Понятие тождества

Подписаться
Вступай в сообщество «servizhome.ru»!
ВКонтакте:

Тождество

отношение между предметами (реальными или абстрактными), которое позволяет говорить о них как о неотличимых друг от друга, в какой-то совокупности характеристик (напр., свойств). В действительности все предметы (вещи) обычно отличаются нами друг от друга по каким-то характеристикам. Это не исключает того обстоятельства, что у них есть и общие характеристики. В процессе познания мы отождествляем отдельные вещи в их общих характеристиках, объединяем их в множества по этим характеристикам, образуем понятия о них на основе абстракции отождествления (см.: Абстракция). Предметы, объединяемые в множества по некоторым общим для них свойствам, перестают различаться между собой, поскольку в процессе такого объединения мы отвлекаемся от их различий. Иными словами, они становятся неразличимыми, тождественными в этих свойствах. Если бы все характеристики двух объектов а и b оказались тождественными, объекты превратились бы в один и тот же предмет. Но этого не происходит, т. к. в процессе познания мы отождествляем отличные друг от друга предметы не по всем характеристикам, а лишь по некоторым. Без установления тождеств и различий между предметами невозможно никакое познание окружающего нас мира, никакая ориентировка в окружающей нас среде.

Впервые в самой общей и идеализированной формулировке понятие Т. двух предметов дал Г. В. Лейбниц. Закон Лейбница можно сформулировать так: "х = у, если и только если х обладает каждым свойством, которым обладает у, а у обладает каждым свойством, которым обладает х". Другими словами, предмет х может быть отождествлен с предметом у, когда абсолютно все их свойства являются одними и теми же. Понятие Т. широко используется в различных науках: в математике, логике и естествознании. Однако во всех случаях

его применения тождество изучаемых предметов определяют не по абсолютно всем общим характеристикам, а лишь по некоторым, что связано с целями их изучения, с тем контекстом научной теории, в пределах которой изучаются эти предметы.


Словарь по логике. - М.: Туманит, изд. центр ВЛАДОС . А.А.Ивин, А.Л.Никифоров . 1997 .

Синонимы :

Смотреть что такое "тождество" в других словарях:

    Тождество - Тождество ♦ Identité Совпадение, свойство быть таким же. Таким же, как что? Таким же, как такое же, иначе это будет уже не тождество. Таким образом, тождество есть в первую очередь отношение себя к себе (мое тождество это и есть я сам) либо … Философский словарь Спонвиля

    Понятие, выражающее предельный случай равенства объектов, когда не только все родовидовые, но и все индивидуальные их свойства совпадают. Совпадение родовидовых свойств (сходство), вообще говоря, не ограничивает числа приравниваемых… … Философская энциклопедия

    См … Словарь синонимов

    Отношение между объектами (предметами реальности, восприятия, мысли), рассматриваемыми как одно и то же; предельный случай отношения равенства. В математике тождество это уравнение, которое удовлетворяется тождественно, т. е. справедливо для… … Большой Энциклопедический словарь

    ТОЖДЕСТВО, а и ТОЖЕСТВО, а, ср. 1. Полное сходство, совпадение. Т. взглядов. 2. (тождество). В математике: равенство, справедливое при любых числовых значениях входящих в него величин. | прил. тождественный, ая, ое и тожественный, ая, ое (к 1… … Толковый словарь Ожегова

    тождество - ТОЖДЕСТВО понятие, обычно представленное в естественном языке либо в форме «я (есть) то же, что и Ь >, или «а тождественно Ь», что может быть символизировано как «а = Ь» (такое утверждение обычно называют абсолютным Т.), либо в форме… … Энциклопедия эпистемологии и философии науки

    тождество - (неправильно тождество) и устарелое тожество (сохраняется в речи математиков, физиков) … Словарь трудностей произношения и ударения в современном русском языке

    И РАЗЛИЧИЕ две взаимосвязанные категории философии и логики. При определении понятий Т. и Р. используют два фундаментальных принципа: принцип индивидуации и принцип Т. неразличимых. Согласно принципу индивидуации, который был содержательно развит … История Философии: Энциклопедия

    Англ. identity; нем. Identitat. 1. В математике уравнение, справедливое при всех допустимых значениях аргументов. 2. Предельный случай равенства объектов, когда не только все родовые, но и все индивидуальные их свойства совпадают. Antinazi.… … Энциклопедия социологии

    - (обозначение ≡) (identity, symbol ≡) Уравнение, являющееся истинным при любых значениях входящих в него переменных. Так, z ≡ х + y означает, что z всегда сумма х и y. Многие экономисты порой не последовательны и используют обычный знак даже тогда … Экономический словарь

    тождество - идентичность идентификация личности ID — [] Тематики защита информации Синонимы идентичностьидентификация личностиID EN identityID … Справочник технического переводчика

Книги

  • Различие и тождество в греческой и средневековой онтологии , Р. А. Лошаков. В монографии исследуются основные вопросы греческой (аристотелевской) и средневековой онтологии в свете понимания бытия как Различия. Тем самым демонстрируется производный, вторичный,…

Знак равенства используется в математике очень часто, и смысл, который придается этому знаку, далеко не всегда один и тот же. Так, часто мы соединяем знаком равенства два числа, например:

1370 = 3 2 ·5·31 (1) ;

(2) ;

(3) ;

(4)

Каждая такая запись представляет собой некоторое высказывание, которое может быть истинным или ложным. Среди приведенных выше четырех высказываний такого рода второе, третье и четвертое являются истинными, а первое - ложным.

Для того чтобы убедиться в истинности (или ложности) такого высказывания, нередко бывает нужно произвести те или иные действия: сложение дробей, разложение на множители, возведение суммы двух чисел в квадрат и т. п. Однако смысл знака равенства во всех этих случаях один и тот же: истинность такого высказывания означает, что слева и справа от знака равенства стоит одно и то-же число (только, может быть, записанное по-разному).

Высказывания такого вида мы будем называть числовыми равенствами. Если некоторое числовое равенство представляет собой истинное высказывание, то для краткости говорят: «это - верное равенство». Так, равенство (2) - верное. Если же некоторое числовое равенство представляет собой ложное высказывание, то для краткости говорят: «это-неверное равенство». Так, (1) -неверное равенство.

В ином смысле применяется знак =, когда идет речь о равенстве функций. Напомним, что две функции f (х) и g (х) считаются равными (т. е. совпадающими), если, во-первых, области определения этих двух функций совпадают и, во-вторых, для любого числа х 0 , принадлежащего общей области определения этих функций, значения функций в точке х 0 совпадают, т. е. верно числовое равенство f (х 0) = g(x 0). Равенство функций (х) и g(x) обычно выражают записью f(x) = g(x).

Например, мы пишем (х 2 + 1) 6 = х 3 + Зx 4 +. Зx 2 + 1, выражая этой записью тот факт, что слева и справа от знака = стоят равные функции (т. е. слева и справа стоит одна и та же функция, только, может быть, записанная по-разному).

В записи, выражающей равенство (т. е. совпадение) двух функций, вместо знака = часто используют знак, называемый знаком тождественного равенства.
Запись f(x)g(x) означает совпадение функций f(х) и g(x). Запись равенства двух функций (т. е. соотношение f(х) = g{x) или f(x)g(x)) называют также тождеством.

Подчеркнем еще раз: когда мы говорим, что f(x) = g(x) есть тождество, то это означает, что области определения функций f(х) и g(х) совпадают и при этом для любого х 0 , принадлежащего этой области определения, справедливо числовое равенство f(x 0) = g(x 0).

Примерами тождеств могут служить соотношения:

(x + 1) 2 = x 2 + 2x + 1,

log 2 2 х = х,

sin 2 x= 1 - cos 2 x.

Иногда при рассмотрении тождеств приходится ограничивать области определения функций. Именно, будем говорить, что равенство f(x) = g(x) является тождеством на множестве М, если, во-первых, множество М содержится в области определения каждой из функций f(x), g (х) и, во-вторых, для любого числа х 0 , принадлежащего множеству М, справедливо числовое равенство f(x 0) = g (x 0) В этом случае пишут:

f{x)g(х) на множестве М или f(x) = g{x) при хМ.

. Пример 1. Равенствоявляется тождеством на множестве неотрицательных чисел, т. е.x при х0.

Заметим, что обе функции y=и y = х определены на множестве всех действительных чисел, но значения их совпадают лишь на множестве неотрицательных чисел. На множестве всех действительных чисел соотношениетождеством не является.

Пример 2. Рассмотрим равенство arcsin(sinx) =. Обе функции (стоящие в левой и правой частях равенства) определены на множестве всех действительных чисел. Однако написанное равенство является тождеством лишь на отрезке , т. е. arcsin(sin x) =при 0x Разумеется, при написании тождеств вовсе не обязательно обозначать аргумент функций буквой х. Можно аргумент обозначить буквой z, буквой а или любым другим символом.

Так, соотношения

(z + 7) 2 = z 2 - 14z + 49,

(а - 1)(а 2 + а + 1) = а 3 - 1

являются тождествами на множестве всех действительных чисел (или даже на множестве всех комплексных чисел), Можно также рассматривать функции, зависящие от двух или большего числа аргументов, и писать тождества для таких функций. Конечно, и в этом случае надо указывать, при каких значениях аргументов написанное равенство является тождеством.

Например, равенство log 2 a b = b log 2 a является тождеством при а > 0 и любом действительном b; равенство

является тождеством при x+k, y+n, x + y+m, где k, n m -любые целые числа, и т. д.

Мы рассмотрели два случая использования знака = в алгебре: для записи числовых равенств и для записи тождеств (в последнем случае он иногда заменяется знаком?. В совершенно ином смысле используется знак = при рассмотрении уравнений. Уравнение с одним неизвестным х в общем случае записывается в виде

f(x) = g(x), (5)

где f(х) и g(x) - произвольные функции, Таким образом, по внешнему виду уравнение выглядит так же, как и тождество: две функции, соединенные знаком равенства. Но когда мы говорим, что соотношение (5) есть уравнение, то это показывает наше отношение к этому равенству. Именно, когда мы говорим, что (5) есть уравнение, то это означает, что равенство (5) рассматривается как неопределенное высказывание (при одних значениях х истинное, при других-ложное), и мы интересуемся нахождением корней этого уравнения, т. е. таких значений х, при подстановке которых это неопределенное высказывание становится истинным. Более подробно, корнем (или решением) уравнения называется всякое число, при подстановке которого вместо неизвестного в обе части уравнения получается справедливое (верное) числовое равенство. Но что значит «получается справедливое числовое равенство»? Это означает, во-первых, что при подстановке этого числа вместо неизвестного все действия, обозначенные в левой и правой частях уравнения, оказываются выполнимыми и, во-вторых, в результате выполнения этих действий в левой и правой частях получается одно и то же число. Иначе говоря, число а называется корнем уравнения (5), если, во-первых, это число принадлежит как области определения функции f(x), так и области определения функции g(x) и, во-вторых, значения этих функций в точке а совпадают, т. е.
f(a) = g{a).

Итак, если сказано, что равенство (5) рассматривается как уравнение, то это означает, что мы интересуемся нахождением корней этого уравнения, т. е. тех значений, которые обращают соотношение (5) в верное числовое равенство.

Пример 3. Для уравнения (х - 1) 2 = х 2 - 2x + 1 любое действительное число b является корнем, так как равенство (b - 1) 2 = b 2 - 2b + 1 имеет место для любого действительного числа b.

Пример 4. Если рассматривать уравнение |х| = х на множестве всех действительных чисел, то всякое неотрицательное число является корнем этого уравнения (других корней нет).

Пример 5. Уравнение lgx = 1g(- х) не имеет решений, так как левая часть этого уравнения определена при положительных значениях х, а правая - при отрицательных, т. е. области определения левой и правой частей не имеют общих точек.

Пример 6 . Уравнение cosx = 2 не имеет решений на множестве действительных чисел, так как |cosx 0 |1 для любого действительного числа х 0 .

Пример 7. Уравнение х 2 = -1 не имеет решений намножестве действительных чисел и имеет два решения, x = i и х = -i., на множестве комплексных чисел.

Если найдена некоторая совокупность значений х, каждое из которых является корнем уравнения f (x)=g(x), то это еще не значит, что мы решили уравнение.

Решить уравнение - значит найти все его решения (или доказать, что уравнение не имеет решений).

Отметим, что бессмысленно ставить вопрос, «является ли равенство f(x) = g(x) тождеством или уравнением». Одно и то.же равенство f{x) = g(x) в различных условиях может рассматриваться и как тождество, и как уравнение. Если мы говорим, что f(х) = g(x) есть тождество», то непременно надо указывать, на каком множестве это равенство является тождеством. Фраза «f(x)=g(x) есть тождество на множестве М» есть некоторое утверждение, некоторое высказывание. Если же мы говорим, что рассматриваем уравнение f(x) = g(x), то мы, по существу, имеем дело с вопросительным предложением: мы ставим вопрос, каковы корни этого уравнения, т. е. каковы те значения х, которые обращают соотношение f(x) = g(x) в верное числовое равенство.

Пример 8. Равенствоможно рассматривать и как тождество, и как уравнение. Если мы относимся к этому равенству как к тождеству, то наиболее полной формулировкой будет следующая: равенствоявляется тождеством при x > 0. Если же мы относимся к этому равенству как к уравнению, то это означает, что мы рассматриваем задачу: решить уравнениет. е. ставим вопрос о том, каковы корни этого уравнения. Ответ будет таков: корнями уравненияявляются все неотрицательные числа и только они.

Пример 9. Бессмысленно ставить вопрос, является ли соотношение 0·x + 5 = 5 тождеством или уравнением. Мы можем сказать, что оно является тождеством на множестве всех действительных чисел. Но мы можем также рассматривать это соотношение как уравнение и тогда скажем, что корнями этого уравнения являются все действительные числа.

Замечание. Кроме рассмотренных выше случаев использования знака = в математике встречаются и другие. Так, выражение вида «рассмотрим функцию f(x) = x 3 - Зх 2 + 5x + 11» часто используется в качестве определения. В этом случае знак = имеет тот смысл, что всюду в проводимом рассуждении f (х) будет обозначать именно эту функцию.

В ходе изучения алгебры мы сталкивались с понятиями многочлен (например ($y-x$ ,$\ 2x^2-2x$ и тд) и алгебраическая дробь(например $\frac{x+5}{x}$ , $\frac{2x^2}{2x^2-2x}$,$\ \frac{x-y}{y-x}$ и тд). Сходство этих понятий в том, что и в многочленах, и в алгебраических дробях присутствуют переменные и числовые значения, выполняются арифметические действия: сложение, вычитание, умножение, возведение в степень. Отличие этих понятий состоит в том, что в многочленах не производится деление на переменную, а в алгебраических дробях деление на переменную можно производить.

И многочлены , и алгебраические дроби в математике называются рациональными алгебраическими выражениями. Но многочлены являются целыми рациональными выражениями, а алгебраические дроби- дробно- рациональными выражениями.

Можно получить из дробно --рационального выражения целое алгебраическое выражение используя тождественное преобразование, которое в данном случае будет являться основным свойством дроби - сокращением дробей. Проверим это на практике:

Пример 1

Выполнить преобразование:$\ \frac{x^2-4x+4}{x-2}$

Решение: Преобразовать данное дробно-рациональное уравнение можно путем использования основного свойства дроби- сокращения, т.е. деления числителя и знаменателя на одно и то же число или выражение, отличное от $0$.

Сразу данную дробь сократить нельзя,необходимо преобразовать числитель.

Преобразуем выражние стоящее в числителе дроби,для этого воспользуемся формулой квадрата разности :$a^2-2ab+b^2={(a-b)}^2$

Дробь имеет вид

\[\frac{x^2-4x+4}{x-2}=\frac{x^2-4x+4}{x-2}=\frac{{(x-2)}^2}{x-2}=\frac{\left(x-2\right)(x-2)}{x-2}\]

Теперь мы видим, что в числителе и в знаменателе есть общий множитель --это выражение $x-2$, на которое произведем сокращение дроби

\[\frac{x^2-4x+4}{x-2}=\frac{x^2-4x+4}{x-2}=\frac{{(x-2)}^2}{x-2}=\frac{\left(x-2\right)(x-2)}{x-2}=x-2\]

После сокращения мы получили, что исходное дробно-рациональное выражение $\frac{x^2-4x+4}{x-2}$ стало многочленом $x-2$, т.е. целым рациональным.

Теперь обратим внимание на то, что тождественными можно считать выражения $\frac{x^2-4x+4}{x-2}$ и $x-2\ $ не при всех значениях переменной, т.к. для того, чтобы дробно-рациональное выражение существовало и было возможно сокращение на многочлен $x-2$ знаменатель дроби не должен быть равен $0$ (так же как и множитель, на который мы производим сокращение. В данном примере знаменатель и множитель совпадают, но так бывает не всегда).

Значения переменной, при которых алгебраическая дробь будет существовать называются допустимыми значениями переменной.

Поставим условие на знаменатель дроби: $x-2≠0$,тогда $x≠2$.

Значит выражения $\frac{x^2-4x+4}{x-2}$ и $x-2$ тождественны при всех значениях переменной, кроме $2$.

Определение 1

Тождественно равными выражениями называются те, которые равны при всех допустимых значениях переменной.

Тождественным преобразованием является любая замена исходного выражения на тождественно равное ему.К таким преобразованиям относятся выполнение действий: сложения, вычитания, умножение, вынесение общего множителя за скобку, приведение алгебраических дробей к общему знаменателю, сокращение алгебраических дробей, приведение подобных слагаемых и т.д. Необходимо учитывать,что ряд преобразований, такие как, сокращение, приведение подобных слагаемых могут изменить допустимые значения переменной.

Приемы, использующиеся для доказательств тождеств

    Привести левую часть тождества к правой или наоборот с использованием тождественных преобразований

    Привести обе части к одному и тому же выражению с помощью тождественных преобразований

    Перенести выражения, стоящие в одной части выражения в другую и доказать, что полученная разность равна $0$

Какое из приведенных приемов использовать для доказательства данного тождества зависит от исходного тождества.

Пример 2

Доказать тождество ${(a+b+c)}^2- 2(ab+ac+bc)=a^2+b^2+c^2$

Решение: Для доказательства данного тождества мы используем первый из приведенных выше приемов, а именно будем преобразовывать левую часть тождества до ее равенства с правой.

Рассмотрим левую часть тождества:$\ {(a+b+c)}^2- 2(ab+ac+bc)$- она представляет собой разность двух многочленов. При этом первый многочлен является квадратом суммы трех слагаемых.Для возведения в квадрат суммы нескольких слагаемых используем формулу:

\[{(a+b+c)}^2=a^2+b^2+c^2+2ab+2ac+2bc\]

Для этого нам необходимо выполнить умножение числа на многочлен.Вспомним, что для этого надо умножить общий множитель,стоящий за скобками на каждое слагаемое многочлена,стоящего в скобках.Тогда получим:

$2(ab+ac+bc)=2ab+2ac+2bc$

Теперь вернемся к исходному многочлену,он примет вид:

${(a+b+c)}^2- 2(ab+ac+bc)=\ a^2+b^2+c^2+2ab+2ac+2bc-(2ab+2ac+2bc)$

Обратим внимание, что перед скобкой стоит знак «-» значит при раскрытии скобок все знаки, которые были в скобках меняются на противоположные.

${(a+b+c)}^2- 2(ab+ac+bc)=\ a^2+b^2+c^2+2ab+2ac+2bc-(2ab+2ac+2bc)= a^2+b^2+c^2+2ab+2ac+2bc-2ab-2ac-2bc$

Приведем подобные слагаемые,тогда получим, что одночлены $2ab$, $2ac$,$\ 2bc$ и $-2ab$,$-2ac$, $-2bc$ взаимно уничтожатся, т.е. их сумма равна $0$.

${(a+b+c)}^2- 2(ab+ac+bc)=\ a^2+b^2+c^2+2ab+2ac+2bc-(2ab+2ac+2bc)= a^2+b^2+c^2+2ab+2ac+2bc-2ab-2ac-2bc=a^2+b^2+c^2$

Значит путем тождественных преобразований мы получили тождественное выражение в левой части исходного тождества

${(a+b+c)}^2- 2(ab+ac+bc)=\ a^2+b^2+c^2$

Заметим, что полученное выражение показывает, что исходное тождество --верно.

Обратим внимание, что в исходном тождестве допустимы все значения переменной, значит мы доказали тождество используя тождественные преобразования, и оно верно при всех допустимых значениях переменной.

Начнем разговор о тождествах, дадим определение понятия, введем обозначения, рассмотрим примеры тождеств.

Yandex.RTB R-A-339285-1

Что представляет собой тождество

Начнем с определения понятия тождества.

Определение 1

Тождество представляет собой равенство, которое верно при любых значениях переменных. Фактически, тождеством является любое числовое равенство.

По мере разбора темы мы можем уточнять и дополнять данное определение. Например, если вспомнить понятия допустимых значений переменных и ОДЗ, то определение тождества можно дать следующим образом.

Определение 2

Тождество – это верное числовое равенство, а также равенство, которое будет верным при всех допустимых значениях переменных, которые входят в его состав.

Про любые значения переменных при определении тождества речь идет в пособиях и учебниках по математике для 7 класса, так как школьная программа для семиклассников предполагает проведение действий исключительно с целыми выражениями (одно- и многочленами). Они имеют смысл при любых значениях переменных, которые входят в их состав.

Программа 8 класса расширяется за счет рассмотрения выражений, которые имеют смысл только для значений переменных из ОДЗ. В связи с этим и определение тождества меняется. Фактически, тождество становится частным случаем равенства, так как не каждое равенство является тождеством.

Знак тождества

Запись равенства предполагает наличие знака равенства « = » , от которого справа и слева располагаются некоторые числа или выражения. Знак тождества имеет вид трех параллельных линий « ≡ » . Он также носит название знака тождественного равенства.

Обычно запись тождества ничем не отличается от записи обыкновенного равенства. Знак тождества может быть применен для того, чтобы подчеркнуть, что перед нами не простое равенство, а тождество.

Примеры тождеств

Обратимся к примерам.

Пример 1

Числовые равенства 2 ≡ 2 и - 3 ≡ - 3 это примеры тождеств. Согласно определению, данному выше, любое верное числовое равенство по определению является тождеством, а приведенные равенства верные. Их также можно записать следующим образом 2 ≡ 2 и - 3 ≡ - 3 .

Пример 2

Тождества могут содержать не только числа, но также и переменные.

Пример 3

Возьмем равенство 3 · (x + 1) = 3 · x + 3 . Это равенство является верным при любом значении переменной x . Подтверждает сей факт распределительное свойство умножения относительно сложения. Это значит, что приведенное равенство является тождеством.

Пример 4

Возьмем тождество y · (x − 1) ≡ (x − 1) · x: x · y 2: y . Рассмотрим область допустимых значений переменных x и y . Это любые числа, кроме нуля.

Пример 5

Возьмем равенства x + 1 = x − 1 , a + 2 · b = b + 2 · а и | x | = x . Существует ряд значений переменных, при которых эти равенства неверны. Например, при при x = 2 равенство x + 1 = x − 1 обращается в неверное равенство 2 + 1 = 2 − 1 . Да и вообще, равенство x + 1 = x − 1 не достигается ни при каких значениях переменной x .

Во втором случае равенство a + 2 · b = b + 2 ·a неверно в любых случаях, когда переменные a и b имеют различные значения. Возьмем a = 0 и b = 1 и получим неверное равенство 0 + 2 · 1 = 1 + 2 · 0 .

Равенство, в котором | x | - модуль переменной x , также не является тождеством, так как оно неверно для отрицательных значений x .

Это значит, что приведенные равенства не являются тождествами.

Пример 6

В математике мы постоянно имеем дело с тождествами. Делая записи действий, производимых с числами, мы работаем с тождествами. Тождествами являются записи свойств степеней, свойств корней и прочие.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter


Получив представление о тождествах , логично перейти к знакомству с . В этой статье мы ответим на вопрос, что такое тождественно равные выражения, а также на примерах разберемся, какие выражения являются тождественно равными, а какие – нет.

Навигация по странице.

Что такое тождественно равные выражения?

Определение тождественно равных выражений дается параллельно с определением тождества. Это происходит на уроках алгебры в 7 классе. В учебнике по алгебре для 7 классов автора Ю. Н. Макарычев приведена такая формулировка:

Определение.

– это выражения, значения которых равны при любых значениях входящих в них переменных. Числовые выражения, которым отвечают одинаковые значения, также называют тождественно равными.

Это определение используется вплоть до 8 класса, оно справедливо для целых выражений , так как они имеют смысл для любых значений входящих в них переменных. А в 8 классе определение тождественно равных выражений уточняется. Поясним, с чем это связано.

В 8 классе начинается изучение других видов выражений, которые, в отличие от целых выражений, при некоторых значениях переменных могут не иметь смысла. Это заставляет ввести определения допустимых и недопустимых значений переменных, а также области допустимых значений ОДЗ переменной, и как следствие - внести уточнение в определение тождественно равных выражений.

Определение.

Два выражения, значения которых равны при всех допустимых значениях входящих в них переменных, называются тождественно равными выражениями . Два числовых выражения, имеющие одинаковые значения, также называются тождественно равными.

В данном определении тождественно равных выражений стоит уточнить смысл фразы «при всех допустимых значениях входящих в них переменных». Она подразумевает все такие значения переменных, при которых одновременно имеют смысл оба тождественно равных выражения. Эту мысль разъясним в следующем пункте, рассмотрев примеры.

Определение тождественно равных выражений в учебнике Мордковича А. Г. дается немного иначе:

Определение.

Тождественно равные выражения – это выражения, стоящие в левой и правой частях тождества.

По смыслу это и предыдущее определения совпадают.

Примеры тождественно равных выражений

Введенные в предыдущем пункте определения позволяют привести примеры тождественно равных выражений .

Начнем с тождественно равных числовых выражений. Числовые выражения 1+2 и 2+1 являются тождественно равными, так как им соответствуют равные значения 3 и 3 . Также тождественно равны выражения 5 и 30:6 , как и выражения (2 2) 3 и 2 6 (значения последних выражений равны в силу ). А вот числовые выражения 3+2 и 3−2 не являются тождественно равными, так как им соответствуют значения 5 и 1 соответственно, а они не равны.

Теперь приведем примеры тождественно равных выражений с переменными. Таковыми являются выражения a+b и b+a . Действительно, при любых значениях переменных a и b записанные выражения принимают одинаковые значения (что следует из чисел). К примеру, при a=1 и b=2 имеем a+b=1+2=3 и b+a=2+1=3 . При любых других значениях переменных a и b мы также получим равные значения этих выражений. Выражения 0·x·y·z и 0 тоже тождественно равны при любых значениях переменных x , y и z . А вот выражения 2·x и 3·x не являются тождественно равными, так как, к примеру, при x=1 их значения не равны. Действительно, при x=1 выражение 2·x равно 2·1=2 , а выражение 3·x равно 3·1=3 .

Когда области допустимых значений переменных в выражениях совпадают, как, например, в выражениях a+1 и 1+a , или a·b·0 и 0 , или и , и значения этих выражений равны при всех значениях переменных из этих областей, то тут все понятно – эти выражения тождественно равны при всех допустимых значениях входящих в них переменных. Так a+1≡1+a при любых a , выражения a·b·0 и 0 тождественно равны при любых значениях переменных a и b , а выражения и тождественно равны при всех x из ; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 17-е изд., доп. - М.: Мнемозина, 2013. - 175 с.: ил. ISBN 978-5-346-02432-3.


  • ← Вернуться

    ×
    Вступай в сообщество «servizhome.ru»!
    ВКонтакте:
    Я уже подписан на сообщество «servizhome.ru»