкуба действительно 24 грани. Но вот возникает такой вопрос. Этот каркас гиперкуба в трехмерном пространстве заполнен восемью трехмерными кубами без всяких просветов. Чтобы из этой трехмерной проекции гиперкуба сделать настоящий гиперкуб, надо вывернуть этот каркас наизнанку так, чтобы все 8 кубов ограничивали 4-мерный объем.

Делается это так. Приглашаем в гости жителя четырехмерного пространства и просим его помочь нам. Он хватает внутренний куб этого каркаса и сдвигает его в направлении четвертого измерения, которое перпендикулярно нашему трехмерному пространству. Мы в нашем трехмерном пространстве воспринимаем это так, как будто бы весь внутренний каркас исчез и остался только каркас внешнего куба.

Далее наш четырехмерный помощник предлагает свою помощь в роддомах по безболезненным родам, но наших беременных женщин пугает перспектива того, что младенец просто исчезнет из живота и окажется в параллельном трехмерном пространстве. Поэтому четырехмерцу вежливо отказывают.

А мы озадачиваемся вопросом, не расклеились ли некоторые из наших кубов при выворачивании каркаса гиперкуба наизнанку. Ведь если какие-то трехмерные кубы, окружающие гиперкуб, соприкасаются своими гранями с соседями на каркасе, то будут ли они также соприкасаться этими же гранями, если четырехмерец вывернет каркас наизнанку.

Опять обратимся к аналогии с пространствами меньшей размерности. Сравните изображение каркаса гиперкуба с проекцией трехмерного куба на плоскость, показанную на следующей картинке.



Жители двумерного пространства построили на плоскости каркас проекции куба на плоскость и пригласили нас, трехмерных жителей, выворачивать этот каркас наизнанку. Мы берем четыре вершины внутреннего квадрата и сдвигаем их перпендикулярно плоскости. Двумерные жители при этом видят полное исчезновение всего внутреннего каркаса, и у них остается только каркас внешнего квадрата. При такой операции все квадраты, которые соприкасались своими ребрами, продолжают по-прежнему соприкасаться теми же самыми ребрами.

Поэтому мы надеемся, что и логическая схема гиперкуба также не будет нарушена при выворачивании каркаса гиперкуба наизнанку, а число квадратных граней гиперкуба при этом не увеличится и будет по-прежнему равно 24. Это, конечно же, никакое не доказательство, а чисто догадка по аналогии.

После всего прочитанного здесь, Вы уже без труда сможете нарисовать логические каркасы пятимерного куба и подсчитать, какое у него число вершин, ребер, граней, кубов и гиперкубов. Это совсем не трудно.

Бакаляр Мария

Изучаются способы введения понятия четырёхмерного куба (тессеракта), его строение и некоторые свойства Решается вопрос о том, какие трёхмерные объекты получаются при пересечении четырёхмерного куба гиперплоскостями, параллельными его трёхмерным граням, а также гиперплоскостями, перпендикулярными его главной диагонали. Рассмотрен применяемый для исследования аппарат многомерной аналитической геометрии.

Скачать:

Предварительный просмотр:

Введение……………………………………………………………………….2

Основная часть………………………………………………………………..4

Выводы………….. …………………………………………………………..12

Список литературы…………………………………………………………..13

Введение

Четырёхмерное пространство издавна привлекало внимание, как профессиональных математиков, так и людей, далёких от занятий этой наукой. Интерес к четвёртому измерению может быть обусловлен предположением о том, что наш трёхмерный мир «погружен» в четырёхмерное пространство подобно тому, как плоскость «погружена» в трёхмерное пространство, прямая «погружена» в плоскость, а точка – в прямую. Помимо этого, четырёхмерное пространство играет важную роль в современной теории относительности (так называемое пространство-время или пространство Минковского), а также может рассматриваться как частный случай мерного евклидова пространства (при ).

Четырёхмерный куб (тессеракт) является объектом четырёхмерного пространства, имеющим максимально возможную размерность (подобно тому, как обычный куб является объектом трёхмерного пространства). Заметим, что он представляет и непосредственный интерес, а именно может фигурировать в оптимизационных задачах линейного программирования (как область, в которой отыскивается минимум или максимум линейной функции четырёх переменных), а также применяется в цифровой микроэлектронике (при программировании работы дисплея электронных часов). Кроме этого, сам процесс изучения четырёхмерного куба способствует развитию пространственного мышления и воображения.

Следовательно, изучение строения и специфических свойств четырёхмерного куба является достаточно актуальным. Стоит отметить, что в плане строения четырёхмерный куб изучен достаточно хорошо. Гораздо больший интерес представляет характер его сечений различными гиперплоскостями. Таким образом, основной целью данной работы является изучение строения тессеракта, а также выяснение вопроса о том, какие трёхмерные объекты будут получаться, если четырёхмерный куб рассекать гиперплоскостями, параллельными какой-то одной из его трёхмерных граней, или же гиперплоскостями, перпендикулярными его главной диагонали. Гиперплоскостью в четырёхмерном пространстве будем называть трёхмерное подпространство. Можно сказать, что прямая на плоскости – одномерная гиперплоскость, плоскость в трёхмерном пространстве – двумерная гиперплоскость.

Поставленная цель определила задачи исследования:

1) Изучить основные факты многомерной аналитической геометрии;

2) Изучить особенности построения кубов размерностей от 0 до 3;

3) Изучить строение четырёхмерного куба;

4) Аналитически и геометрически описать четырёхмерный куб;

5) Изготовить модели развёрток и центральных проекций трёхмерного и четырёхмерного кубов.

6) Пользуясь аппаратом многомерной аналитической геометрии, описать трёхмерные объекты, получающиеся при пересечении четырёхмерного куба гиперплоскостями, параллельными какой-то одной из его трёхмерных граней, или же гиперплоскостями, перпендикулярными его главной диагонали.

Полученная таким образом информация позволит лучше разобраться в строении тессеракта, а также выявить глубокую аналогию в строении и свойствах кубов различных размерностей.

Основная часть

Сначала опишем математический аппарат, которым мы будем пользоваться в ходе данного исследования.

1) Координаты вектора: если , то

2) Уравнение гиперплоскости с нормальным вектором имеет вид Здесь

3) Плоскости и параллельны тогда и только тогда, когда

4) Расстояние между двумя точками определяется следующим образом: если , то

5) Условие ортогональности векторов:

Прежде всего, выясним, каким образом можно описать четырёхмерный куб. Сделать это можно двумя способами – геометрическим и аналитическим.

Если говорить о геометрическом способе задания, то здесь целесообразно проследить процесс построения кубов, начиная с нулевой размерности. Куб нулевой размерности – это точка (заметим, кстати, что точка может также играть роль шара нулевой размерности). Далее введём первое измерение (ось абсцисс) и на соответствующей оси отметим две точки (два нульмерных куба), находящиеся на расстоянии 1 друг от друга. Получится отрезок - одномерный куб. Сразу же отметим характерную особенность: Границей (концами) одномерного куба (отрезка) являются два нульмерных куба (две точки). Далее введём второе измерение (ось ординат) и на плоскости построим два одномерных куба (два отрезка), концы которых находятся на расстоянии 1 друг от друга (фактически, один из отрезков является ортогональной проекцией другого). Соединяя соответствующие концы отрезков, получим квадрат – двумерный куб. Опять-таки отметим, что границей двумерного куба (квадрата) являются четыре одномерных куба (четыре отрезка). Наконец, введём третье измерение (ось аппликат) и построим в пространстве два квадрата таким образом, чтобы один из них являлся ортогональной проекцией другого (при этом соответствующие вершины квадратов находятся друг от друга на расстоянии 1). Соединим соответствующие вершины отрезками – получим трёхмерный куб. Видим, что границей трёхмерного куба являются шесть двумерных кубов (шесть квадратов). Описанные построения позволяют выявить следующую закономерность: на каждом шаге мерный куб «движется, оставляя след» в е измерение на расстояние 1, при этом, направление движения перпендикулярно кубу. Именно формальное продолжение этого процесса и позволяет прийти к понятию четырёхмерного куба. А именно, заставим трёхмерный куб продвинуться в направлении четвёртого измерения (перпендикулярно кубу) на расстояние 1. Действуя аналогично предыдущему, то есть, соединяя соответствующие вершины кубов, мы и получим четырёхмерный куб. необходимо отметить, что геометрически такое построение в нашем пространстве невозможно (ибо оно трёхмерно), однако здесь мы не сталкиваемся ни с какими противоречиями с логической точки зрения. Теперь перейдём к аналитическому описанию четырёхмерного куба. Оно также получается формально, с помощью аналогии. Итак, аналитическое задание нульмерного единичного куба имеет вид:

Аналитическое задание одномерного единичного куба имеет вид:

Аналитическое задание двумерного единичного куба имеет вид:

Аналитическое задание трёхмерного единичного куба имеет вид:

Теперь уже очень легко дать аналитическое представление четырёхмерного куба, а именно:

Как видим, и при геометрическом, и при аналитическом способах задания четырёхмерного куба использовался метод аналогий.

Теперь, используя аппарат аналитической геометрии, выясним, какое имеет строение четырёхмерный куб. Сначала выясним, какие элементы в него входят. Здесь опять можно воспользоваться аналогией (для выдвижения гипотезы). Границей одномерного куба являются точки (нульмерные кубы), двумерного куба – отрезки (одномерные кубы), трёхмерного куба – квадраты (двумерные грани). Можно предположить, что границей тессеракта являются трёхмерные кубы. Для того чтобы это доказать, уточним, что понимается под вершинами, рёбрами и гранями. Вершинами куба назовём его угловые точки. То есть, координатами вершин могут являться нули или единицы. Таким образом, обнаруживается связь между размерностью куба и числом его вершин. Применим комбинаторное правило произведения – так как вершина мерного куба имеет ровно координат, каждая из которых равна нулю или единице (независимо от всех остальных), то всего имеется вершин. Таким образом, у любой вершины все координаты фиксированы и могут равняться или . Если же зафиксировать все координаты (положив каждую из них равной или , независимо от остальных), кроме одной, то получим прямые, содержащие рёбра куба. Аналогично предыдущему, можно сосчитать, что их ровно штук. А если теперь зафиксировать все координаты (положив каждую из них равной или , независимо от остальных), кроме каких-нибудь двух, получим плоскости, содержащие двумерные грани куба. Используя правило комбинаторики, найдём, что их ровно штук. Далее аналогично – зафиксировав все координаты (положив каждую из них равной или , независимо от остальных), кроме каких-нибудь трёх, получим гиперплоскости, содержащие трёхмерные грани куба. Пользуясь тем же правилом, вычислим их количество – ровно и т.д. Для нашего исследования этого будет достаточно. Применим полученные результаты к строению четырёхмерного куба, а именно, во всех выведенных формулах положим . Стало быть, четырёхмерный куб имеет: 16 вершин, 32 ребра, 24 двумерные грани, и 8 трёхмерных граней. Для наглядности зададим аналитически все его элементы.

Вершины четырёхмерного куба:

Рёбра четырёхмерного куба ():

Двумерные грани четырёхмерного куба (аналогичные ограничения):

Трёхмерные грани четырёхмерного куба (аналогичные ограничения):

Теперь, когда строение четырёхмерного куба и способы его задания описаны с достаточной полнотой, приступим к реализации главной цели – выяснению характера различных сечений куба. Начнём с элементарного случая, когда сечения куба параллельны одной из его трёхмерных граней. Например, рассмотрим его сечения гиперплоскостями, параллельными грани Из аналитической геометрии известно, что любое такое сечение будет задаваться уравнением Зададим соответствующие сечения аналитически:

Как видим, получено аналитическое задание трёхмерного единичного куба, лежащего в гиперплоскости

Для установления аналогии запишем сечение трёхмерного куба плоскостью Получим:

Это квадрат, лежащий в плоскости . Аналогия очевидна.

Сечения четырёхмерного куба гиперплоскостями дают совершенно аналогичные результаты. Это будут также единичные трёхмерные кубы, лежащие в гиперплоскостях соответственно.

Сейчас рассмотрим сечения четырёхмерного куба гиперплоскостями, перпендикулярными его главной диагонали. Сначала решим эту задачу для трёхмерного куба. Используя вышеописанный способ задания единичного трёхмерного куба, заключает, что в качестве главной диагонали можно взять, например, отрезок с концами и . Значит, вектор главной диагонали будет иметь координаты . Следовательно, уравнение любой плоскости, перпендикулярной главной диагонали, будет иметь вид:

Определим границы изменения параметра . Так как , то, почленно складывая эти неравенства, получим:

Или .

Если , то (в силу ограничений). Аналогично - если , то . Значит, при и при секущая плоскость и куб имеют ровно одну общую точку ( и соответственно). Теперь заметим следующее. Если (опять-таки в силу ограничений переменных). Соответствующие плоскости пересекают сразу три грани, ибо, в противном случае, секущая плоскость была бы параллельна одной из них, что не имеет места по условию. Если , то плоскость пересекает все грани куба. Если же , то плоскость пересекает грани . Приведём соответствующие выкладки.

Пусть Тогда плоскость пересекает грань по прямой , причём . Грань , причём . Грань плоскость пересекает по прямой , причём

Пусть Тогда плоскость пересекает грань:

грань по прямой , причём .

грань по прямой , причём .

грань по прямой , причём .

грань по прямой , причём .

грань по прямой , причём .

грань по прямой , причём .

На этот раз получается шесть отрезков, имеющих последовательно общие концы:

Пусть Тогда плоскость пересекает грань по прямой , причём . Грань плоскость пересекает по прямой , причём . Грань плоскость пересекает по прямой , причём . То есть, получаются три отрезка, имеющих попарно общие концы: Таким образом, при указанных значениях параметра плоскость будет пересекать куб по правильному треугольнику с вершинами

Итак, здесь приведено исчерпывающее описание плоских фигур, получающихся при пересечении куба плоскостью, перпендикулярной его главной диагонали. Основная идея состояла в следующем. Необходимо понять, какие грани пересекает плоскость, по каким множествам она их пересекает, как эти множества связаны между собой. Например, если выяснялось, что плоскость пересекает ровно три грани по отрезкам, которые имеют попарно общие концы, то сечением являлся равносторонний треугольник (что доказывается непосредственным подсчётом длин отрезков), вершинами которого и служат эти концы отрезков.

Пользуясь этим же аппаратом и той же идеей исследования сечений, совершенно аналогично можно вывести следующие факты:

1) Вектор одной из главных диагоналей четырёхмерного единичного куба имеет координаты

2) Любая гиперплоскость, перпендикулярная главной диагонали четырёхмерного куба, может быть записана в виде .

3) В уравнении секущей гиперплоскости параметр может изменяться от 0 до 4;

4) При и секущая гиперплоскость и четырёхмерный куб имеют одну общую точку (и соответственно);

5) При в сечении будет получаться правильный тетраэдр;

6) При в сечении будет получаться октаэдр;

7) При в сечении будет получаться правильный тетраэдр.

Соответственно, здесь гиперплоскость пересекает тессеракт по плоскости, на которой в силу ограничений переменных выделяется треугольная область (аналогия – плоскость пересекала куб по прямой, на которой в силу ограничений переменных выделялся отрезок). В случае 5) гиперплоскость пересекает ровно четыре трёхмерные грани тессеракта, то есть, получаются четыре треугольника, имеющих попарно общие стороны, иначе говоря, образующие тетраэдр (как это можно подсчитать - правильный). В случае 6) гиперплоскость пересекает ровно восемь трёхмерных граней тессеракта, то есть, получаются восемь треугольников, имеющих последовательно общие стороны, иначе говоря, образующие октаэдр. Случай 7) полностью аналогичен случаю 5).

Проиллюстрируем сказанное конкретным примером. А именно, исследуем сечение четырёхмерного куба гиперплоскостью В силу ограничений переменных, данная гиперплоскость пересекает следующие трёхмерные грани: Грань пересекается по плоскости В силу ограничений переменных имеем: Получим треугольную область с вершинами Далее, получим треугольник При пересечении гиперплоскости с гранью получим треугольник При пересечении гиперплоскости с гранью получим треугольник Таким образом, вершины тетраэдра имеют следующие координаты . Как легко подсчитать, этот тетраэдр действительно является правильным.

Выводы

Итак, в процессе данного исследования были изучены основные факты многомерной аналитической геометрии, изучены особенности построения кубов размерностей от 0 до 3, изучено строение четырёхмерного куба, аналитически и геометрически описан четырёхмерный куб, изготовлены модели развёрток и центральных проекций трёхмерного и четырёхмерного кубов, аналитически описаны трёхмерные объекты, получающиеся при пересечении четырёхмерного куба гиперплоскостями, параллельными какой-то одной из его трёхмерных граней, или же гиперплоскостями, перпендикулярными его главной диагонали.

Проведённое исследование позволило выявить глубокую аналогию в строении и свойствах кубов различных размерностей. Использованную методику проведения аналогии можно применить при исследовании, например, мерной сферы или мерного симплекса. А именно, мерную сферу можно определить как множество точек мерного пространства, равноудалённых от заданной точки, которая называется центром сферы. Далее, мерный симплекс можно определить как часть мерного пространства, ограниченную минимальным числом мерных гиперплоскостей. Например, одномерный симплекс – отрезок (часть одномерного пространства, ограниченная двумя точками), двумерный симплекс – треугольник (часть двумерного пространства, ограниченная тремя прямыми), трёхмерный симплекс – тетраэдр (часть трёхмерного пространства, ограниченная четырьмя плоскостями). Наконец, мерный симплекс определим как часть мерного пространства, ограниченную гиперплоскостью размерности .

Отметим, что, несмотря на многочисленные применения тессеракта в некоторых областях науки, данное исследование всё же является в значительной степени математическим изысканием.

Список литературы

1) Бугров Я.С., Никольский С.М. Высшая математика, т.1 –М.: Дрофа, 2005 – 284 с.

2) Квант. Четырёхмерный куб / Дужин С., Рубцов В., №6, 1986.

3) Квант. Как начертить мерный куб / Демидович Н.Б., №8, 1974.

Что такое гиперкуб и четырёхмерное пространство

В нашем привычном пространстве три измерения. С геометрической точки зрения это значит, что в нём можно указать три взаимно-перпендикулярных прямых. То есть для любой прямой можно найти вторую, перпендикулярную первой, а для пары можно найти третью прямую, перпендикулярную двум первым. Найти четвёртую прямую, перпендикулярную трём имеющимся, уже не удастся.

Четырёхмерное пространство отличается от нашего только тем, что в нём есть ещё одно дополнительное направление. Если у вас уже есть три взаимно перпендикулярные прямые, то вы можете найти четвёртую, такую, что она будет перпендикуляра всем трём.

Гиперкуб это просто куб в четырёхмерном пространстве.
Можно ли представить четырёхмерное пространство и гиперкуб?

Этот вопрос с родни вопросу: «можно ли представить Тайную Вечерю, посмотрев на одноимённую картину (1495-1498) Леонардо да Винчи (1452-1519)?»

С одной стороны, вы конечно не представите то, что видел Иисус (он сидит лицом к зрителю), тем более вы не почувствуете запаха сада за окном и вкуса еды на столе, не услышите пения птиц... Вы не получите полного представления о происходившем в тот вечер, но нельзя сказать, что вы не узнаете ничего нового и что картина не представляет никакого интереса.

Аналогичная ситуация и с вопросом о гиперкубе. Полностью представить его нельзя, но можно приблизиться к пониманию, каков он.
Построение гиперкуба
0-мерный куб

Начнём с начала - с 0-мерного куба. Этот куб содержит 0 взаимно перпендикулярных граней, то есть это просто точка.

1-мерный куб

В одномерном пространстве у нас есть только одно направление. Сдвигаем точку в этом направление и получаем отрезок.

Это одномерный куб.
2-мерный куб

У нас появляется второе измерение, сдвигаем наш одномерный куб (отрезок) в направлении второго измерения и получаем квадрат.

Это куб в двумерном пространстве.
3-мерный куб

С появлением третьего измерения поступаем аналогично: сдвигаем квадрат и получаем обычный трёхмерный куб.

4-мерный куб (гиперкуб)

Теперь у нас появилось четвёртое измерение. То есть в нашем распоряжении имеется направление, перпендикулярное всем трём предыдущим. Воспользуемся им точно так же. Четырёхмерный куб будет выглядеть вот так.

Естественно, трёхмерный и четырёхмерный кубы нельзя изобразить на двумерной плоскости экрана. То, что нарисовал я - это проекции. О проекциях мы поговорим чуть позже, а пока немного голых фактов и цифр.
Количество вершин, рёбер, граней
Характеристики кубов различной размерности
1-размерность пространства
2-количество вершин
3-количество рёбер
4-количество граней

0 (точка) 1 0 0
1 (отрезок) 2 1 2 (точки)
2 (квадрат) 4 4 4 (отрезки)
3 (куб) 8 12 6 (квадраты)
4 (гиперкуб) 16 32 8 (кубы)
N (общая формула) 2N N·2N-1 2·N

Обратите внимание, что гранью гиперкуба является наш обычный трёхмерный куб. Если внимательно посмотреть на рисунок гиперкуба, то можно действительно найти восемь кубов.
Проекции и зрение жителя четырёхмерного пространства
Несколько слов о зрении

Мы живём в трёхмерном мире, но видим мы его двумерным. Это связано с тем, что сетчатка наших глаз расположена в плоскости, имеющей только два измерения. Именно поэтому мы способны воспринимать двумерные картины и находить их похожими на реальность. (Конечно, благодаря аккомодации, глаз может оценить расстояние до объекта, но это уже побочное явление, связанное с оптикой, встроенной в наш глаз.)

Глаза жителя четырёхмерного пространства должны иметь трёхмерную сетчатку. Такое существо может сразу увидеть трёхмерную фигуру полностью: все её грани и внутренности. (Точно так же мы можем увидеть двумерную фигуру, все её грани и внутренности.)

Таким образом, с помощью наших органов зрения, мы не способны воспринять четырёхмерный куб так, как его воспринимал бы житель четырёхмерного пространства. Увы. Остаётся только уповать на мысленный взор и фантазию, которые, к счастью, не имеют физических ограничений.

Тем не менее, изображая гиперкуб на плоскости, я просто вынужден делать его проекцию на двумерное пространство. Учитывайте это обстоятельство, при изучении рисунков.
Пересечения рёбер

Естественно, ребра гиперкуба не пересекаются. Пересечения появляются только на рисунках. Впрочем, это не должно вызывать удивления, ведь рёбра обычного куба на рисунках тоже пересекаются.
Длины рёбер

Стоит отметить, что все грани и рёбра четырёхмерного куба равны. На рисунке они получаются не равными только потому, что расположены под разными углами к направлению взгляда. Однако можно развернуть гиперкуб так, что все проекции будут иметь одинаковую длину.

Кстати, на этом рисунке отчётливо видны восемь кубов, являющихся гранями гиперкуба.
Гиперкуб внутри пустой

В это трудно поверить, но между кубами, ограничивающими гиперкуб, заключено некоторое пространство (фрагмент четырёхмерного пространства).

Чтобы это лучше понять, давайте рассмотрим двумерную проекцию обычного трёхмерного куба (я специально сделал её несколько схематичной).

Можно ли по ней догадаться, что внутри куба есть некоторое пространство? Да, но только применив воображение. Глаз этого пространства не видит. Это происходит потому, что рёбра, расположенные в третьем измерении (которое нельзя изобразить на плоском рисунке), теперь превратились в отрезки, лежащие в плоскости рисунка. Они больше не обеспечивают объём.

Квадраты, ограничивающие пространство куба, наложились друг на друга. Но можно представить, что в исходной фигуре (трёхмерном кубе) эти квадраты располагались в разных плоскостях, а не один поверх другого в одной плоскости, как это получилось на рисунке.

Точно так же дело обстоит и с гиперкубом. Кубы-грани гиперкуба на самом деле не накладываются, как это кажется нам на проекции, а располагаются в четырёхмерном пространстве.
Развёртки

Итак, житель четырёхмерного пространства может увидеть трёхмерный объект одновременно со всех сторон. Можем ли одновременно со всех сторон увидеть трёхмерный куб? Глазом - нет. Но люди придумали способ, как изобразить на плоском рисунке все грани трёхмерного куба одновременно. Такое изображение называется развёрткой.
Развёртка трёхмерного куба

Как образуется развёртка трёхмерного куба все наверно знают. Этот процесс показан на анимации.

Для наглядности края граней куба сделаны полупрозрачными.

Следует отметить, что мы способны воспринять эту двумерную картинку только благодаря воображению. Если рассмотреть фазы разворачивания с чисто двумерной точки зрения, то процесс будет казаться странным и совсем не наглядным.

Он выглядит, как постепенное появление сперва очертаний искажённых квадратов, а потом их расползание на свои места с одновременным принятием необходимой формы.

Если смотреть на разворачивающийся куб в направлении одной из его граней (с этой точки зрения куб выглядит как квадрат), то процесс образования развёртки ещё менее нагляден. Всё выглядит как выползание квадратов из начального квадрата (не развёрнутого куба).

Но не наглядна развёртка только для глаз. Как раз благодаря воображению из неё можно почерпнуть много информации.
Развёртка четырёхмерного куба

Сделать анимированный процесс разворачивания гиперкуба хоть сколько нибудь наглядным просто невозможно. Но этот процесс можно представить. (Для этого надо посмотреть на него глазами четырёхмерного существа.)

Развёртка выглядит так.

Здесь видны все восемь кубов, ограничивающих гиперкуб.

Одинаковыми цветами покрашены грани, которые должны совместиться при сворачивании. Серыми оставлены грани для которых парных не видно. После свёртки самая верхняя грань верхнего куба должна совместиться с нижней гранью нижнего куба. (Аналогично сворачивается развёртка трёхмерного куба.)

Обратите внимание, что после свёртки все грани восьми кубиков придут в соприкосновение, замкнув гиперкуб. И наконец, представляя процесс свёртывания, не забывайте, что при свёртывании происходит не наложение кубов, а оборачивание ими некой (гиперкубической) четырёхмерной области.

Сальвадор Дали (1904-1989) много раз изображал распятие, а кресты фигурируют в очень многих его картинах. На картине «Распятие» (1954) используется развёртка гиперкуба.
Пространство-время и евклидово четырёхмерное пространство

Надеюсь, что вам удалось представить гиперкуб. Но удалось ли вам приблизиться к пониманию, как устроено четырёхмерное пространство-время в котором мы живём? Увы, не совсем.

Здесь мы говорили об евклидовом четырёхмерном пространстве, но пространство-время обладает совсем другими свойствами. В частности, при любых поворотах отрезки остаются всегда наклонены к оси времени либо под углом меньше 45 градусов, либо под углом больше 45 градусов.

ИСТОЧНИК 2

Тессеракт - четырёхмерный гиперкуб, аналог куба в четырёхмерном пространстве. Согласно Оксфордскому словарю, слово «tesseract» было придумано и начало использоваться в 1888 Чарльзом Говардом Хинтоном (1853-1907) в его книге «Новая эра мысли». Позже некоторые люди назвали ту же самую фигуру «тетракубом».

Попытаемся представить себе, как будет выглядеть гиперкуб, не выходя из трёхмерного пространства.
В одномерном «пространстве» - на линии - выделим отрезок АВ длиной L. На двумерной плоскости на расстоянии L от АВ нарисуем параллельный ему отрезок DC и соединим их концы. Получится квадрат ABCD. Повторив эту операцию с плоскостью, получим трехмерный куб ABCDHEFG. А сдвинув куб в четвёртом измерении (перпендикулярно первым трём) на расстояние L, мы получим гиперкуб ABCDEFGHIJKLMNOP.

Одномерный отрезок АВ служит гранью двумерного квадрата ABCD, квадрат - стороной куба ABCDHEFG, который, в свою очередь, будет стороной четырёхмерного гиперкуба. Отрезок прямой имеет две граничные точки, квадрат - четыре вершины, куб - восемь. В четырёхмерном гиперкубе, таким образом, окажется 16 вершин: 8 вершин исходного куба и 8 сдвинутого в четвёртом измерении. Он имеет 32 ребра - по 12 дают начальное и конечное положения исходного куба, и еще 8 ребер «нарисуют» восемь его вершин, переместившихся в четвёртое измерение. Те же рассуждения можно проделать и для граней гиперкуба. В двумерном пространстве она одна (сам квадрат), у куба их 6 (по две грани от переместившегося квадрата и еще четыре опишут его стороны). Четырёхмерный гиперкуб имеет 24 квадратные грани - 12 квадратов исходного куба в двух положениях и 12 квадратов от двенадцати его ребер.

Аналогичным образом можно продолжить рассуждения для гиперкубов большего числа измерений, но гораздо интереснее посмотреть, как для нас, жителей трёхмерного пространства, будет выглядеть четырёхмерный гиперкуб. Воспользуемся для этого уже знакомым методом аналогий.
Возьмём проволочный куб ABCDHEFG и поглядим на него одним глазом со стороны грани. Мы увидим и можем нарисовать на плоскости два квадрата (ближнюю и дальнюю его грани), соединённые четырьмя линиями - боковыми рёбрами. Аналогичным образом четырёхмерный гиперкуб в пространстве трёх измерений будет выглядеть как два кубических «ящика», вставленных друг в друга и соединённых восемью рёбрами. При этом сами «ящики» - трёхмерные грани - будут проецироваться на «наше» пространство, а линии, их соединяющие, протянутся в четвёртом измерении. Можно попытаться также представить себе куб не в проекции, а в пространственном изображении.

Подобно тому, как трёхмерный куб образуется квадратом, сдвинутым на длину грани, куб, сдвинутый в четвёртое измерение, сформирует гиперкуб. Его ограничивают восемь кубов, которые в перспективе будут выглядеть как некая довольно сложная фигура. Её часть, оставшаяся в «нашем» пространстве, нарисована сплошными линиями, а то, что ушло в гиперпространство, пунктирными. Сам же четырёхмерный гиперкуб состоит из бесконечного количества кубов, подобно тому как трёхмерный куб можно «нарезать» на бесконечное количество плоских квадратов.

Разрезав шесть граней трёхмерного куба, можно разложить его в плоскую фигуру - развёртку. Она будет иметь по квадрату с каждой стороны исходной грани плюс еще один - грань, ей противоположную. А трёхмерная развертка четырёхмерного гиперкуба будет состоять из исходного куба, шести кубов, «вырастающих» из него, плюс ещё одного - конечной «гиперграни». Свойства тессеракта представляют собой продолжение свойств геометрических фигур меньшей размерности в четырёхмерное пространство.

Другие названия
Гексадекакхорон (Hexadecachoron)
Октохорон (Octachoron)
Тетракуб (Tetracub)
4-Куб (4-Cube)
Гиперкуб (если не оговаривается число измерений)

10-тимерное пространство
там по-английски.кто не знает-на картинках вполне понятно

Http://www.skillopedia.ru/material.php?id=1338

Тессеракт - четырёхмерный гиперкуб - куб в четырёхмерном пространстве.
Согласно Оксфордскому словарю, слово tesseract было придумано и начало использоваться в 1888 Чарльзом Говардом Хинтоном (1853-1907) в его книге «Новая эра мысли». Позже некоторые люди назвали ту же самую фигуру тетракубом (греч. τετρα - четыре) - четырёхмерным кубом.
Обычный тессеракт в евклидовом четырёхмерном пространстве определяется как выпуклая оболочка точек (±1, ±1, ±1, ±1). Иначе говоря, он может быть представлен в виде следующего множества:
[-1, 1]^4 = {(x_1,x_2,x_3,x_4) : -1 = Тессеракт ограничен восемью гиперплоскостями x_i= +- 1, i=1,2,3,4 , пересечение которых с самим тессерактом задаёт его трёхмерные грани (являющиеся обычными кубами). Каждая пара непараллельных трёхмерных граней пересекается, образуя двумерные грани (квадраты), и так далее. Окончательно, тессеракт обладает 8 трёхмерными гранями, 24 двумерными, 32 рёбрами и 16 вершинами.
Популярное описание
Попытаемся представить себе, как будет выглядеть гиперкуб, не выходя из трёхмерного пространства.
В одномерном «пространстве» - на линии - выделим отрезок АВ длиной L. На двумерной плоскости на расстоянии L от АВ нарисуем параллельный ему отрезок DC и соединим их концы. Получится квадрат CDBA. Повторив эту операцию с плоскостью, получим трёхмерный куб CDBAGHFE. А сдвинув куб в четвёртом измерении (перпендикулярно первым трём) на расстояние L, мы получим гиперкуб CDBAGHFEKLJIOPNM.
Одномерный отрезок АВ служит стороной двумерного квадрата CDBA, квадрат - стороной куба CDBAGHFE, который, в свою очередь, будет стороной четырёхмерного гиперкуба. Отрезок прямой имеет две граничные точки, квадрат - четыре вершины, куб - восемь. В четырёхмерном гиперкубе, таким образом, окажется 16 вершин: 8 вершин исходного куба и 8 сдвинутого в четвёртом измерении. Он имеет 32 ребра - по 12 дают начальное и конечное положения исходного куба, и ещё 8 рёбер «нарисуют» восемь его вершин, переместившихся в четвёртое измерение. Те же рассуждения можно проделать и для граней гиперкуба. В двумерном пространстве она одна (сам квадрат), у куба их 6 (по две грани от переместившегося квадрата и ещё четыре опишут его стороны). Четырёхмерный гиперкуб имеет 24 квадратные грани - 12 квадратов исходного куба в двух положениях и 12 квадратов от двенадцати его рёбер.
Как сторонами квадрата являются 4 одномерных отрезка, а сторонами (гранями) куба являются 6 двухмерных квадратов, так и для «четырёхмерного куба» (тессеракта) сторонами являются 8 трёхмерных кубов. Пространства противоположных пар кубов тессеракта (то есть трёхмерные пространства, которым эти кубы принадлежат) параллельны. На рисунке это кубы: CDBAGHFE и KLJIOPNM, CDBAKLJI и GHFEOPNM, EFBAMNJI и GHDCOPLK, CKIAGOME и DLJBHPNF.
Аналогичным образом можно продолжить рассуждения для гиперкубов большего числа измерений, но гораздо интереснее посмотреть, как для нас, жителей трёхмерного пространства, будет выглядеть четырёхмерный гиперкуб. Воспользуемся для этого уже знакомым методом аналогий.
Возьмём проволочный куб ABCDHEFG и поглядим на него одним глазом со стороны грани. Мы увидим и можем нарисовать на плоскости два квадрата (ближнюю и дальнюю его грани), соединённые четырьмя линиями - боковыми рёбрами. Аналогичным образом четырёхмерный гиперкуб в пространстве трёх измерений будет выглядеть как два кубических «ящика», вставленных друг в друга и соединённых восемью рёбрами. При этом сами «ящики» - трёхмерные грани - будут проецироваться на «наше» пространство, а линии, их соединяющие, протянутся в направлении четвёртой оси. Можно попытаться также представить себе куб не в проекции, а в пространственном изображении.
Подобно тому, как трёхмерный куб образуется квадратом, сдвинутым на длину грани, куб, сдвинутый в четвёртое измерение, сформирует гиперкуб. Его ограничивают восемь кубов, которые в перспективе будут выглядеть как некая довольно сложная фигура. Сам же четырёхмерный гиперкуб состоит из бесконечного количества кубов, подобно тому как трёхмерный куб можно «нарезать» на бесконечное количество плоских квадратов.
Разрезав шесть граней трёхмерного куба, можно разложить его в плоскую фигуру - развёртку. Она будет иметь по квадрату с каждой стороны исходной грани плюс ещё один - грань, ей противоположную. А трёхмерная развёртка четырёхмерного гиперкуба будет состоять из исходного куба, шести кубов, «вырастающих» из него, плюс ещё одного - конечной «гиперграни».
Свойства тессеракта представляют собой продолжение свойств геометрических фигур меньшей размерности в четырёхмерное пространство.

September 19th, 2009
Тессеракт (от др.-греч. τέσσερες ἀκτῖνες — четыре луча) — четырёхмерный гиперкуб — аналог куба в четырёхмерном пространстве.

Изображение является проекцией (перспективой) четырёхмерного куба на трёхмерное пространство.

Согласно Оксфордскому словарю, слово «tesseract» было придумано и начало использоваться в 1888 Чарльзом Говардом Хинтоном (1853—1907) в его книге «Новая эра мысли». Позже некоторые люди назвали ту же самую фигуру «тетракубом».

Геометрия

Обычный тессеракт в евклидовом четырёхмерном пространстве определяется как выпуклая оболочка точек (±1, ±1, ±1, ±1). Иначе говоря, он может быть представлен в виде следующего множества:

Тессеракт ограничен восемью гиперплоскостями, пересечение которых с самим тессерактом задаёт его трёхмерные грани (являющиеся обычными кубами). Каждая пара непараллельных трёхмерных граней пересекается, образуя двумерные грани (квадраты), и так далее. Окончательно, тессеракт обладает 8 трёхмерными гранями, 24 двумерными, 32 рёбрами и 16 вершинами.

Популярное описание

Попытаемся представить себе, как будет выглядеть гиперкуб, не выходя из трёхмерного пространства.

В одномерном «пространстве» — на линии — выделим отрезок АВ длиной L. На двумерной плоскости на расстоянии L от АВ нарисуем параллельный ему отрезок DC и соединим их концы. Получится квадрат ABCD. Повторив эту операцию с плоскостью, получим трехмерный куб ABCDHEFG. А сдвинув куб в четвёртом измерении (перпендикулярно первым трём) на расстояние L, мы получим гиперкуб ABCDEFGHIJKLMNOP.
http://upload.wikimedia.org/wikipedia/ru/1/13/Построение_тессеракта.PNG

Одномерный отрезок АВ служит стороной двумерного квадрата ABCD, квадрат — стороной куба ABCDHEFG, который, в свою очередь, будет стороной четырёхмерного гиперкуба. Отрезок прямой имеет две граничные точки, квадрат — четыре вершины, куб — восемь. В четырёхмерном гиперкубе, таким образом, окажется 16 вершин: 8 вершин исходного куба и 8 сдвинутого в четвёртом измерении. Он имеет 32 ребра — по 12 дают начальное и конечное положения исходного куба, и ещё 8 ребер «нарисуют» восемь его вершин, переместившихся в четвёртое измерение. Те же рассуждения можно проделать и для граней гиперкуба. В двумерном пространстве она одна (сам квадрат), у куба их 6 (по две грани от переместившегося квадрата и ещё четыре опишут его стороны). Четырёхмерный гиперкуб имеет 24 квадратные грани — 12 квадратов исходного куба в двух положениях и 12 квадратов от двенадцати его ребер.

Аналогичным образом можно продолжить рассуждения для гиперкубов большего числа измерений, но гораздо интереснее посмотреть, как для нас, жителей трёхмерного пространства, будет выглядеть четырёхмерный гиперкуб. Воспользуемся для этого уже знакомым методом аналогий.

Развёртка тессеракта

Возьмём проволочный куб ABCDHEFG и поглядим на него одним глазом со стороны грани. Мы увидим и можем нарисовать на плоскости два квадрата (ближнюю и дальнюю его грани), соединённые четырьмя линиями — боковыми рёбрами. Аналогичным образом четырёхмерный гиперкуб в пространстве трёх измерений будет выглядеть как два кубических «ящика», вставленных друг в друга и соединённых восемью рёбрами. При этом сами «ящики» — трёхмерные грани — будут проецироваться на «наше» пространство, а линии, их соединяющие, протянутся в четвёртом измерении. Можно попытаться также представить себе куб не в проекции, а в пространственном изображении.

Подобно тому, как трёхмерный куб образуется квадратом, сдвинутым на длину грани, куб, сдвинутый в четвёртое измерение, сформирует гиперкуб. Его ограничивают восемь кубов, которые в перспективе будут выглядеть как некая довольно сложная фигура. Её часть, оставшаяся в «нашем» пространстве, нарисована сплошными линиями, а то, что ушло в гиперпространство, пунктирными. Сам же четырёхмерный гиперкуб состоит из бесконечного количества кубов, подобно тому как трёхмерный куб можно «нарезать» на бесконечное количество плоских квадратов.

Разрезав шесть граней трёхмерного куба, можно разложить его в плоскую фигуру — развёртку. Она будет иметь по квадрату с каждой стороны исходной грани плюс ещё один — грань, ей противоположную. А трёхмерная развертка четырёхмерного гиперкуба будет состоять из исходного куба, шести кубов, «вырастающих» из него, плюс ещё одного — конечной «гиперграни».

Свойства тессеракта представляют собой продолжение свойств геометрических фигур меньшей размерности в четырёхмерное пространство.

Проекции

На двухмерное пространство

Данная структура сложна для воображения, но возможно спроектировать тессеракт в двухмерные или трёхмерные пространства. Кроме того, проектирование на плоскость позволяет легко понять расположение вершин гиперкуба. Таким образом, можно получить изображения, которые больше не отражают пространственные отношения в пределах тессеракта, но которые иллюстрируют структуру связи вершин, как в следующих примерах:


На трёхмерное пространство

Проекция тессеракта на трёхмерное пространство представляет собой два вложенных трёхмерных куба, соответствующие вершины которых соединены между собой отрезками. Внутренний и внешний кубы имеют разные размеры в трехмерном пространстве, но в четырёхмерном пространстве это равные кубы. Для понимания равности всех кубов тессеракта была создана вращающаяся модель тессеракта.



Шесть усеченных пирамид по краям тессеракта — это изображения равных шести кубов.
Стереопара

Стереопара тессеракта изображается как две проекции на трёхмерное пространство. Такое изображение тессеракта разрабатывалось с целью представить глубину, как четвёртое измерение. Стереопара рассматривается так, чтобы каждый глаз видел только одно из этих изображений, возникает стереоскопическая картина, воспроизводящая глубину тессеракта.

Развёртка тессеракта

Поверхность тессеракта может быть развёрнута в восемь кубов (аналогично тому, как поверхность куба может быть развернута в шесть квадратов). Существует 261 различная развёртка тессеракта. Развёртки тессеракта могут быть подсчитаны нанесением на граф соединённых углов.

Тессеракт в искусстве

У Эдвине А. «Новая Равнина Абботта», гиперкуб выступает рассказчиком.
В одном эпизоде «Приключений Джимми Нейтрона»: «Мальчик-гений» Джимми изобретает четырёхмерный гиперкуб, идентичный фолдбоксу из романа «Дорога славы» 1963 Хайнлайна.
Роберт Э. Хайнлайн упоминал гиперкубы, по крайней мере, в трёх научно-фантастических рассказах. В «Дом четырех измерений» («Дом, который построил Тил») (1940) он описал дом, построенный как развёртка тессеракта.
В романе «Дорога славы» Хайнлайна описана гиперразмерная посуда, которая была изнутри больше, чем снаружи.
Рассказ Генри Каттнера «Mimsy Were the Borogoves» описывает развивающую игрушку для детей из далёкого будущего, по строению похожую на тессеракт.
В романе Алекса Гарленда (1999), термин «тессеракт» используется для трехмерной развёртки четырёхмерного гиперкуба, а не гиперкуба непосредственно. Это метафора, призванная показать, что познающая система должна быть шире познаваемой.
Сюжет фильма «Куб 2: Гиперкуб» сосредотачивается на восьми незнакомцах, пойманных в ловушку в «гиперкубе», или сети связанных кубов.
Телесериал «Андромеда» использует тессеракт-генераторы как устройство заговора. Они прежде всего предназначены, чтобы управлять пространством и временем.
Картина «Распятие на кресте» (Corpus Hypercubus) Сальвадора Дали (1954)
Комиксы «Nextwave comic book» изображают средство передвижения, включающее в себя 5 зон тессеракта.
В альбоме Voivod Nothingface одна из композиций названа «В моём гиперкубе».
В романе Энтони Пирса «Маршрут Куба» одна из орбитальных лун Международной ассоциации развития называется тессерактом, который был сжат в 3 измерения.
В сериале «Школа „Чёрная дыра“» в третьем сезоне есть серия «Тессеракт». Лукас нажимает на секретную кнопку и школа начинает складываться как математический тессеракт.
Термин «тессеракт» и производный от него термин «тессировать» встречается в повести Мадлен Л’Энгл «Складка времени»



← Вернуться

×
Вступай в сообщество «servizhome.ru»!
ВКонтакте:
Я уже подписан на сообщество «servizhome.ru»