Самодельный эхолот из смартфона. Самодельный эхолот рыбака своими руками. Основные характеристики датчика

Подписаться
Вступай в сообщество «servizhome.ru»!
ВКонтакте:

Поиск рыбы на водоеме занятие не из простых, особенно это касается зимней рыбалки. Однако, если у вас в руках этот современный гаджет, который можно за пять минут подключить к вашему телефону или планшету, то вы не просто найдете рыбу, а еще и узнаете, какие под вами глубина и рельеф дна, и даже прикинете размер вашего будущего трофея.

Bluetooth-эхолот для Android и iOS

Друзья, впереди Новый год, пора задуматься о подарках не только для своих близких, но и для себя. Представляем вам уникальный, современный и функциональный гаджет, который настоящие рыбаки уже оценили по достоинству - беспроводной эхолот Fishfinder.

Это не просто эхолот, а настоящий смарт-гидролокатор, который без проблем можно соединить по современной беспроводной технологии Bluetooth с вашим телефоном или планшетом своими руками, без помощи специалистов.

Приложение выглядит просто и понятно, позволяя наслаждаться процессом рыбалки, не фокусируясь постоянно на экране​.

Кстати, этот гаджет работает с двумя самыми популярными операционными системами у современных смартфонов - Android и iOS, поэтому вы сможете пользоваться таким эхолотом вне зависимости от ваших предпочтений в мобильных ОС.

Эхолот идеально подходит как для рыбалки с берега, так и с лодки - небольшой вес позволяет его далеко забросить, не порвав при этом шнур или леску. Для любителей зимней рыбалки он также станет незаменимым помощником в поиске рыбы.

Помимо этого, iBobber предлагает функционал дорогих эхолотов по невысокой цене. С его помощью вы узнаете глубину и рельеф дна любого водоема для определения места возможной дислокации рыбы и правильного подбора снастей. Вы не только найдете рыбное место, но и будете иметь представление о размере будущего улова.

10 преимуществ беспроводного эхолота iBobber

  1. Диапазон работы сонара в эхолоте iBobber позволяет показывать глубины до 45 метров. Угол охвата датчика сонара - 42 градуса. Это позволит вам найти еще больше рыбы.
  2. Эхолот способен полностью отрисовать рельеф дна в предполагаемом месте рыбалки. Летом для этого эхолот монтируется на спиннинг и забрасывается в нужном направлении, после чего подтягивается к себе. Зимой же эхолот с успехом отрисует рельеф дна под лункой. Зная повадки рыбы, вы с большой долей вероятности сможете определять места ее скопления.
  3. Если вы решили сохранить данные о трофейной рыбалке: температуру воздуха, воды или даже фотографии пойманных вами рыб, то и в этом вам поможет беспроводной эхолот iBobber.
  4. Решили вернуться на лунку, которая вам принесла трофейную рыбу через неделю? Без проблем! Функция GPS трекера поможет сохранить координаты.
  5. Начался клев, но на улице темнеет? Светодиодная подсветка эхолота позволит вам ловить не только в сумерках, но и в полной темноте.
  6. Для прогноза активности клева на водоеме в зависимости от погодных условий воспользуйтесь функцией «Прогноз погоды» - эхолот iBobber определит атмосферное давление, вероятность выпадения осадков и многие другие показатели.
  7. Используйте эхолот в качестве поплавка с сигнализацией поклевки. Система Strike Alert заметит даже самую осторожную поклевку и не позволит вам упустить свой трофей.
  8. В приложении эхолота iBobber есть и лунный календарь, благодаря которому у вас всегда под рукой будут такие данные как время восхода и заката солнца, фазы луны, и даже таблицы приливов и отливов.
  9. Встроенный литиевый аккумулятор позволит вам наслаждаться рыбалкой более 8 часов без подзарядки.
  10. Ну и наконец, эхолот iBobber это один из лучших подарков, который можно сделать настоящему любителю как зимней, так и летней рыбалки!

Скачать программу для вашего телефона или планшета

Скачать бесплатно инструкцию >>>
В инструкции подробно написано как установить программное обеспечение и начать работать с эхолотом.

Приложение для iOS >>>
Работает с iOS от версии 6.0.

Приложение для Android >>>
Работает с операционной системой Андроид версии от 4.3, если смартфон/планшет поддерживает Bluetooth 4.0.

Характеристики

  • Частота работы датчика 118 Кгц;
  • Глубина работы датчика 41-42 метра;
  • Непрерывное время работы 8 часов;
  • Радиус действия Bluetooth 30 метров;
  • Диаметр 59 миллиметров;
  • Вес эхолота 47 грамм.

Для тех, кто еще сомневается, купить ему эхолот iBobber или нет, предлагаем к просмотру видеоролик, после которого станет понятно, что данный гаджет можно использовать не только для рыбалки:)

Ну что, загорелись желанием купить этот современный эхолот? Сделать это можно на сайте интернет-магазина « » используя секретный промокод - LH2018 , который даст вам 10% скидку !

Уважаемые любители рыбалки, вам больше не нужно думать над тем, что подарить себе или товарищу на Новый год и любой другой праздник. Современный эхолот для смартфона или планшета iBobber - отличный подарок, которому будут рады не только любители зимней рыбалки, но и летней!

  • Необходима ли покупка эхолота на самом деле? ⇩
  • Численность лучей и угол обзора при выборе эхолота ⇩
  • Первостепенные компоненты эхолота и особенность их работы ⇩
  • Габариты и сезонность эхолотов ⇩
  • Сложность выбора между летним и зимним эхолотом ⇩
  • Условия выбора при покупке ⇩
  • Производитель и финансовая политика ⇩
  • Популярные эхолоты для рыбалки — рейтинг ⇩
  • Отзывы экспертов ⇩

Сейчас рыбакам представляется уникальная возможность приобрести максимальное количество необходимых снастей. Принадлежностей не бывает много, есть только самые необходимые.

В последнее время становится популярным на рыбалке эхолот. Мнения рыбаков, правда, на этот счет расходятся. Поэтому постараемся разобраться в функциональности инструмента.

Необходима ли покупка эхолота на самом деле?

С эхолотом процесс рыбалки может стать гораздо эффективней и комфортней. Работа устройства заключается в поиске рыбных мест. Это поможет не тратить время впустую. Не стоит надеяться, что прибор будет приманивать рыбу.

С помощью инструмента можно не только узнать о наличии рыбы, но также ознакомиться с дном водоема, определить его глубину и ландшафт.

Для того чтобы применение эхолота дало ожидаемый результат, надо разобраться как он работает.

Выбирая аппарат, стоит разобраться в некоторых вопросах:

  • Глубина водоема.
  • Многофункциональность эхолота для зимней и летней рыбалки.
  • Ценовая политика устройства.

Предназначены приборы для ловли с берега, плавательного средства. Выбор модели зависит от целевого назначения.

Численность лучей и угол обзора при выборе эхолота

При выборе эхолота стоит сконцентрировать внимание на классификацию по количеству сканируемых лучей.

Модели разделяются на четыре вида:

  1. Один луч. Угол обзора до 20 градусов.
  2. Два луча. Обзор в 60 градусов.
  3. Три луча. От 90 до 150 градусов.
  4. Четыре луча. 90 градусов.

Многолучевой эхолот звучит привлекательно, но так ли это на самом деле?

Большое количество лучей образует много «мертвых зон» и увидеть рыбу в такой области невозможно.

Кроме лучей, существует еще важный момент, на который надо обратить внимание, это частота.

Некоторые современные модели настроены на частоту от 150 до 200 кГц. Встречаются эхолоты двухлучевые имеющие частоту 50 и 200 килогерц.

Высокая частота позволяет показать на экране несколько рыб по отдельности, а не одним пятном.

Первостепенные компоненты эхолота и особенность их работы

Разновидностей становится все больше. Чтобы легче было подобрать определенную модель, следует знать определенные характеристики.

Основные технические параметры заключаются в следующем:

  • Дисплей. Больше пикселей – четкое изображение. Возможность настройки контраста. Для рыбалки на одном месте подойдет небольшой экран, для передвигающегося рыбака больше подойдет большой дисплей. Монитор с 3D изображением. Сочетаемость с цифровой аппаратурой (смартфон, планшет, GPS навигаторами).
  • Восприимчивость приема сигнала. Хороший приемник позволяет улавливать даже слабые сигналы, преобразовывая в импульсы. Образовавшиеся помехи можно устранить с помощью настройки чувствительности.
  • Возможность работы ночью.
  • Мощность передатчика. Большая мощность – качественный сигнал, хорошо для большой глубины.
  • Количество лучей. Наиболее точное расположение рыбы дает эхолот с одним лучом и узким углом обзора.
  • Частота преобразователя. Электрические импульсы преобразовывает в ультразвуковые волны.
  • Контрастность. Высокий уровень позволяет получать четкое изображение на экран даже при ярком солнце.
  • Корпус. Защита от ударов, влаги.

Приобретая эхолот, стоит досконально ознакомиться со всеми составляющими.

Габариты и сезонность эхолотов

В любой сезон рыбалки будет актуален инструмент. Зимой особенно. Тогда меньше времени потратится на поиски рыбного места.

Виды габаритов встречаются следующие:

  1. Компактные. Изящные размеры позволяют носить прибор в кармане одежды. Работает от батареек.
  2. Портативные. Укладывается в специальный рюкзак, удобно переносить. Использовать можно в любое время года.
  3. Тубусные. Подходит для зимней рыбалки. Питание от батареек.

Частота до 250 кГц – зависит от резонансной частоты излучателя.

Питание от батареи:

Эхолоты для малых глубин потребляют не больше 19 мА; для глубокого дна – 25 мА.

Размеры и вес будет зависеть от модели эхолота.

Во многие транцевые модели встраиваются датчики температуры. Это поможет сказать многое о перспективах рыбалки.

Появилась серия эхолотов с беспроводным датчиком. Удобно применять при спиннинговой рыбалке.

Тубусные эхолоты прекрасно можно использовать при подледной рыбалке, летом легко устанавливаются на лодки. Имеют вспомогательный измеритель бокового обзора.

Сложность выбора между летним и зимним эхолотом

Большинство изготовителей выпускают летние модели устройств, которые можно применять также зимой. Но лучше использовать их, если это редкие выезды на подледную рыбалку.

Для тех, кто предпочитает зимнюю рыбалку лучше приобрести зимние приборы. Они наиболее неуязвимы к минусовым температурам и с большей отдачей работают в лунках.

Условия выбора при покупке

Разнообразная ценовая политика на модели эхолотов ставит перед сложным выбором рыбаков.

Критерии выбора:

  • Масса и размер прибора. Важный параметр выбора модели для зимней рыбалки (холодоустойчивый, легкий).
  • GPS навигатор. Полезное устройство, если рыбалка проходит в труднопроходимых местах. Наличие карты дает возможность определить местонахождение.
  • Экран. Большое разрешение в пикселях, что дает четкость изображения. Для передвижения на быстроходной лодке подойдет эхолот с большим монитором.
  • Датчик. Некоторые модели оборудованы специфическими поплавками, позволяющими располагать прибор горизонтально.

Производитель и финансовая политика

Ценовая политика зависит от функциональности, рабочих параметров и размера.

В целом по цене эхолоты можно разграничить на три категории:

  • Низкая цена. Разновидность моделей имеет монохромный монитор, однолучевой, работает на глубине не более 10 метров. Выполняют свои основные функции.
  • Средний ценовой сегмент. Двухлучевые. Определяют местонахождение и размер рыбы. Подходят для зимней рыбалки.
  • Дорогие эхолоты. Приборы не предназначены для работы на мелководье. Используются на рыболовецких судах. Хорошо сканируют глубокие водоемы.

Цена будет обусловлена после определения цели использования.

Для определения рельефа и глубины дна подойдут недорогие модели эхолотов.

Популярные эхолоты для рыбалки — рейтинг

Многие изготавливаемые эхолоты восприимчивы к определению глубины, присутствию рыбы, изображению рельефа дна.

Среди большого ассортимента приборов, внимание заслуживают следующие производители:

Garmin Echo 550c. Усовершенствованная модель. Большой 5-ти дюймовый цветной монитор. Используемая технология HD-ID target-tracking дает возможность обрести четкое отображение рыбы, дна. Двухлучевой – 60 и 120 градусов. Трансдьюсер. Функция перемотки, паузы.

Lowrance Elite -7 HDI. Качественные картинки глубины, местонахождения рыбы обеспечиваются наличием методики Hybrid Dual Imaging. Навигатор, 7-ми дюймовый LED дисплей. Наличие Insight Genesis, предоставляет возможность создавать личные карты.

Lowrance Mark-5x Pro. Два луча, 5-ти дюймовый экран, водонепроницаемый корпус, работоспособность при температуре до -60 градусов. Является гарантией хорошей зимней рыбалки.

Eagle Trifinder-2. Распространенный вариант для рыбалки, где глубина не более 10 метров.

Humminbird PiranhaMAX 175xRU Portable. Двух лучевой датчик (16 градусов и 450 кГц; 28 градусов и 200 килогерц). Большое количество настроек под конкретные ситуации. Режим Fish ID допускает определение размера рыбы. Капитальный водонепроницаемый корпус. Налаженность оповещений определения глубины, пребывание рыбы. Подсвечивание для ночной рыбалки, определение температурного режима.

Основным залогом успеха на любом водоеме является то, насколько правильно и тщательно рыболов определит глубину в месте ловли. От этого зависит грамотный выбор конкретной точки для заброса оснастки, ее особенности и прочие технические нюансы, влияющие на результативность ужения. Издавна для этих целей применялся глубиномер для рыбалки, позволяющий решить поставленную задачу.

Устройства для определения глубины и рельефа дна используются круглый год. Их применяют со льда либо по открытой воде, с ними можно проводить измерения, находясь в лодке или на берегу. Различные варианты глубиномеров позволяют рыболову выбрать оптимальную модификацию под конкретную ситуацию и собственные предпочтения, чтобы в процессе ловли ощущать себя максимально комфортно и непринужденно.

Глубиномер – устройство, предназначенное для измерения глубины и изменения рельефа дна в заданной акватории. С его помощью можно обнаружить различные аномальные зоны на участке ловли и определить самые потенциально перспективные точки, куда стоит послать оснастку. Он помогает найти свалы, канавки, возвышенности, локальные бугорки, приямки и прочие характерные места стоянки рыбы.

Глубиномеры для рыбалки можно смастерить самому либо приобрести в магазине. Самодельное изделие дешево, просто и надежно. Заводское дороже, но не придется тратить время на его изготовление. Самый современный прибор для измерения глубины – эхолот. Сегодня именно он пользуется наибольшим спросом и применяется многими рыбаками.

Глубиномер своими руками

Самым простым решением приобрести глубиномер для рыбной ловли является изготовление его самостоятельно в домашних условиях. Это устройство легко сделать из подручных материалов. Сегодня среди рыболовов распространены следующие типы этих приспособлений:

  • из свинцовой груши;
  • с поплавком-маркером;
  • из свинца и резины;
  • из пенопласта и свинцового грузила.

Ниже рассмотрим некоторые варианты изготовления глубиномера своими руками, их преимущества и особенности.

С поплавком-маркером

Простая и надежная конструкция глубиномера, которая к тому же является весьма эффективной на разных малознакомых водоемах. Пошаговая инструкция ее изготовления выглядит так:

  • Берется пенопластовый шарик либо круглый поплавок грузоподъемности порядка 15–20 грамм.

Совет! Обычные поплавки намного хуже видно с большой дистанции, поэтому выбор в пользу шарика предпочтителен.


Все. Глубиномер готов. Теперь можно приступать к измерениям глубины в месте ловли и определению рельефа дна:


Совет! Для максимально точных измерений на бланк можно нанести шкалу с любым шагом. Это зависит от предпочтений рыболова.

  • Определив значение глубины в первой точке, подматываем катушкой леску и сдвигаем груз на один-два метра, повторяя процедуру измерений.

Таким образом, «прозваниваем» все направление до берега. После выполняем забросы под разными углами и измеряем глубину. В течение получаса можно досконально изучить рельеф в зоне ловли и определить потенциально уловистые точки.

Из пенопласта и свинцового грузила

Этот вариант также предназначен для измерения с берега, по принципу действия схож с первым устройством. Изготовить его можно так:

  • Берем кусок пенопласта прямоугольной или квадратной формы. В нем проделываем сопрягающиеся два отверстия, расположенные под углом 40–50 градусов к горизонтальной оси.

Совет! Вместо пенопласта можно взять пробку большого размера.

  • В отверстие вставляем использованный стержень от простой шариковой ручки.
  • Леска для измерения глубины пропускается через стержень.
  • К ее свободному концу крепится свинцовый груз необходимого веса напрямую либо с помощью вертлюжка.

Этот глубиномер позволяет весьма точно измерять глубину на стоячих водоемах. На реках с течением получаем значения с некоторой погрешностью.

Из свинца и резины

Этот глубиномер предназначен не столько для промера участка ловли, сколько для определения максимально привлекательного для рыбы нахождения приманки. Применяется в поплавочной или штекерной рыбалке , когда необходимо насадку приподнять над пятном прикормки на 3–5 см, сделав ее заметнее и аппетитнее для рыбы. Выглядит и изготавливается следующим образом:

  • На крючок цепляем прямоугольный кусочек резины.
  • На его другом крае фиксируем свинцовый груз весом, способным утопить применяемый поплавок.

Этот простейший глубиномер позволяет быстро настроить оснастку, и расположить приманку на оптимальном расстоянии от дна.

Фото 3. Вариант: силикон и джиг головка. Крючок цепляем за силикон.

Современный глубиномер – эхолот

Из современных приборов, предназначенных для измерения глубины и прорисовки рельефа дна, рыболовами применяется эхолот. Это устройство позволяет не просто узнать цифры, но и визуально увидеть, что происходит под водой в конкретном месте.

Существует эхолот для ловли с берега и с лодки. Вторая категория наиболее востребована и пользуется огромным спросом. Первая – малознакома нашим рыболовам. Ее применяют единицы, хотя этот прибор очень эффективен и позволяет изучить ситуацию под водой, находясь вне плавсредства.

Как выбрать эхолот для рыбалки с берега? Вопрос непростой. Изначально необходимо обращать внимание на цену изделия. Ведь слишком дорогие модели не по карману простому обывателю, да и порой соотношение в необходимости прибора и его стоимости не сопоставимы.

Чтобы выбрать хороший береговой эхолот, необходимо обращать внимание на следующие параметры:

  • Мощность, позволяющая измерять глубину на большом расстоянии. Небольшое значение этого показателя приводит к тому, что прибор передает картинку на дисплей, находясь лишь вблизи рыболова.
  • Угол сканирования. Чем он больше, тем большую площадь «захватывает» датчик эхолота. Но чересчур высокое значение может привести к искажению изображения. Рекомендуется выбирать устройство с усредненными характеристиками.
  • Размер, разрешение экрана эхолокатора и количество цветов. Этот показатель определяет качество изображения рельефа дна на дисплее.

Помимо эхолота, некоторые производители выпускают цифровые глубиномеры. Они дешевле эхолокаторов, но позволяют измерить глубину, дополнительно отображают температуру воды либо воздуха. Их можно использовать в зимнее время, сканируя зону ловли прямо через лед.

С появлением недорогих эхолотов ориентироваться на воде стало намного проще. Раньше основным инструментом «маломерщиков» была лоция, зачастую не видевшая руки корректора годами, а посему не учитывающая изменений структуры дна. Сегодня картинкой дна в реальном времени уже никого не удивить.

  • Для и любителей существуют дорогие структурные сканеры, которые с удивительной точностью показывают цветную картину дна.
  • доступны картплоттеры, совмещающие в себе функции навигатора, эхолота, а также панели приборов контроля .
  • Владельцам тихоходных яхт помогают вперёдсмотрящие эхолоты. Для скоростных судов в условиях небольших глубин эти приборы не актуальны, так как мало отличаются по функционалу от обычного сонара. Ведь датчик способен «заглядывать» вперёд всего на 2-3 глубины.
  • Наиболее массовый сегмент – недорогие одно- и двухлучевые эхолоты. Они используются рыбаками, туристами, и даже любителями подлёдного лова.

Даже самый простой прибор способен измерять температуру забортной воды, сообщать о падении напряжения бортовой сети, а также информировать звуковым сигналом о резком уменьшении глубины. Индикацию «рыбок» рассматривать не будем, потому что сегодня мы ведём разговор о пользе сонара для судовождения в условиях недостаточной глубины.

Ориентируемся по звуку

Принцип работы эхолота не изменился за последнюю сотню лет. Уменьшились размеры приборов, оптимизировались алгоритмы обработки сигнала. Но по-прежнему приёмопередатчик отправляет высокочастотный сигнал вглубь воды и ждёт, когда он вернётся, отраженный от рельефа дна.

В зависимости от плотности грунта отраженный сигнал ослабевает. Для получения данных о глубине прибор анализирует время возврата сигнала. Структуру дна характеризует ослабление сигнала. Таким образом, на экране эхолота мы видим рельеф дна различного оттенка – от черного (камень) до светло-серого (ил).

Индикация «рыбок» основана на определении воздушных вкраплений в толще воды – плавательных пузырей предполагаемых рыб. Если для рыболовов эта опция может представлять определённый интерес, то для судовождения она абсолютно бесполезна и отвлекает внимание.

В процессе управления скоростной моторной лодкой на судоходных реках средней полосы России не столько важны абсолютные значения глубины, сколько динамика её изменения. Если под килем 5-6 метров, и картинка дна резко поползла вверх – это повод для коррекции курса – скорее всего, мы сбились с судового хода и движемся на свал. В Карелии вполне возможно разбить редуктор мотора и при глубине более 5 метров. Подводные камни зачастую стоят поодиночке и не выходят на поверхность. Вкупе с колебаниями уровня воды на таких водоёмах с каменистым дном нужно быть особо внимательным.

Иное дело – когда глубина 30, 50, а то и более 100 метров. В этом случае показания эхолота не имеют приоритетного значения. Однако не стоит недооценивать важность этого прибора – ведь рано или поздно придется идти в прибрежной полосе, где могут находиться затопленные сваи, корпуса больших судов и каменные косы.

Для того, чтобы избежать хаотичного изменения показаний на скорости глиссирующего судна, достаточно вручную ограничить диапазон глубин. Практически все приборы позволяют это сделать. Таким образом, исключаются гармоники, кратные реальной глубине.

Устанавливаем эхолот своими руками

Приятно проводить время, занимаясь улучшением лодки. Установка эхолота – полезное занятие. Поэтому вооружимся знаниями и приступим к монтажу.

По поводу дисплея вариантов не так много. Его устанавливаем сверху на горизонтальную часть панели или на наклонную, обращенную к судоводителю. Важно, чтобы экран не перекрывал обзор при движении под тентом и не бликовал в солнечную погоду.

Ситуация с выносным датчиком гораздо сложнее. Поскольку в нём располагаются не только приёмник и передатчик, но ещё и датчик температуры, важно обеспечить надёжный контакт с водой. По конструкции датчики различаются на внешние (забортные) и встраиваемые в днище. Каждый из этих вариантов обладает своими недостатками.

Поскольку мы ещё относимся к исчезающему подвиду «Homo sovieticus», то в нас с детства сидит тяга к экспериментам, творчеству и различным исследованиям. Вот и датчик эхолота мы разместим изнутри на днище рядом с транцем.

Возможные варианты рассмотрим в следующей главе.

Вклеиваем датчик эхолота в корпус

Действительно, весьма заманчиво выглядит возможность пользоваться эхолотом на любой скорости, при этом, не вмешиваясь в конструкцию днища, не опасаясь за повреждения датчика, и не имея фонтана брызг за транцем. Почему все так не делают? Рассмотрим случаи, когда такой способ невозможен или требует слишком больших НИОКР ☺

  • Корпус с поперечными реданами. Аэрируемое днище благоприятно сказывается на скоростных показателях судна, но совершенно не подходит для установки внутрь датчика эхолота из-за пузырьков воздуха в пограничной среде. Эхолот в этом случае будет работать только во время стоянки и при движении в водоизмещении.
  • Деревянный корпус. Не фанера, оклеенная стеклотканью, а настоящее дерево. Из-за пористой структуры доски экран прибора предательски молчит.
  • Водоизмещающие корпуса с вельботной кормой, которая на волнах оказывается в воздухе. В этот момент показания прибора теряются.
  • Некоторые пластиковые корпуса с двойными стенками. В таких «сэндвичах» пространство между стеклопластиком заполнено двухкомпонентной полиуретановой пеной, и для установки датчика нужно резать внутреннюю «скорлупу», а её жалко, особенно на новой лодке.
  • Пространство в районе киля и продольных реданов на килеватых корпусах. Завихрения и пузырьки воздуха не дадут спокойно работать прибору, поэтому перед окончательной установкой проверим функционирование прибора в нескольких местах и выберем лучшее.

Для обеспечения постоянства среды применяют антифриз, эпоксидную смолу, автопластилин, силиконовый герметик, термоклей, смазку для медицинского прибора (УЗИ). Понятно, что все эти материалы вносят погрешность в показания прибора и ухудшают чувствительность, однако практика показала работоспособность такой схемы.

Вклеенные датчики отлично работают на стеклопластиковых и алюминиевых лодках. Однако гарантировать работоспособность предложенных схем именно на вашем корпусе никто не сможет. Поэтому остаётся действовать методом проб и ошибок.

В поисках эха

Итак, кабель протянут по всем , монитор закреплён и заботливо укрыт крышкой, а в корме радом с трюмной помпой лежит датчик эхолота. Наша задача – найти оптимальное место, чтобы датчик не мешал коммуникациям (например, сливу подсланевых вод), а на показания не слишком влияли пузырьки воздуха, попадающие под днище на ходу. Достигнуть требуемого результата можно тремя способами.

Способ первый

Прикрутить датчик к транцу изнутри, направив луч вниз перпендикулярно поверхности воды. В этом случае обязательно постоянное наличие определённого уровня подсланевых вод, чтобы между датчиком и днищем не было воздушного клина. Автор этой статьи долгое время имел лодку, в которой для корректной работы эхолота было достаточно вылить под слани всего 2 литра забортной воды.

Причем это было найдено экспериментальным путём, когда было испробовано 5 или 6 положений датчика. Эхолот никак не хотел работать. Заезды было решено прекратить, лодку поднять. Как обычно, после постановки на прицеп сливной шпигат был открыт для просушки, но воды под сланями не было. Решив поправить лодку на прицепе, загнал её обратно в воду, не закрутив пробку. Каково же было удивление, когда эхолот вдруг исправно заработал. Прием даже на скорости более 60 км/ч. В результате каждая поездка начиналась с выливания двухлитровой бутылки на пол, чему очень удивлялись гости.

Второй способ

Заключается в приклеивании датчика на силикон на ровный участок днища между реданами. Стараемся плоскость датчика зафиксировать не параллельно днищу, а параллельно воде. Однако небольшое отклонение (до 10-15 градусов) допустимо.

В качестве фиксирующей массы используем силиконовый герметик или автопластилин. Если на ходу испытания покажут правильность выбранного места, можно переклеить датчик на эпоксидный клей. Однако стоит убедиться в отсутствии пузырьков воздуха между датчиком и днищем.

Третий способ

В какой-то степени он сочетает достоинства первого и второго способов. Смысл его в том, чтобы между датчиком и днищем была жидкость-проводник, но в самой лодке этой жидкости не было. Несколько мудрено, правда? Попробуем разобраться и установить датчик.

Для монтажа нам потребуется ёмкость с узким горлом и ровным основанием. Для этого отрежем верхнюю часть двухлитровой пластиковой бутыли или полиэтиленовой канистры. Под куполом ближе к дну зафиксируем датчик. Провод сенсора будет выходить через горлышко бутылки.

Основная задача – надёжно зафиксировать край ёмкости к днищу. Соединение должно быть герметичным и надёжным. Можно использовать силиконовый герметик или эпоксидную смолу. Для лучшей прочности соединения край пластика, прилегающий к днищу, делаем шершавым с помощью шкурки. Приклеенный купол оставляем сохнуть. После полимеризации приступаем к самому главному.

Заполняем ёмкость через горлышко антифризом. Это позволит оставлять лодку с датчиком и забыть о том, что эхолот установлен нештатным образом. Если у вас получится надёжно зафиксировать купол к днищу, а датчик к куполу, вы получите оптимальный вариант установки датчика. Стоит заметить, что если вы остановитесь на третьем способе, прокладывать кабель датчика заранее не следует. Первым действием будет продевание разъёма в горлышко бутылки, потом вклейка, заполнение, тестирование, и только на заключительном этапе – прокладка кабеля.

Стоит заметить, что установка изнутри корпуса влияет на точность измерения температуры забортной воды, демпфируя показания. Поэтому если для вас температура является приоритетным показателем – либо выносите датчик за борт, либо ожидайте 5-10 минут, пока изменения температуры воды дойдут до датчика, нагрев (или охладив) днище. В корпусах из сплава алюминия этот эффект минимален, в стеклопластиковых выражен сильнее.

Правильно установленный датчик эхолота ничем не выдаёт своего присутствия и радует судоводителя стабильными показаниями на дисплее прибора.

Подводим итоги

Эхолот – это не только прибор, показывающий глубину. Это незаменимый инструмент при управлении маломерным судном. Основываясь на его показаниях и сверяя их с лоцией, можно уверенно ходить в сложных местах, многократно снижая риск сесть на мель или повредить движитель.

Дорогие модели картплоттеров занимают центральное положение на панели, вытесняя остальные приборы. По сути, экран картплоттера – это центральный пульт бортовой системы. Он способен заменить всю остальную телеметрию - позиционирование на карте, лоцию, систему навигации, спидометр, компас, приборы контроля двигателя и часы. И лишь принцип резервирования заставляет нас иметь отдельный аналоговый компас и запасной навигатор.

Cамодельный мини-эхолот на микроконтроллере Atmel ATMega8L

и

ЖКИ от мобильного телефона nokia3310

Представляю вашему вниманию авторскую разработку - самодельный мини-эхолот на микроконтроллере Atmel ATMega8L и ЖКИ от мобильного телефона nokia3310. Устройство рассчитано для повторения радиолюбителем средней квалификации, но, я думаю, конструкцию может повторить каждый желающий. Материал я старался изложить так, чтобы читателям в доступной форме дать побольше полезной информации по теме. Надеюсь, что повторение конструкции принесет Вам много удовольствия и пользы.

Буду рад ответить на ваши вопросы/пожелания/замечания и помочь в повторении конструкции.

С уважением, Alex

Эхолот, сонар (sonar) - сокращение от SOund NAvigation and Ranging. Эхолот известен где-то с 40-х годов, технология была разработана во время Второй мировой войны для отслеживания вражеских подводных лодок. В 1957 году компания Lowrance выпустила первый в мире эхолот на транзисторах для спортивной рыбной ловли.

Эхолот состоит из таких основных функциональных блоков: микроконтроллер, передатчик, датчик-излучатель, приемник и дисплей. Процесс обнаружения дна (или рыбы) в упрощенном виде выглядит следующим образом: передатчик выдает электрический импульс, датчик-излучатель преобразует его в ультразвуковую волну и посылает в воду (частота этой ультразвуковой волны такова, что она не ощущается ни человеком, ни рыбой). Звуковая волна отражается от объекта (дно, рыба, другие объекты) и возвращается к датчику, который преобразует его в электрический сигнал (см. рисунок ниже).

Приемник усиливает этот возвращенный сигнал и посылает его в микропроцессор. Микропроцессор обрабатывает принятый с датчика сигнал и посылает его на дисплей, где мы уже видим изображение объектов и рельефа дна в удобном для нас виде.

На что следует обратить внимание: рельеф дна эхолот рисует только в движении. Это утверждение вытекает из принципа действия эхолота. Тоесть, если лодка неподвижна, то и информация о рельефе дна неизменна, и последовательность значений будет складываться из одинаковых, абсолютно идентичных значений. На экране при этом будет рисоваться прямая линия.

Первый вопрос, который, я уверен, возникнет у читателей «Почему использован такой маленький дисплей?» Поэтому я сразу на него отвечу: этот «мини-эхолотик» разрабатывался по просьбе знакомого из того, что оказалось под рукой. А этими подручными средствами оказались ATMega8L, дисплей от nokia3310 и какой-то излучатель с обозначением f=200kHz. Еще Вы, наверное, спросите возможно ли переделать программу/схему под другой, больший дисплей? Да. Теоретически это возможно.

От эхолотов, описанных в моя конструкция отличается применением графического ЖК дисплея, что дает устройству преимущества в отображении полезной информации.

Вся конструкция собрана в корпусе «Z14». Питание обеспечивается от аккумулятора 9В GP17R9H. Максимальный потребляемый ток не более 30 мА (в авторском варианте 23мА).

Теперь о возможностях эхолота. Рабочая частота 200 кГц и настраивается под конкретный имеющийся излучатель. Программно реализована возможность измерять глубину до 99,9 метров. Но скажу сразу: максимальная глубина, которую сможет «видеть» эхолот, в большой степени будет зависеть от параметров примененного излучателя. Моя конструкция на данное время тестировалась только на водоеме с максимальной глубиной около 4 м. Прибор показал отличные результаты. По мере возможности постараюсь протестировать работу эхолота на более больших глубинах, о чем будет сообщено читателям.

Итак, перейдем к схеме. Схема мини-эхолота показана на рисунке ниже:

Основные функциональные блоки эхолота: схема управления (тоесть микроконтроллер ATMega8L), передатчик, излучатель, приемник, дисплей, клавиатура, схема зарядки аккумуляторной батареи.

Работает эхолот следующим образом: микроконтроллер на выводе РВ7 формирует управляющий сигнал (прямоугольные импульсы лог. «0») длительностью примерно 40 мкс. Этот сигнал запускает на указанное время задающий генератор с рабочей частотой 400 кГц на микросхеме IC4. Далее сигнал подается на микросхему IC5, где частота сигнала делится на 2. Сигнал с IC5 подается на буферный каскад на микросхеме IC6 и далее на ключи Q3 и Q4. Далее сигнал со вторичной обмотки трансформатора Т1 подается на пьезокерамический датчик-излучатель LS2, который посылает ультразвуковые посылки во внешнюю среду.

Отраженный от дна/препятствия сигнал принимается датчиком-излучателем и подается на вход приемника, который собран на микросхеме SA614AD в типовом включении (см. Datasheet на SA614AD). Диодная сборка BAV99 на входе приемника ограничивает входное напряжение приемника в момент работы передатчика.

Сигнал с приемника подается на компаратор на микросхеме LM2903, чувствительность которого регулируется микроконтроллером.

Трансформатор Т1 передатчика намотан на сердечнике К16*8*6 из феррита M1000НМ. Первична обмотка наматывается в 2 провода и содержит 2х14 витков, вторичная - 150 витков провода ПЭВ-2 0,21мм. Первой мотается вторичная обмотка. Половины первичной обмотки должны быть «растянуты» по всей длине сердечника. Обмотки необходимо изолировать друг от друга слоем лакоткани или трансформаторной бумаги.

Теперь самая интересная и проблемная часть: датчик-излучатель. У меня эта проблема была решена изначально: у меня уже был готовый излучатель. Как быть Вам?
Вариант 1: приобрести готовый датчик.
Вариант 2: изготовить самому из пьезокерамики ЦТС-19.

При прошивке микроконтроллера ATMega8L fuse bits выставить согласно картинке ниже:

Полная информация по изготовлению, настройке, прошивке и руководству по использованию мини-эхолота

смотрите в прилагаемом архиве!

Вопросы и пожелания _ самодельный эхолот _ мини-эхолот_files\
Инструкция _ самодельный эхолот _ мини-эхолот_files\
настройка _ самодельный эхолот _ мини-эхолот_files\
прошивки _ самодельный эхолот _ мини-эхолот_files\
ссылки _ самодельный эхолот _ мини-эхолот_files\
схема и описание _ самодельный эхолот _ мини-эхолот_files\
Теория _ самодельный эхолот _ мини-эхолот_files\
Файлы _ самодельный эхолот _ мини-эхолот_files\
фото устройства _ самодельный эхолот _ мини-эхолот_files\
eholot_v1.43.dch
eholot_v1.53.dch
pcb_v1.53_A4.doc
pcb_v1.53_components.doc
plata_v2.doc
0012.gif
firmware_demo_v1.0.hex
firmware_demo_v1.1.hex
firmware_demo_v1.2.hex
firmware_demo_v1.5.hex
Вопросы и пожелания _ самодельный эхолот _ мини-эхолот.html
Инструкция _ самодельный эхолот _ мини-эхолот.html
настройка _ самодельный эхолот _ мини-эхолот.html
прошивки _ самодельный эхолот _ мини-эхолот.html
ссылки _ самодельный эхолот _ мини-эхолот.html
схема и описание _ самодельный эхолот _ мини-эхолот.html
Теория _ самодельный эхолот _ мини-эхолот.html
Файлы _ самодельный эхолот _ мини-эхолот.html
фото устройства _ самодельный эхолот _ мини-эхолот.html
fuse_bits.jpg
gen400kHz.jpg
mini-sonar_circuit_v1.53.jpg
mini-sonar_review_01.jpg
MH2009V.pdf
SA614AD.pdf
mini-sonar_circuit_v1.43.PNG
mini-sonar_circuit_v1.43_800x600.png
Eholot_user_manual.zip



← Вернуться

×
Вступай в сообщество «servizhome.ru»!
ВКонтакте:
Я уже подписан на сообщество «servizhome.ru»