Почему змея не видит за прозрачным стеклом. Инфракрасное зрение у змей и его значение. Змеи перед броском, угрожая, высовывают язык

Подписаться
Вступай в сообщество «servizhome.ru»!
ВКонтакте:

На земле существует около трех тысяч змей. Они относятся к чешуйчатому отряду и любят обитать в местах теплым климатом. Многие, гуляя по лесу в зоне, где могут обитать змеи, задаются вопросом, а видят ли они нас? Или это мы должны смотреть себе под ноги, чтобы не потревожить рептилию? Дело в том, что среди разнообразия в мире животных, только глаза змеи способны определять оттенки и цвета, но острота зрения у них слабая. Для змеи зрение, конечно, важно, но не так, как обоняние. В давние времена люди обращали внимание на змеиный глаз, считая его холодным и гипнотическим.

Как устроен глаз змеи

У рептилий очень мутные глаза. Все потому, что они покрыты пленкой, которая меняется во время линьки вместе со всей кожей. Из-за этого змеи имеют плохую остроту зрения. Как только рептилии сбрасывают кожу, у них сразу же повышается острота зрения. В этот период они видят лучше всего. Так они себя чувствуют в течение нескольких месяцев.

Большинство людей считают, что все без исключения змеи ядовиты. Это не так. Большее количество видов совершенно неопасны. Ядовитые рептилии используют яд только в случае опасности и при охоте. Она происходит как в дневное, так и в ночное время года. В зависимости от этого зрачок меняет свою форму. Так, днем он круглый, а ночью вытянут в щель. Существуют плетевидные змеи со зрачком в виде перевернутой замочной скважины. Каждый глаз способен сформировать целую картинку мира.

Для змей является главным органом все же обоняние. Они его используют в качестве термолокации. Так, в полной тишине они чувствуют выделяемое тепло возможной жертвы и обозначают ее месторасположение. Не ядовитые виды набрасываются на добычу и душат ее, некоторые из них начинают заглатывать прямо живьем. Все зависит от размеров самой рептилии и ее жертвы. В среднем туловище змеи бывает около одного метра. Встречаются как мелкие виды, так и крупные. Направляя свой взгляд на жертву, они фокусируют его. В это время их язык улавливает малейшие запахи в пространстве.

Змеи – одни из самых загадочных обитателей нашей планеты. Первобытные охотники при встрече с любой змеей спешили спастись от нее бегством, зная, что всего один укус способен обречь на смерть. Страх помогал избежать укусов, но мешал узнать больше об этих таинственных созданиях. И там, где точных знаний не хватало, пробелы заполняли фантазии и домыслы, с веками становившиеся все изощреннее. И, несмотря на то, что многие из этих рептилий уже достаточно хорошо изучены, старые, передававшиеся из поколения в поколения, слухи и легенды о змеях до сих пор владеют умами людей. Чтобы как-то разорвать этот порочный круг, мы собрали 10 самых распространенных мифов о змеях и опровергли их.

Змеи пьют молоко

Этот миф многим из нас стал известен благодаря произведению Конана Дойля «Пестрая лента». На самом деле попытка напоить змею молоком может закончиться смертельным исходом: они не усваивают лактозу в принципе.

Нападая, змеи жалят

По неизвестным причинам, многие люди считают, что змеи жалят своим острым, раздвоенным на конце языком. Змеи кусают зубами, как и все остальные животные. Язык им служит совершенно для других целей.

Змеи перед броском, угрожая, высовывают язык

Как уже говорилось, язык змеи не предназначен для атаки. Дело в том, что у змей отсутствует нос, и все необходимые рецепторы у них расположены на языке. Поэтому, чтобы лучше учуять запах добычи и определить ее месторасположение, змеям приходится высовывать язык.

Большинство змей ядовиты

Из известных серпентологам двух с половиной тысяч видов змей только 400 обладают ядовитыми зубами. Из них всего 9 встречаются в Европе. Больше всего ядовитых змей в Южной Америке – 72 вида. Остальные практически поровну распределились по Австралии, Центральной Африке, Юго-Восточной Азии, Центральной и Северной Америке.

Можно «обезопасить» змею, вырвав ей зубы

На какое-то время это действительно может сработать. Но зубы отрастут снова, а змея в период их роста не имея возможности сцеживать яд, может серьезно заболеть. И кстати говоря, змею не возможно надрессировать – для них любое человек не более чем просто теплое дерево.

Змеи всегда нападают при виде людей

Как показывает статистика, чаще всего змеи кусают людей в целях самообороны. Если змея при виде вас шипит и делает угрожающие движения – значит, она просто хочет, чтобы ее оставили в покое. Стоит вам немного отступить, и змея тут же скроется из вида, спеша спасти свою жизнь.

Змей можно кормить мясом

Большинство змей питаются грызунами, есть виды, поедающие лягушек и рыбу и даже насекомоядные рептилии. А королевские кобры, например, предпочитают в пищу только змей других видов. Так что, чем именно кормить змею, зависит только от самой змеи.

Змеи холодные на ощупь

Змеи являются типичными представителями хладнокровных животных. И поэтому температура тела змеи будет такой же, как и температура внешней среды. Поэтому, не имея возможности поддерживать оптимальную температуру тела (чуть выше 30 °С), змеи так любят греться на солнце.

Змеи покрыты слизью

Еще одна байка, не имеющая к змеям никакого отношения. Кожа этих рептилий практически не содержит желез и покрыта плотной гладкой чешуей. Именно из этой приятной на ощупь змеиной кожи изготавливают обувь, сумочки и даже одежду.

Змеи обвивают ветви и стволы деревьев

Довольно часто можно увидеть изображение змея-искусителя, обвивающего ствол дерева познания. Однако это не имеет никакого отношения к их реальному поведению. Змеи забираются на ветки деревьев и лежат на них, обвивать же их своим телом им совершенно ни к чему.

Органы, позволяющие змеям «видеть» тепловое излучение, дают крайне расплывчатое изображение. Тем не менее у змеи в мозгу формируется четкая тепловая картина окружающего мира. Немецкие исследователи выяснили, как такое может быть.

Некоторые виды змей обладают уникальной способностью улавливать тепловое излучение, позволяющей им «разглядывать» окружающий мир в абсолютной темноте. Правда, они «видят» тепловое излучение не глазами, а специальными чувствительными к теплу органами (см. рисунок).

Строение такого органа очень просто. Рядом с каждым глазом располагается отверстие диаметром около миллиметра, которое ведет в небольшую полость примерно такого же размера. На стенках полости расположена мембрана, содержащая матрицу из клеток-терморецепторов размером примерно 40 на 40 клеток. В отличие от палочек и колбочек сетчатки глаза, эти клетки реагируют не на «яркость света» тепловых лучей, а на локальную температуру мембраны.

Этот орган работает как камера-обскура, прототип фотоаппаратов. Мелкое теплокровное животное на холодном фоне испускает во все стороны «тепловые лучи» — далекое инфракрасное излучение с длиной волны примерно 10 микрон. Проходя через дырочку, эти лучи локально нагревают мембрану и создают «тепловое изображение». Благодаря высочайшей чувствительности клеток-рецепторов (детектируется разница температур в тысячные доли градуса Цельсия!) и неплохому угловому разрешению, змея может заметить мышь в абсолютной темноте с довольно большого расстояния.

С точки зрения физики как раз хорошее угловое разрешение и представляет собой загадку. Природа оптимизировала этот орган так, чтобы лучше «видеть» даже слабые источники тепла, то есть попросту увеличила размер входного отверстия — апертуры. Но чем больше апертура, тем более размытое получается изображение (речь идет, подчеркнем, про самое обычное отверстие, безо всяких линз). В ситуации со змеями, где апертура и глубина камеры примерно равны, изображение оказывается настолько размытым, что из него ничего, кроме «где-то поблизости есть теплокровное животное», извлечь нельзя. Тем не менее опыты со змеями показывают, что они могут определять направление на точечный источник тепла с точностью около 5 градусов! Как же змеям удается достичь столь высокого пространственного разрешения при таком ужасном качестве «инфракрасной оптики»?

Раз реальное «тепловое изображение», говорят авторы, сильно размыто, а «пространственная картина», возникающая у животного в мозгу, довольно четкая, значит существует некий промежуточный нейроаппарат на пути от рецепторов к мозгу, который как бы настраивает резкость изображения. Этот аппарат не должен быть слишком сложным, иначе змея очень долго «обдумывала» бы каждое полученное изображение и реагировала бы на стимулы с запаздыванием. Более того, по мнению авторов этот аппарат вряд ли использует многоступенчатые итеративные отображения, а является, скорее, каким-то быстрым одношаговым преобразователем, работающим по навсегда зашитой в нервную систему программе.

В своей работе исследователи доказали, что такая процедура возможна и вполне реальна. Они провели математическое моделирование того, как возникает «тепловое изображение», и разработали оптимальный алгоритм многократного улучшения его четкости, окрестив его «виртуальной линзой».

Несмотря на громкое название, использованный ими подход, конечно, не является чем-то принципиально новым, а всего лишь разновидность деконволюции — восстановления изображения, испорченного неидеальностью детектора. Это процедура, обратная смазыванию картинки, и она широко применяется при компьютерной обработке изображений.

В проведенном анализе, правда, был важный нюанс: закон деконволюции не требовалось угадывать, его можно было вычислить исходя из геометрии чувствительной полости. Иными словами, было заранее известно, какое конкретно изображение даст точечный источник света в любом направлении. Благодаря этому совершенно размытое изображение можно было восстановить с очень хорошей точностью (обычные графические редакторы со стандартным законом деконволюции с этой задачей бы и близко не справились). Авторы предложили также конкретную нейрофизиологическую реализацию этого преобразования.

Сказала ли эта работа какое-то новое слово в теории обработки изображений — вопрос спорный. Однако она, несомненно, привела к неожиданным выводам касательно нейрофизиологии «инфракрасного зрения» у змей. Действительно, локальный механизм «обычного» зрения (каждый зрительный нейрон снимает информацию со своей маленькой области на сетчатке) кажется столь естественным, что трудно представить что-то сильно иное. А ведь если змеи действительно используют описанную процедуру деконволюции, то каждый нейрон, дающий свой вклад в цельную картину окружающего мира в мозгу, получает данные вовсе не из точки, а из целого кольца рецепторов, проходящего по всей мембране. Можно только удивляться, как природа умудрилась сконструировать такое «нелокальное зрение», компенсирующее дефекты инфракрасной оптики нетривиальными математическими преобразованиями сигнала.

Показать комментарии (30)

Свернуть комментарии (30)

    Почему-то мне кажется, что обратное преобразование размытой картинки, при условии, что есть лишь двумерный массив пикселей, математически невозможно. Насколько я понимаю, компьютерные алгоритмы повышения резкости просто создают субъективную иллюзию более резкого изображения, но они не могут раскрыть того, что замыто на изображении.

    Разве не так?

    Кроме того, непонятна логика, из которой следует, что сложный алгоритм заставлял бы змею задумываться. Насколько мне известно, мозг -- это параллельный компьютер. Сложный алгоритм в нём не обязательно приводит к увеличеню временнЫх затрат.

    Мне кажется, что процесс точнения должен быть иным. Как была установлена точность работы инфракрасных глаз? Наверняка, по какому-либо действию змеи. Но любое действие продолжительно и допускает коррекцию в своём процессе. На мой взгляд, змея может "инфравидеть" с той точностью, которая и ожидается и начинать движение, исходя из этой информации. Но потом, в процессе движения, постоянно её уточнять и приходить к финалу так, словно общая точность была выше.

    Ответить

    • Отвечаю по пунктам.

      1. Обратное преобразование -- это резкой получение картинки (какую создавал бы объект с линзой типа глаза), исходя из имеющейся размытой. При этом обе картинки -- двумерные, проблем с этим никаких нет. Если нет никаких необратимых искажений при размытии (типа совершенно непрозрачный заслон или насыщение сигнала в каком-то пикселе), то размытие можно представить себе как обратимый оператор, действующий в пространстве двумерных картинок.

      Там есть технические трудности с учетом шумов, так что оператор деконволюции выглядит чуть сложнее, чем описано выше, но тем не менее выводится однозначно.

      2. Компьютерные алгоритмы улучшают резкость, предполагая что размытие было по гауссиане. Они ведь не знают детально тех аберраций и т.п., котрые были у снимавшей камеры. Специальные программы, правда, способны на большее. Например если при анализе снимков звездного неба
      в кадр попадает звезда, то с ее помощью можно восстановить резкость лучше, чем стандатрными методами.

      3. Сложный алгоритм обработки -- это имелось в виду многоэтапный. В принципе, обрабатывать изображения можно итеративно, пуская по одной и той же простой цепочке изображение снова и снова. Асимптотически оно тогда может стретиться к какому-то "идеальному" изображению. Так вот, авторы показывают, что такая обработка, по меньшей мере, не является необходимой.

      4. Деталей экспериментов со змеями я не знаю, надо будет почитать.

      Ответить

      • 1. Я этого не знал. Мне казалось, что размытие (недостаточная резкозть) -- это необратимое преобразование. Допустим, на изображении объективно присутствует некое размытое облако. Как система узнает, что это облако не надо делать резким и что это его истинное состояние?

        3. На мой взгляд, итеративное преобразование можно реализовать сделав просто несколько последовательно подключённых слоёв нейронов и тогда преобразование будет проходить за один шаг, но быть итеративным. Сколько нужно итераций, столько и сделать слоёв.

        Ответить

        • Вот простой пример размытия. Дан набор значений (x1,x2,x3,x4).
          Глаз видит не этот набор, а набор (y1,y2,y3,y4), получающийся таким образом:
          y1 = x1 + x2
          y2 = x1 + x2 + x3
          y3 = x2 + x3 + x4
          y4 = x3 + x4

          Очевидно, если вы заранее знаете закон размытия, т.е. линейный оператор (матрицу) перехода от иксов к игрекам, то вы можете сосчитать обратную матрицу перехода (закон деконволюции) и по заданным игрекам восстановить иксы. Если, конечно, матрица обратима, т.е. нет необратимых искажений.

          Про несколько слоев -- конечно, отмести такой вариант нельзя, но это кажется так неэкономно и так легко нарушимо, что вряд ли стоит ожидать, что эволюция выберет этот путь.

          Ответить

          "Очевидно, если вы заранее знаете закон размытия, т.е. линейный оператор (матрицу) перехода от иксов к игрекам, то вы можете сосчитать обратную матрицу перехода (закон деконволюции) и по заданным игрекам восстановить иксы. Если, конечно, матрица обратима, т.е. нет необратимых искажений." Не путайте математику с измерениями. Маскировка младшего заряда погрешностями достаточно не линейна, чтоб испортить результат обратной операции.

          Ответить

    • "3. На мой взгляд, итеративное преобразование можно реализовать сделав просто несколько последовательно подключённых слоёв нейронов и тогда преобразование будет проходить за один шаг, но быть итеративным. Сколько нужно итераций, столько и сделать слоёв." Нет. Следующий слой начинает обработку ПОСЛЕ предыдущего. Конвейер не позволяет ускорить обработку конкретной порции информации, кроме случаев, когда применяется ради того, чтоб каждую операцию поручить специализированному исполнителю. Он позволяет начинать обработку СЛЕДУЮЩЕГО КАДРА до того, как обработан предыдущий.

      Ответить

"1. Обратное преобразование -- это резкой получение картинки (какую создавал бы объект с линзой типа глаза), исходя из имеющейся размытой. При этом обе картинки -- двумерные, проблем с этим никаких нет. Если нет никаких необратимых искажений при размытии (типа совершенно непрозрачный заслон или насыщение сигнала в каком-то пикселе), то размытие можно представить себе как обратимый оператор, действующий в пространстве двумерных картинок." Нет. Размытие - это уменьшение количества информации, создать её заново невозможно. Можно увеличить контраст, но если это не сводится к настройке гаммы, то только ценой шума. При размытии любой пиксел усредняется по соседним. СО ВСЕХ СТОРОН. После этого не известно, откуда именно в его яркость что то добавилось. То ли слева, то ли справа, то ли сверху, то ли снизу, то ли по диагонали. Да, направление градиента говорит о том, откуда шла основная добавка. Ни инфы в этом ровно столько же, как в самой размытой картинке. То есть разрешение низкое. А мелочи только ещё лучше маскируются шумом.

Ответить

Мне кажется, что авторы эксперимента просто "наплодили лишние сущности". Разве в реальной среде обитания змей бывает абсолютная темнота? - насколько мне известно, нет. А если абсолютной темноты нет, то даже самой размытой "инфракрасной картинки" более чем достаточно, вся ее "функция" - дать команду начать охоту "приблизительно в таком-то направлении", а дальше в дело вступает самое обычное зрение. Авторы эксперимента ссылаются на слишком большую точность выбора направления - 5 градусов. Но разве это действительно большая точность? По-моему, ни в каких условиях - ни в реальной среде, ни в лабораторных - с такой "точностью" охота не увенчается успехом (если змея будет ориентироваться только так). Если же говорить о невозможности даже такой "точности" из-за слишком примитивного устройства обработки инфракрасного излучения, то и тут, по-видимому, можно не согласиться с немцами: у змеи два таких "устройства", а это дает ей возможность "с ходу" определить "право", "лево" и "прямо" с дальнейшей постоянной коррекцией направления вплоть до момента "визуального контакта". Но даже если у змеи только одно такое "устройство", то и в этом случае она с легкостью будет определять направление - по разности температуры на разных участках "мембраны" (не даром ведь она улавливает изменения в тысячные доли градуса по Цельсию, для чего-то это нужно!) Очевидно, находящийся "прямо" объект будет "отображаться" картинкой более или менее равной интенсивности, находящийся "слева" - картинкой с большей интенсивностью правой "части", находящийся "справа" - картинкой с большей интенсивностью левой части. Только и всего. И не нужно никаких сложных немецких нововведений в выработавшуюся за миллионы лет змеиную природу:)

Ответить

"Мне кажется, что процесс точнения должен быть иным. Как была установлена точность работы инфракрасных глаз? Наверняка, по какому-либо действию змеи. Но любое действие продолжительно и допускает коррекцию в своём процессе. На мой взгляд, змея может "инфравидеть" с той точностью, которая и ожидается и начинать движение, исходя из этой информации. Но потом, в процессе движения, постоянно её уточнять и приходить к финалу так, словно общая точность была выше." Вот только помесь балометра со светорегистрирующей матрицей и так то очень инерционна, а от тепла мыши откровенно тормозит. А бросок змеи на столько стремителен, что и зрение на колбочках с палочками не успевает. Ну может и не по вине непосредственно колбочек, там и аккомодация хрусталика тормозит, и обработка. Но даже вся система работает быстрей и всё равно не успевает. Единственное возможное решение при таких датчиках - все решения принять заранее, используя тот факт, что до броска времени достаточно.

Ответить

"Кроме того, непонятна логика, из которой следует, что сложный алгоритм заставлял бы змею задумываться. Насколько мне известно, мозг -- это параллельный компьютер. Сложный алгоритм в нём не обязательно приводит к увеличеню временнЫх затрат." Для распараллелизации сложного алгоритма нужно много узлов, они имеют приличные размеры и тормозят уже из-за медленного прохождения сигналов. Да, это не повод отказываться от параллелизма, но если требования совсем уж жёсткие, то единственный способ уложиться по времени при параллельной обработке больших массивов - юзать на столько простые узлы, что обмениваться промежуточными результатами между собой они не могут. А это требует захардить весь алгоритм, так как принимать решения они уже не смогут. И последовательно тоже получится обработать много информации в единственном случае - если единственный процессор работает быстро. А это тоже требует хардить алгоритм. Уровень реализации хардовый так и так.

Ответить

>Немецкие исследователи выяснили, как такое может быть.



но воз, кажется, и ныне там.
Можно сходу предложить пару алгоритмов, которые, возможно, будут решать вопрос. Но будут ли они иметь отношение к реальности?

Ответить

  • > Хотелось бы хотя бы косвенных подтверждений, что оно именно так, а не иначе.

    Конечно, авторы осторожны в высказываниях и не говорят, что они доказали, что именно так и функционирует инфразрение у змей. Они лишь доказали, что для разрешения "парадокса инфразрения" не требуется слишком больших вычислительных ресурсов. Они лишь надеются, что похожим образом работает орган змей. Так это или нет на самом деле, должны доказать физиологи.

    Ответить

    > Есть т.н. байндинг проблема, которая заключается в том каким образом человек и животное понимают, что ощущения в различных модальностях (зрение, слух, тепло и пр.) относятся к одному и тому же источнику.

    На мой взгляд, в мозгу существует целостная модель реального мира, а не отдельные осколки-модальности. Например, в мозгу совы существует объект "мышь", в котором есть как бы соответствующие поля, в которых хранится информация о том, как мышь выглядит, как она слышна, как пахнет и так далее. Во время восприятия происходит конвертация стимулов в термины этой модели, то есть, создаётся объект "мышь", его поля заполняются писком и обликом.

    То есть, вопрос ставится не так, как сова понимает, что и писк и запах относятся к одному источнику, а как сова ПРАВИЛЬНО понимает отдельные сигналы?

    Методом узнавания. Даже сигналы одной и той же модальности не так-то легко отнести к одному объекту. Например, мышиный хвост и мышиные уши вполне могли бы быть отдельными предметами. Но сова видит их не отдельно, а как части целой мыши. Всё дело в том, что у неё в голове есть прообраз мыши, с которым она сопоставляет части. Если части "ложатся" на прообраз, то они составляют целое, если не ложатся, то не составляют.

    Это легко понять на собственном примере. Рассмотрим слово "УЗНАВАНИЕ". Посмотрим на него внимательно. Фактически, это просто совокупность букв. Даже просто совокупность пикселей. Но мы не можем этого увидеть. Слово нам знакомо и потому сочетание букв неизбежно вызывает у нас в мозгу цельный образ, от которого прямо-таки невозможно отделаться.

    Так же и сова. Она видит хвостик, видит ушки, примерно в некотором направлении. Видит характерные движения. Слышит шуршание и писк примерно из этого же направления. Чувствует особый запах с той стороны. И это знакомое сочетание стимулов, точно так же как для нас знакомое сочетание букв, вызывает у неё в мозгу образ мыши. Образ цельный, расположенный в цельном образе окружающего пространства. Образ существует независимо и, по мере совиных наблюдений, может очень сильно уточняться.

    Думаю, тоже самое происходит и со змеёй. И как в такой ситуации можно вычислить точность одного только зрительного или инфразрительного анализатора, мне непонятно.

    Ответить

    • Как мне кажется, узнавание образа -- это уже иной процесс. Речь идет не про реакцию змеи на образ мышки, а о превращении пятен в инфраглазу в образ мышки. Теоретически, можно представить ситуацию, что змея вообще не инфравидит мышку, а сразу кидается в определенном направлении, если ее инфраглаз увидит кольцевые круги определенной формы. Но это кажется маловероятным. Ведь ОБЫЧНЫМИ-то глазами земя видит именно профиль мышки!

      Ответить

      • Мне кажется, что может происходить следующее. Возникает плохое изображение на инфрасетчатке. Оно преобразуется в расплывчатый образ мышки, достаточный для того, чтобы змея мышку опознала. Но в этом образе нет ничего "чудесного", он адекватен способностям инфраглаза. Змея начинает приблизительный бросок. В процессе броска её голова движется, инфраглаз смещается относительно цели и в общем приближается к ней. Образ в голове постоянно дополняется и его пространственное положение уточняется. А движение постоянно корректируется. В итоге финал броска выглядит так, словно бросок был основан на невероятно точной информации о положении цели.

        Это мне напоминает наблюдение за собой, когда я иногда могу поймать упавший стакан прям как нидзя:) А секрет в том, что так поймать я могу только тот стакан, который я сам и уронил. То есть, я точно знаю, что стакан надо будет ловить и начинаю движение заранее, корректируя его в самом процессе.

        Я читал также, что аналогичные выводы были сделаны из наблюдений за человеком в невесомости. Когда человек нажимает кнопку в невесомости, он должен промахнуться вверх, так как привычные для весящей руки усилия некорректны для невесомости. Но человек не промахивается (если он внимателен), именно из-за того, что в наши движения постоянное втроена возможность коррекции "на лету".

        Ответить

"Есть т.н. байндинг проблема, которая заключается в том каким образом человек и животное понимают, что ощущения в различных модальностях (зрение, слух, тепло и пр.) относятся к одному и тому же источнику.
Есть множество гипотез http://www.dartmouth.edu/~adinar/publications/binding.pdf
но воз, кажется, и ныне там.
Можно сходу предложить пару алгоритмов, которые, возможно, будут решать вопрос. Но будут ли они иметь отношение к реальности?" А вот это похоже. Не реагировать на холодные листья, как бы они ни двигались и ни выглядели, но при наличии тёплой мыши где то там атаковать то, что и в оптике похоже на мышь и при этом попадает в область. Или же нужна какая то очень уж дикая обработка. Не в смысле длинного последовательного алгоритма, а в смысле умения нарисовать узоры на ногтях дворницкой метлой. Некоторые азиаты даже это умеют хардить так, что успевают миллиарды транзисторов делать. И тот ещё датчик.

Ответить

>в мозгу существует целостная модель реального мира, а не отдельные осколки-модальности.
Вот и еще одна гипотеза.
Ну как же без модели? Без модели никак.Конечно, возможно и простое узнавание в знакомой ситуации. Но, например, впервые попав в цех, где работают тысячи станков человек способен выделить звук одного конкретного станка.
Неприятность может заключаться в том, что разные люди используют разные алгоритмы. И даже один человек может пользоваться разными алгоритмами в разных ситуациях. Со змеями, кстати, такое тоже не исключено. Правда, эта крамольная мысль может стать надгробным камнем статистическим медодам исследования. Чего психология не перенесет.

По моему, такие умозрительные статьи имеют право на существование, но нужно хотябы довести до схемы эксперимента по проверке гипотезы. Например, исходя из модели расчитать возможные траектории движения змеи. А физиологи пусть сравнивают их с реальными. Если поймут о чем речь.
Иначе, как с байндинг проблемой. Когда я читаю очередную ничем не подкрепленную гипотезу, это вызывает только улыбку.

Ответить

  • > Вот и еще одна гипотеза.
    Странно, не думал, что эта гипотеза нова.

    В слюбом случае, она имеет подтверждения. Например, люди с ампутированными конечностями, часто утверждают, что продолжают их чувствовать. Ещё например, хорошие автомобилисты утверждают, что "чувствуют" края своей машины, расположение колёс и т.д.

    Это наводит на мысль, что никакой разницы между двумя случаями нет. В первом случае есть врождённая модель своего тела, а ощущения лишь наполняют её содержанием. Когда конечность удаляют, модель конечности ещё некоторое время существует и вызывает ощущения. Во втором случае есть приобретённая модель автомобиля. От автомобиля непосредственно сигналов в организм не поступает, а поступают косвенные сигналы. Но итог тот же: модель существует, наполняется содержанием и ощущается.

    Вот, кстати, хороший пример. Попросим автомобилиста наехать на камешек. Он наедет очень точно и даже скажет, наехал, или нет. Это значит, что он по вибрациям чувствует колесо. Следует ли из этого, что существует какой-то алгоритм "виртуальной вибролинзы", которая по вибрациям восстанавливает изображение колеса?

    Ответить

Довольно любопытно, что если источник света 1, и довольно сильный, то направление на него несложно определить даже с закрытыми глазами - надо поворачивать голову, пока свет не начнёт светить одинаково в оба глаза, и тогда свет спереди. Тут не надо придумывать некакие супер-пупер нейронные сети во восстановлению изображения - всё просто до ужаса, и вы можете это проверить сами.

Ответить

Написать комментарий

У них нет ушей, но они реагируют на каждый шорох. У них нет носа, но они умеют нюхать языком. Они могут жить месяцами без еды и при этом отлично себя чувствовать.
Их ненавидят и обожествляют, им поклоняются и их же уничтожают, им молятся и при всем этом бесконечно боятся. Индейцы называли их святыми братьями, славяне - богомерзкими тварями, японцы - небожителями неземной красоты…
Змеи вовсе не являются самыми ядовитыми существами на Земле, как думает большинство. Напротив, звание самого страшного убийцы принадлежит маленьким южноамериканским лягушкам-листолазам. Мало того, по статистике каждый год от укусов пчел погибает людей больше, чем от змеиного жала.
Змеи, вопреки ужасным мифам об агрессивных гадах, первыми нападающих на людей и преследующих их в слепом желании ужалить, на самом деле - жутко пугливые существа. Даже у змей-гигантов нападение на человека - явление случайное и крайне редкое.


Завидев человека, те же гадюки в первую очередь попытаются затаиться, спрятаться, а о своей агрессии, которая проявляется, обязательно предупредят шипением и ложными бросками. Кстати, внушающие ужас взмахи языка змеи - вовсе не угрожающий жест. Таким образом змея… нюхает воздух! Удивительнейший способ узнавать информацию об окружающих предметах. За пару взмахов язык доносит собранную информацию на чувствительное змеиное небо, где и происходит ее распознавание. А еще змея - и это совпадает с китайскими мифами - очень рачительна: она никогда не станет тратить свой яд попусту. Он ей и самой нужен - для настоящей охоты и для обороны. Потому чаще всего первый укус - не ядовитый. Даже королевская кобра часто делает холостой укус.
Это индийцы считают ее богиней, наделенной великим умом и мудростью.
Кстати, именно трусоватость заставляет ужей и даже плюющихся кобр симулировать смерть! Перед лицом угрозы эти хитрецы выворачиваются и падают на спину, широко открыв рот и издавая неприятные запахи. Все эти тонкие манипуляции делают змею непривлекательной в качестве перекуса - и хищники, побрезговав «падалью», уходят прочь. Удав Калабар действует еще мудрее: его тупой хвост очень похож на голову. Потому, почувствовав опасность, удав сворачивается клубком, выставляя перед хищником вместо уязвимой головы свой хвост.
На самом деле любящие притворяться мертвыми змеи - чрезвычайно живучие существа. Известен случай, когда в Британском музее ожил экспонат пустынной змеи! Не подающий признаков жизни экземпляр приклеили к подставке, а через пару лет заподозрили что-то неладное. Отклеили, поместили в теплую воду: змея начала двигаться, а затем и с удовольствием питаться и прожила еще два счастливых года.
Как ни привлекательны легенды о завораживающем змеином взгляде, на самом деле эти пресмыкающиеся не умеют гипнотизировать. Взгляд змеи немигающий и пристальный потому, что век у нее нет. Вместо них есть прозрачная пленка - нечто вроде стекла на часах - защищающая глаза змей от ушибов, уколов, сора, воды. И никакой уважающий себя кролик не поддастся «чарующему» взору и не побредет покорно в пасть к удаву: особенности зрительной системы змеи таковы, что позволяют ей видеть лишь контур движущихся объектов. Повезло только гремучей змее: у нее на голове целых три органа чувств, помогающих находить добычу.
У остальных представителей ползучего семейства крайне слабое зрение: замерев, потенциальные жертвы тут же теряются из вида охотницы. Этим, кстати, большинство животных - и те самые пресловутые кролики - превосходно пользуется, зная тактику змеиной охоты. Со стороны - дуэль взглядов, а на самом деле змеям приходится изрядно потрудиться, прежде чем удастся кого-либо изловить на обед. А можно ли загипнотизировать самих змей? Ведь каждому знакома картина танцующей перед заклинателем кобры.
Не хочется разочаровываться, но это тоже миф. Змеи глухи и заунывную музыку дудочки не слышат. Зато очень чутко улавливают малейшие колебания поверхности земли рядом с собой. Хитрец-заклинатель сперва слегка постукивает по корзине со змеей или притопывает, и животное тут же реагирует. Потом, наигрывая мотив, он непрерывно двигается, раскачивается, а змея, неотрывно наблюдая за ним, повторяет его движения, чтобы человек был все время перед глазами. Эффектное зрелище, но гипнотизер из заклинателя, увы, никудышный.
К слову, королевские кобры прекрасно «разбираются» в музыке. Тихие напевные звуки успокаивают их, и змеи, приподымаясь, медленно раскачиваются в такт. Отрывистые резкие звуки джаза, особенно громкого, нервируют кобру, и она беспокойно раздувает свой «капюшон». Тяжелый и уже тем более «металлический» рок приводит «меломанку» в негодование: она становится на хвост и делает быстрые угрожающие движения в направлении источника музыки. Недавние исследования российских герпетологов показали, что под классические произведения Моцарта, Генделя и Равеля кобры танцуют с явным удовольствием, зажмурив глаза; а вот попса вызывает вялость, апатию и тошноту.
Кстати, о змеиных движениях: интересно наблюдать, как передвигается тело змеи - ног нет, ничто не толкает, не тянет, а оно скользит и течет, словно без костей. На самом деле факт состоит в том, что змеи просто заполнены костями - у некоторых видов к гибкому позвоночнику может быть прикреплено до 145 пар ребер! Своеобразие змеиной «походке» придает сочлененный позвоночник, к которому прикреплены ребра. Позвонки присоединяются друг к другу своего рода шарнирами, причем к каждому позвонку прикреплена своя пара ребер, что дает неповторимую свободу движений.
Некоторые азиатские змеи умеют летать! Они могут лихо взбираться на верхушки деревьев и оттуда парить вниз, расправляя ребра в стороны и превращаясь в подобие плоской ленты. Если райская древесная змея хочет перебраться с одного дерева на другое, она буквально перелетает на него, не спускаясь вниз. В полете они принимают S-образную форму для того, чтобы дольше удержаться в воздухе и попасть точно туда, куда им нужно. Как бы странно это ни звучало, древесная змея является даже более хорошим планером, чем белки-летяги! Некоторые летуны могут покрывать таким образом расстояния до 100 метров.
Между прочим, именно змеям должны быть благодарны все любители горячей румбы. В танце есть любопытное па: кавалеры выбрасывают далеко в сторону ногу и словно раздавливают кого-то. Родом это танцевальное движение из не таких уж давних времен, когда гремучая змея в мексиканском дансинге была вполне привычным явлением. Невозмутимые мачо, дабы произвести впечатление на дам, давили непрошеных гостий каблуком сапога. Потом это движение стало изюминкой румбы.
Не счесть поверий о волшебной силе змеиного сердца, дарующего силу и бессмертие. На самом деле, охотникам за таким сокровищем пришлось бы немало попотеть в поисках этого самого сердца: ведь оно может скользить вдоль тела змеи! Это чудо даровано природой для того, чтобы облегчить змее проход пищи по желудочно-кишечному тракту.
Несмотря на благоговейный страх перед змеями, человечество, как известно, с глубокой древности использует их «дары» для исцеления. Но есть и более любопытные случаи того, как люди - и не только - применяют себе во благо особенности этих удивительных существ. К примеру, совы порой подселяют маленьких змеек в свои гнезда. Те расправляются с мелкими насекомыми, конкурирующими с совятами за принесенную мамашей добычу. Благодаря поразительному соседству птенцы быстрее растут и меньше болеют.
В Мексике наряду с котятами и щенками любимцами детворы считаются местные «домашние» змеи. Они травоядны и при этом покрыты густой мохнатой шерстью. Бразильцы же предпочитают королевских удавов: в домах предместий Рио-де-Жанейро и в коттеджах горного курорта Петрополиса эти огромные пресмыкающиеся пользуются огромной любовью и уважением. Дело в том, что в стране великое множество ядовитых змей. Но в сад, где водится удав, не приползет ни одна ядовитая особь, даже если ими кишит все вокруг. Мало того, удавы нежно привязываются к детям. Едва ребенок выйдет из дома, «нянька» начинает следить за каждым его шагом. Удав неизменно сопровождает детей на прогулке и во время игр, оберегая малышей от нападения змей. Необычные гувернантки своей преданностью сохранили тысячи жизней, особенно в сельской местности, куда доставить спасительную сыворотку крайне проблематично. Малыши отвечают своим охранникам горячей взаимностью: удавы - большие аккуратисты, обладают всегда сухой, приятной на ощупь и очень чистой кожей, а уж о неприхотливости в быту стоит сказать особо: удав ест один раз в два, а то и в четыре месяца, довольствуясь годовым рационом в количестве, не большем пяти кроликов.
А на греческом острове Кефалония змей не приручают, не используют в качестве истребителя грызунов или секьюдицы. Именно в этот день к чудотворной иконе, перед которой когда-то просили о заступничестве монахини, в храм сползаются со всей округи маленькие ядовитые змейки с черными крестиками на головах. Что потрясает: они тянутся к чудотворной иконе, как завороженные, не боясь людей и не пытаясь их укусить. Люди так же спокойно реагируют на необычных «прихожан», которые ползают по иконам и без боязни перебираются на руки, когда их протягивают к ним. Играют со змейками даже малыши. Но вскоре после окончания праздничной службы змеи сползают с излюбленной ими иконы Богородицы и покидают церковь. Стоит им переползти дорогу и оказаться в горах - они вновь становятся прежними: к ним лучше не приближаться - тут же зашипят и могут укусить! Да уж, об этих удивительных созданиях природы можно говорить бесконечно: настолько особняком стоят они в мире животных. И все же напрасно мы в своем большинстве так не любим змей. Ведь китайцы говорят, что у змей человек использует все, кроме шипения, а те взамен не получают ничего, кроме неприязни. Ну, разве это справедливо?

Термолокаторы иной конструкции изучены недавно у змей. Об этом открытии стоит рассказать подробнее.

На востоке СССР, от прикаспийского Заволжья и среднеазиатских степей до Забайкалья и уссурийской тайги, водятся некрупные ядовитые змеи, прозванные щитомордниками: голова у них сверху покрыта не мелкой чешуей, а крупными щитками.

Люди, которые рассматривали щитомордников вблизи, утверждают, что у этих змей будто бы четыре ноздри. Во всяком случае, по бокам головы (между настоящей ноздрей и глазом) у щитомордников хорошо заметны две большие (больше ноздри) и глубокие ямки.

Щитомордники - близкие родичи гремучих змей Америки, которых местные жители иногда называют квартонарицами, то есть четырехноздрыми. Значит, и у гремучих змей тоже есть на морде странные ямки.

Всех змей с четырьмя «ноздрями» зоологи объединяют в одно семейство так называемых кроталид, или ямкоголовых. Ямкоголовые змеи водятся в Америке (Северной и Южной) и в Азии. По своему строению они похожи на гадюк, но отличаются от них упомянутыми ямками на голове.

Более двухсот лет ученые решают заданную природой головоломку, пытаясь установить, какую роль в жизни змей играют эти ямки. Какие только не делались предположения!

Думали, что это органы обоняния, осязания, усилители слуха, железы, выделяющие смазку для роговицы глаз, улавливатели тонких колебаний воздуха (вроде боковой линии рыб) и, наконец, даже воздухонагнетатели, доставляющие в ротовую полость необходимый будто бы для образования яда кислород.

Проведенные анатомами тридцать лет назад тщательные исследования показали, что лицевые ямки гремучих змей не связаны ни с ушами, ни с глазами, ни с

какими-либо другими известными органами. Они представляют собой углубления в верхней челюсти. Каждая ямка на некоторой глубине от входного отверстия разделена поперечной перегородкой (мембраной) на две камеры - внутреннюю и наружную.

Наружная камера лежит впереди и широким воронкообразным отверстием открывается наружу, между глазом и ноздрей (в области слуховых чешуй). Задняя (внутренняя) камера совершенно замкнута. Лишь позднее удалось заметить, что она сообщается с внешней средой узким и длинным каналом, который открывается на поверхности головы около переднего угла глаза почти микроскопической порой. Однако размеры поры, когда это необходимо, могут, по-видимому, значительно увеличиваться: отверстие снабжено кольцевой замыкающей мускулатурой.

Перегородка (мембрана), разделяющая обе камеры, очень тонка (толщина около 0,025 миллиметра). Густые переплетения нервных окончаний пронизывают ее во всех направлениях.

Бесспорно, лицевые ямки представляют собой органы каких-то чувств. Но каких?

В 1937 году два американских ученых - Д. Нобл и А. Шмидт опубликовали большую работу, в которой сообщали о результатах своих многолетних опытов. Им удалось доказать, утверждали авторы, что лицевые ямки представляют собой, термолокаторы! Они улавливают тепловые лучи и определяют по их направлению местонахождение нагретого тела, испускающего эти лучи.

Д. Нобл и А. Шмидт экспериментировали с гремучими змеями, искусственно лишенными всех известных науке органов чувств. К змеям подносили обернутые черной бумагой электрические лампочки. Пока лампы были холодные, змеи не обращали на них никакого внимания. Но вот лампочка нагрелась - змея это сразу почувствовала. Подняла голову, насторожилась. Лампочку еще приблизили. Змея сделала молниеносный бросок и укусила теплую «жертву». Не видела ее, но укусила точно, без промаха.

Экспериментаторы установили, что змеи обнаруживают нагретые предметы, температура которых хотя бы только на 0,2 градуса Цельсия выше окружающего воздуха (если их приблизить к самой морде). Более теплые предметы распознают на расстоянии до 35 сантиметров.

В холодной комнате термолокаторы работают точнее. Они приспособлены, очевидно, для ночной охоты. С их помощью змея разыскивает мелких теплокровных зверьков и птиц. Не запах, а тепло тела выдает жертву! У змей ведь слабое зрение и обоняние и совсем неважный слух. На помощь им пришло новое, совсем особенное чувство - термолокация.

В опытах Д. Нобла и А. Шмидта показателем того, что змея обнаружила теплую лампочку, служил ее бросок. Но ведь змея, конечно, еще до того, как бросалась в атаку, уже чувствовала приближение теплого предмета. Значит, нужно найти какие-то другие, более точные признаки, по которым можно было бы судить о тонкости термолокационного чувства змеи.

Американские физиологи Т. Буллок и Р. Каулс провели в 1952 году более тщательные исследования. В качестве сигнала, оповещающего о том, что предмет обнаружен термолокатором змеи, они выбрали не реакцию змеиной головы, а изменение биотоков в нерве, обслуживающем лицевую ямку.

Известно, что все процессы возбуждения в организме животных (и человека) сопровождаются возникающими в мышцах и нервах электрическими токами. Их напряжение невелико - обычно сотые доли вольта. Это так называемые «биотоки возбуждения». Биотоки нетрудно обнаружить с помощью электроизмерительных приборов.

Т. Буллок и Р. Каулс наркотизировали змей введением определенной дозы яда кураре. Очистили от мышц и других тканей один из нервов, разветвляющихся в мембране лицевой ямки, вывели его наружу и зажали между контактами прибора, измеряющего биотоки. Затем лицевые ямки подвергались различным воздействиям: их освещали светом (без инфракрасных лучей), подносили вплотную сильно пахнущие вещества, раздражали сильным звуком, вибрацией, щипками. Нерв не реагировал: биотоки не возникали.

Но стоило к змеиной голове приблизить нагретый предмет, даже просто человеческую руку (на расстояние 30 сантиметров), как в нерве возникало возбуждение - прибор фиксировал биотоки.

Осветили ямки инфракрасными лучами - нерв возбудился еще сильней. Самая слабая реакция нерва обнаруживалась при облучении его инфракрасными лучами с длиной волны около 0,001 миллиметра. Увеличивалась длина волны - сильнее возбуждался нерв. Наибольшую реакцию вызывали самые длинноволновые инфракрасные лучи (0,01 - 0,015 миллиметра), то есть те лучи, которые несут максимум тепловой энергии, излучаемой телом теплокровных животных.

Оказалось также, что термолокаторы гремучих змей обнаруживают не только более теплые, но даже и более холодные, чем окружающий воздух предметы. Важно лишь, чтобы температура этого предмета была хотя бы на несколько десятых долей градуса выше или ниже окружающего воздуха.

Воронкообразные отверстия лицевых ямок направлены косо вперед. Поэтому зона действия термолокатора лежит перед головой змеи. Вверх от горизонтали она занимает сектор в 45, а вниз - в 35 градусов. Вправо и влево от продольной оси тела змеи поле действия термолокатора ограничено углом в 10 градусов.

Физический принцип, на котором основано устройство термолокаторов змей, совсем другой, чем у кальмаров.

Скорее всего в термоскопических глазах кальмаров восприятие излучающего тепло объекта достигается путем фотохимических реакций. Здесь происходят, вероятно, процессы такого же типа, как и на сетчатке обычного глаза или на фотопластинке в момент экспозиции. Поглощенная органом энергия приводит к перекомбинации светочувствительных (у кальмаров - теплочувствительных) молекул, которые воздействуют на нерв, вызывая в мозгу представление наблюдаемого объекта.

Термолокаторы змей действуют иначе - по принципу своеобразного термоэлемента. Тончайшая мембрана, разделяющая две камеры лицевой ямки, подвергается с разных сторон воздействию двух разных температур. Внутренняя камера сообщается с внешней средой узким каналом, входное отверстие которого открывается в противоположную сторону от рабочего поля локатора.

Поэтому во внутренней камере сохраняется температура окружающего воздуха, (Индикатор нейтрального уровня!) Наружная же камера широким отверстием - тепло-улавливателем направляется в сторону исследуемого объекта. Тепловые лучи, которые тот испускает, нагревают переднюю стенку мембраны. По разности температур на внутренней и наружной поверхностях мембраны, одновременно воспринимаемых нервами в мозгу, и возникает ощущение излучающего тепловую энергию предмета.

Помимо ямкоголовых змей, органы термолокации обнаружены у питонов и удавов (в виде небольших ямок на губах). Маленькие ямки, расположенные над ноздрями у африканской, персидской и некоторых других видов гадюк, служат, очевидно, для той же цели.



← Вернуться

×
Вступай в сообщество «servizhome.ru»!
ВКонтакте:
Я уже подписан на сообщество «servizhome.ru»