Как вы думаете, почему с высотой температура воздуха понижается? Вертикальное строение атмосферы Изменение температуры с увеличением высоты

Подписаться
Вступай в сообщество «servizhome.ru»!
ВКонтакте:

Температура воздуха, безусловно, важный элемент комфортабельности человека. Мне, например, угодить в этом плане очень сложно, зимой я жалуюсь на холод, летом изнываю от жары. Однако этот показатель не статичен, ведь чем выше точка от поверхности Земли, тем там холоднее, но с чем связано подобное положение вещей? Начну с того, что температура - это одно из состояний нашей атмосферы , которая состоит из смеси самых разнообразных газов. Чтобы понять принцип "высотного похолодания", совсем не обязательно углубляться в изучение термодинамических процессов.

Почему изменяется температура воздуха с набором высоты

Еще со времен школьных уроков мне известно, что на вершинах гор и скалистых образований наблюдается снег даже в том случае, если у их подножья достаточно тепло . Это и является главным доказательством того, что на больших высотах может быть очень холодно. Однако не все так категорично и однозначно, дело в том, что при восхождении вверх воздух то остывает, то снова нагревается. Равномерное снижение наблюдается лишь до определенного момента, затем атмосфера в буквальном смысле лихорадит , проходя через следующие этапы:

  1. Тропосфера.
  2. Тропопауза.
  3. Стратосфера.
  4. Мезосфера и т.д.


Температурные колебания в разных слоях

Тропосфера отвечает за большинство погодных явлений , ведь она - самый низкий слой атмосферы, где летают самолеты и образуются облака. Находясь в ней, воздух стабильно замерзает, приблизительно каждые сто метров. Но, достигая тропопаузы, температурные колебания прекращаются и останавливаются в районе -60-70 градусов по Цельсию .


Самое удивительное, что в стратосфере она снижается практически до нуля, поскольку поддается нагреву от ультрафиолетового излучения . В мезосфере тенденция снова идет на снижение, а переход в термосферу сулит рекордный минимум - -225 по Цельсию . Далее происходит снова нагревание воздуха, однако из-за значительной потери в плотности, на этих уровнях атмосферы температура ощущается совсем иначе. По крайней мере, полетам орбитальных искусственных спутников ничто не угрожает.

Вопрос 1. От чего зависит распределение тепла по поверхности Земли?

Распределение температуры воздуха над поверхностью Земли зависит от следующих четырех основных факторов: 1) широты, 2) высоты поверхности суши, 3) типа поверхности, в особенности от расположения суши и моря, 4) переноса тепла ветрами и течениями.

Вопрос 2. В каких единицах измеряется температура?

В метеорологии и в быту в качестве единицы измерения температуры используется шкала Цельсия или градусы Цельсия.

Вопрос 3. Как называется прибор для измерения температуры?

Термометр - прибор для измерения температуры воздуха.

Вопрос 4. Как изменяется температура воздуха в течение суток, в течение года?

Изменение температуры зависит от вращения Земли вокруг оси и соответственно от изменения количества солнечного тепла. Поэтому температура воздуха повышается или понижается в зависимости от расположения Солнца на небе. Изменение температуры воздуха в течение года зависит от положения Земли на орбите при вращении вокруг Солнца. Летом земная поверхность хорошо нагревается из-за прямого падения солнечных лучей.

Вопрос 5. При каких условиях в конкретной точке на поверхности Земли температура воздуха будет оставаться всегда постоянной?

Если Земля не будет вращаться вокруг солнца и своей оси и не будет переноса воздуха ветрами.

Вопрос 6. По какой закономерности меняется температура воздуха с высотой?

При подъёме над поверхностью Земли температура воздуха в тропосфере понижается на 6 С на каждом километре подъёма.

Вопрос 7. Какая существует связь между температурой воздуха и географической широтой места?

Количество света и тепла, получаемое земной поверхностью, постепенно убывает в направлении от экватора к полюсам из-за изменения угла падения солнечных лучей.

Вопрос 8. Как и почему меняется температура воздуха в течение суток?

Солнце встаёт на востоке, поднимается всё выше и выше, а затем начинает опускаться, пока не зайдёт за горизонт до следующего утра. Суточное вращение Земли приводит к тому, что угол падения солнечных лучей на поверхность Земли меняется. А значит, меняется и уровень нагрева этой поверхности. В свою очередь, и воздух, который нагревается от поверхности Земли, получает в течение дня разное количество тепла. А ночью количество тепла, получаемое атмосферой, ещё меньше. Вот в чём причина суточной изменчивости. В течение суток температура воздуха повышается с рассвета до двух часов дня, а потом начинает понижаться и достигает минимума за час до рассвета.

Вопрос 9. Что такое амплитуда температур?

Разность самой высокой и самой низкой температуры воздуха за какой-либо промежуток времени называется амплитудой температур.

Вопрос 11. Почему самая высокая температура наблюдается в 14 ч, а самая низкая - в «предрассветный час»?

Потому что в 14 часов Солнце максимально нагревает землю, а в предрассветный час Солнце еще не взошло, а за ночь температура все время опускалась.

Вопрос 12. Всегда ли можно ограничиться знаниями только о средних значениях температуры?

Нет, так как в определенных ситуациях необходимо знать точную температуру.

Вопрос 13. Для каких широт и почему характерны самые низкие средние значения температуры воздуха?

Для полярных широт, поскольку солнечные лучи доходят до поверхности под наименьшим углом.

Вопрос 14. Для каких широт и почему характерны самые высокие средние значения температуры воздуха?

Самые высокие средние значения температуры воздуха характерны для тропиков и экватора, так как там самый большой угол падения солнечных лучей.

Вопрос 15. Почему температура воздуха с высотой уменьшается?

Потому, что воздух прогревается от поверхности Земли, когда она имеет плюсовую температуру и получается чем выше воздушный слой, тем меньше он прогревается.

Вопрос 16. Как вы думаете, какой месяц года отличается минимальными средними температурами воздуха в Северном полушарии? В Южном полушарии?

Январь в среднем, самый холодный месяц года на большей части Северного полушария Земли, и самый теплый месяц года на большей части Южного полушария. Июнь в среднем, самый холодный месяц года на большей части Южного полушария.

Вопрос 17. На какой из перечисленных параллелей высота полуденного солнца будет наибольшей: 20° с. ш., 50° ю. ш., 80 с. ш.?

Вопрос 18. Определите температуру воздуха на высоте 3 км, если у поверхности Земли она составляет +24 °С?

tн=24-6,5*3=4,5 ºС

Вопрос 19. Рассчитайте среднее значение температуры по данным, представленным в таблице.

(5+0+3+4+7+10+5) : 6 = 4,86; (-3 + -1) : 2 = -2; 4,86 - 2 = 2,86

Ответ: средняя температура = 2,86 градусов.

Вопрос 20. Используя приведённые в задании 2 табличные данные, определите амплитуду температур за указанный период.

Амплитуда температур за указанный период составит 13 градусов.

Изменение температуры воздуха с высотой

Распределение температуры в атмосфере по вертикали поло­жено в основу разделения атмосферы на пять основных слоев (см. раздел 1.3). Для сельскохозяйственной метеорологии наибольший интерес представляют закономерности изменения температуры в тропосфере, особенно в ее приземном слое.

Вертикальный градиент температуры

Изменение температуры воздуха на 100 м высоты называется вертикальным градиентом температуры (ВГТ

ВГТ зависит от ряда факторов: времени года (зимой он мень­ше, летом больше), времени суток (ночью меньше, днем больше), расположения воздушных масс (если на каких-либо высотах над холодным слоем воздуха располагается слой более теплого воз­духа, то ВГТ меняет знак на обратный). Среднее значение ВГТ в тропосфере составляет около 0,б°С/100 м.

В приземном слое атмосферы ВГТ зависит от времени суток, погоды и от характера подстилающей поверхности. Днем ВГТ почти всегда положителен, особенно летом над сушей, но при ясной погоде он в десятки раз больше, чем при пасмурной. В яс­ный полдень летом температура воздуха у поверхности почвы может на 10 °С и более превышать температуру на высоте 2 м. Вследствие этого ВГТ в данном двухметровом слое в пересчете на 100 м составляет более 500°С/100 м. Ветер уменьшает ВГТ, по­скольку при перемешивании воздуха его температура на разных высотах выравнивается. Уменьшают ВГТ облачность и осадки. При влажной почве резко снижается ВГТ в приземном слое атмо­сферы. Над оголенной почвой (паровое поле) ВГТ больше, чем над развитым посевом или лугом. Зимой над снежным покровом ВГТ в приземном слое атмосферы невелик и нередко отрицателен.

С высотой влияние подстилающей поверхности и погоды на ВГТ ослабевает и ВГТ уменьшается по сравнению с его значения-

ми в приземном слое воздуха. Выше 500 м затухает влияние су­точного хода температуры воздуха. На высотах от 1,5 до 5-6км ВГТ находится в пределах 0,5-0,6° С/100 м. На высоте 6-9км ВГТ возрастает и составляет 0,65-0,75° С/100 м. В верхнем слое тропосферы ВГТ снова уменьшается до 0,5-0,2° С/100 м.

Данные о ВГТ в различных слоях атмосферы используют при составлении прогнозов погоды, при метеорологическом обслужи­вании реактивных самолетов и при выводе спутников на орбиту, а также при определении условий выброса и распространения промышленных отходов в атмосфере. Отрицательный ВГТ в при­земном слое воздуха ночью весной и осенью указывает на возмож­ность заморозка.

4.3.2. Распределение температуры воздуха по вертикали

Распределение температуры в атмосфере с высотой называют стратификацией атмосферы. От стратификации атмосферы зави­сит ее устойчивость, т. е. возможность перемещения отдельных объемов воздуха в вертикальном направлении. Такие перемеще­ния больших объемов воздуха происходят почти без обмена теп­лом с окружающей средой, т. е. адиабатически. При этом изме­няется давление и температура перемещающегося объема возду­ха. Если объем воздуха движется вверх, то он переходит в слои с меньшим давлением и расширяется, в результате чего его тем­пература понижается. При опускании воздуха происходит обрат­ный процесс.

Изменение температуры воздуха, ненасыщенного паром (см. раздел 5.1), составляет 0,98° С при адиабатическом перемещении по вертикали на 100 м (практически 1,0°С/100 м). Когда ВГТ< 1,0° С/100 м, то поднимающийся под влиянием внешнего им­пульса объем воздуха при охлаждении на 1°С на высоте 100 м будет холоднее окружающего воздуха и как более плотный нач­нет опускаться в исходное положение. Такое состояние атмосферы характеризует устойчивое равновесие.

При ВГТ =.1,0° С/100 м температура поднимающегося объема воздуха на всех высотах будет равна температуре окружающего воздуха. Поэтому объем воздуха, искусственно поднятый на неко­торую высоту и затем предоставленный самому себе, не будет Далее ни подниматься, ни опускаться. Такое состояние атмосферы называют безразличным.

Если ВГТ> 1,0° С/100 м, то поднимающийся объем воздуха, охлаждаясь на каждые 100 м только на 1,0° С, на всех высотах оказывается теплее окружающей среды, и потому возникшее вер­тикальное движение продолжается. В атмосфере создается неус­тойчивое равновесие. Такое состояние возникает при сильном на­гревании подстилающей поверхности, когда ВГТ растет с высотой. Это способствует дальнейшему развитию конвекции, которая рас-84

пространяется примерно до той высоты, на которой температура поднимающегося воздуха становится равной температуре окружа­ющей среды. При большой неустойчивости возникают мощные ку-чево-дождевые облака, из которых выпадают опасные для посе­вов ливни и град.

В умеренных широтах северного полушария температура у верхней границы тропосферы, т. е. на высоте около 10-12 км, в течение всего года составляет около -50° С. На высоте же 5 км она в июле изменяется от -4° С (на 40° с. ш.) до -12° С (на 60° с. ш.), а в январе на этих же широтах и той же высоте она составляет -20 и -34° С соответственно (табл. 20). В еще более низком (пограничном) слое тропосферы температура еще больше различается в зависимости от географической широты, времени года и характера подстилающей поверхности.

Таблица 20

Среднее распределение температуры воздуха (° С) по высоте в тропосфере в январе и июле над 40 и 60° с.ш.

Температурный режим воздуха

Высота, км

Для сельского хозяйства важнейшее значение имеет темпера­турный режим нижней части приземного слоя атмосферы, при­мерно до высоты 2 м, где находится большинство культурных рас­тений и обитают сельскохо зяйственные животные. I этом слое вертикальные гра диенты почти всех метеоре логических величин очен; велики по сравнению с дру гими слоями. Как уже ука зывалось, ВГТ в приземное слое атмосферы обычно в< много раз превышает ВП в остальной тропосфере В ясные тихие дни, когд< турбулентное перемешива

23 °С

Рис. 18. Распределение температуры в при­земном слое воздуха и в пахотном слое почвы днем (1) и ночью (2).

ние ослаблено, разность температур воздуха у по-

верхности почвы и на высоте 2 м может превышать 10° С. В яс­ные тихие ночи температура воздуха до определенной высоты воз­растает (инверсия) и ВГТ становится отрицательным.

Следовательно, имеются два типа распределения температуры по вертикали в приземном слое атмосферы. Тип, .при котором тем­пература поверхности почвы наибольшая, а от поверхности поки­дается как вверх, так и вниз, называют инсоляционным. Он на­блюдается днем, когда поверхность почвы нагревается прямой солнечной радиацией. Обратное распределение температуры назы­вают радиационным типом, или типом излучения (рис. 18). Этот тип наблюдается обычно ночью, когда поверхность охлаждается в результате эффективного излучения и от нее охлаждаются при­легающие слои воздуха.

  • 9. Поглощение и рассеивание солнечной радиации в атмосфере
  • 10. Суммарная радиация. Распределение суммарной солнечной радиации на земной поверхности. Отраженная и поглощенная радиации. Альбедо.
  • 11. Радиационный баланс земной поверхности. Тепловое излучение земной поверхности.
  • 12. Тепловой баланс атмосферы.
  • 13. Изменение температуры воздуха с высотой.
  • 17. Характеристики влажности воздуха. Суточный и годовой ход парциального давления водяного пара и относительной влажности.
  • 21. …Мгла. Условия образования туманов. Туманы охлаждения и испарения.
  • 22. Образование осадков: конденсация, сублимация и коагуляция. Классификация осадков по агрегатному состоянию и характеру выпадения (ливневые, обложные, моросящие).
  • 23. Типы годового хода осадков.
  • 24. Географическое распределение осадков. Коэффициент увлажнения.
  • 23. Вертикальный барический градиенты. Годовой ход атмосферного давления.
  • 27. Ветер, его скорость и направление. Роза ветров.
  • 28. Силы, действующие на ветер: барический градиент, Кориолиса, трения, центробежная. Геострофический и градиентный ветер.
  • 29. Воздушные массы. Классификация воздушных масс. Фронты в атмосфере. Климатологические фронты.
  • 30. Типы фронтов: теплый, холодный, фронты окклюзии
  • 31. Модель оца: полярное, умеренное, тропическое звено.
  • 32. Географическое распределение атмосферного давления. Центры действия атмосферы: постоянные, сезонные.
  • 33. Циркуляция в тропиках. Пассаты. Внутритропическая зона конвергенции. Тропические циклоны, их возникновение и распространение.
  • 34. Циркуляция внетропических широт. Циклоны и антициклоны, их возникновение, эволюция, перемещение. Погода в циклонах и антициклонах.
  • 35. Муссоны. Тропические и внетропические муссоны.
  • 36. Местные ветра: бризы, горно-долинные, фен, бора, ледниковые, стоковые.
  • 37. Прогноз погоды: кратко-, средне- и долгосрочный.
  • 38. Понятие о климате. Макро-, мезо- и микроклимат. Климатообразующие процессы (теплооборот, влагооборот, атмосферная циркуляция) и географические факторы климата.
  • 39. Влияние географической широты, распределения суши и моря, океанических течений на климат. Феномен Эль-Ниньо.
  • 40. Влияние рельефа, растительного и снежного покрова на климат.(в 39 вопросе) Воздействие человека на климат: климат города.
  • 41. Классификации климатов Земли. Классификация климата согласно Кеппена-Треверта.
  • 42. Характеристика типов климата экваториального и субэкваториального поясов (согласно классификации б.П.Алисова).
  • 43. Характеристика типов климата тропического и субтропического поясов (согласно классификации б.П.Алисова).
  • 44. Характеристика типов климата экваториального и субэкваториального поясов (согласно классификации б.П.Алисова).
  • 45. Характеристика типов климата умеренного, субполярных и полярных поясов (согласно классификации б.П.Алисова).
  • 46. Климат Беларуси: солнечная радиация, циркуляция атмосферы, распределение температуры и осадков. Времена года.
  • 47. Климатические области Беларуси. Агроклиматическое районирование (по а.Х. Шкляру).
  • 48. Причины изменения климата. Методы исследований климата прошлого. Палеоклиматология.
  • 49. Изменение климата в геологической истории Земли: докембрии, фанерозое, плейстоцене и голоцене.
  • 50. Антропогенные изменения климата. Социально-экономические последствия потепления климата.
  • 13. Изменение температуры воздуха с высотой.

    Распределение температуры в атмосфере по вертикали положено в основу разделения атмосферы на пять основных слоев. Для сельскохозяйственной метеорологии наибольший интерес представляют закономерности изменения температуры в тропосфере, особенно в ее приземном слое.

    Вертикальный градиент температуры

    Изменение температуры воздуха на 100 м высоты называется вертикальным градиентом температуры (ВГТ зависит от ряда факторов: времени года (зимой он меньше, летом больше), времени суток (ночью меньше, днем больше), расположения воздушных масс (если на каких-либо высотах над холодным слоем воздуха располагается слой более теплого воздуха, то ВГТ меняет знак на обратный). Среднее значение ВГТ в тропосфере составляет около 0,б°С/100 м.

    В приземном слое атмосферы ВГТ зависит от времени суток, погоды и от характера подстилающей поверхности. Днем ВГТ почти всегда положителен, особенно летом над сушей, но при ясной погоде он в десятки раз больше, чем при пасмурной. В ясный полдень летом температура воздуха у поверхности почвы может на 10 °С и более превышать температуру на высоте 2 м. Вследствие этого ВГТ в данном двухметровом слое в пересчете на 100 м составляет более 500°С/100 м. Ветер уменьшает ВГТ, поскольку при перемешивании воздуха его температура на разных высотах выравнивается. Уменьшают ВГТ облачность и осадки. При влажной почве резко снижается ВГТ в приземном слое атмосферы. Над оголенной почвой (паровое поле) ВГТ больше, чем над развитым посевом или лугом. Зимой над снежным покровом ВГТ в приземном слое атмосферы невелик и нередко отрицателен.

    С высотой влияние подстилающей поверхности и погоды на ВГТ ослабевает и ВГТ уменьшается по сравнению с его значениями в приземном слое воздуха. Выше 500 м затухает влияние суточного хода температуры воздуха. На высотах от 1,5 до 5-6км ВГТ находится в пределах 0,5-0,6° С/100 м. На высоте 6-9км ВГТ возрастает и составляет 0,65-0,75° С/100 м. В верхнем слое тропосферы ВГТ снова уменьшается до 0,5-0,2° С/100 м.

    Данные о ВГТ в различных слоях атмосферы используют при составлении прогнозов погоды, при метеорологическом обслуживании реактивных самолетов и при выводе спутников на орбиту, а также при определении условий выброса и распространения промышленных отходов в атмосфере. Отрицательный ВГТ в приземном слое воздуха ночью весной и осенью указывает на возможность заморозка.

    17. Характеристики влажности воздуха. Суточный и годовой ход парциального давления водяного пара и относительной влажности.

    Упругость водяного пара в атмосфере - парциальное давление водяного пара, находящегося в воздухе

    В атмосфере Земли содержится около 14 тыс. км 3 водяного пара. Вода попадает в атмосферу в результате испарения с подстилающей поверхности. В атмосфере влага конденсируется, перемещается воздушными течениями и вновь выпадает в виде разнообразных осадков на поверхность Земли, совершая, таким образом, постоянный круговорот воды. Круговорот воды возможен, благодаря, способности воды находится в трёх состояниях (жидком, твердом, газообразном (парообразном)) и легко переходить из одного состояния в другое. Влагооборот является одним из важнейших циклов климатообразования.

    Для количественного выражения содержания водяного пара в атмосфере употребляют различные характеристики влажности воздуха. Основные характеристики влажности воздуха – упругость водяного пара и относительная влажность.

    Упругость (фактическая) водяного пара (е) – давление водяного пара находящегося в атмосфере выражается в мм.рт.ст. или в миллибарах (мб). Численно почти совпадает с абсолютной влажностью (содержанием водяного пара в воздухе в г/м 3), поэтому упругость часто называют абсолютной влажностью. Упругость насыщения (максимальная упругость) (Е) – предел содержания водяного пара в воздухе при данной температуре. Значение упругости насыщения зависит от температуры воздуха, чем выше температура, тем больше он может содержать водяного пара.

    Суточный ход влажности (абсолютной) может быть простым и двойным. Первый совпадает с суточным ходом температуры, имеет один максимум и один минимум и характерен для мест с достаточным количеством влаги. Он наблюдается над океанами, а зимой и осенью – над сушей.

    Двойной ход имеет два максимума и два минимума и характерен для летнего сезона на суше: максимумы в 9 и 20-21 часа, а минимумы в 6 и в 16 часов.

    Утренний минимум перед восходом Солнца объясняется слабым испарением в ночные часы. С увеличением лучистой энергии испарение растет, упругость водяного пара достигает максимума около 9 часов.

    В результате разогрева поверхности развивается конвекция воздуха, перенос влаги происходит быстрее, чем поступление ее с испаряющейся поверхности, поэтому около 16 часов возникает второй минимум. К вечеру конвекция прекращается, а испарение с нагретой поверхности еще достаточно интенсивно и в нижних слоях накапливается влага, обеспечивая второй максимум около 20-21 часа.

    Годовой ход упругости водяного пара соответствует годовому ходу температуры. Летом упругость водяного пара больше, зимой – меньше.

    Суточный и годовой ход относительной влажности почти всюду противоположен ходу температуры, т. к. максимальное влагосодержание с повышением температуры растет быстрее упругости водяного пара. Суточный максимум относительной влажности наступает перед восходом Солнца, минимум – в 15-16 часов.

    В течение года максимум относительной влажности, как правило, приходится на самый холодный месяц, минимум – на самый теплый месяц. Исключение составляют регионы, в которых летом дуют влажные ветры с моря, а зимой – сухие с материка.

    Абсолютная влажность = количество воды в данном объеме воздуха, измеряется в (г/м³)

    Относительная влажность = процент фактического количества воды (давления водяного пара) к давлению паров воды при этой температуре в условиях насыщения. Выражается в процентах. Т.е. 40% влажность означает, что при этой температуре всего воды может испариться еще 60 %.

    Солнечные лучи, падающие на поверхность земли, нагревают ее. Нагревание же воздуха происходит снизу вверх, т. е. от земной поверхности.

    Передача тепла от нижних слоев воздуха в верхние происходит главным образом благодаря подъему теплого, нагретого воздуха вверх и опусканию холодного вниз. Этот процесс нагрева воздуха называется конвекцией .

    В других случаях передача тепла вверх происходит благодаря динамической турбулентности . Так называются беспорядочные вихри, возникающие в воздухе вследствие трения его о земную поверхность при горизонтальном перемещении или при трении разных слоев воздуха между собой.

    Конвекцию иногда называют термической турбулентностью. Конвекцию и турбулентность объединяют иногда общим названием - обмен .

    Охлаждение нижних слоев атмосферы происходит иначе, чем нагревание. Земная поверхность непрерывно теряет тепло в окружающую ее атмосферу путем излучения не видимых для глаза тепловых лучей. Особенно сильно охлаждение становится после захода солнца (в ночные часы). Благодаря теплопроводности прилегающие к земле воздушные массы также постепенно охлаждаются, передавая затем это охлаждение вышележащим слоям воздуха; при этом наиболее интенсивно охлаждаются самые низкие слои.

    В зависимости от солнечного нагрева температура нижних слоев воздуха изменяется в течение года и суток, достигая максимума около 13-14 часов. Суточный ход температуры воз духа в разные дни для одного и того же места непостоянен; его величина зависит главным образом от состояния погоды. Таким образом, изменения температуры нижних слоев воздуха связаны с изменениями температуры земной (подстилающей) поверхности.

    Изменения температуры воздуха происходят также и от вертикальных перемещений его.

    Известно, что воздух при расширении охлаждается, при сжатии - нагревается. В атмосфере при восходящем движении воздух, попадая в области более низкого давления, расширяется и охлаждается, и, наоборот, при нисходящем движении воздух, сжимаясь, нагревается. Изменения температуры воздуха при его вертикальных движениях в значительной степени обусловливают образование и разрушение облаков.

    Температура воздуха с высотой обычно понижается. Изменение средней температуры с высотой над Европой летом и зимой приведено в таблице "Средние температуры воздуха над Европой".

    Уменьшение температуры с высотой характеризуется вертикальным температурным градиентом . Так называется изменение температуры на каждые 100 м высоты. Для технических и аэронавигационных расчетов вертикальный температурный градиент принимают равным 0,6. Нужно иметь в виду, что это величина непостоянная. Может случиться, что в каком-либо слое воздуха температура с высотой не будет изменяться. Такие слои называются слоями изотермии .

    Весьма часто в атмосфере наблюдается явление, когда в некотором слое температура с высотой даже возрастает. Такие слои атмосферы называются слоями инверсии . Инверсии возникают от различных причин. Одной из них является охлаждение подстилающей поверхности путем излучения в ночное или зимнее время при ясном небе. Иногда, в случае штиля или слабого ветра, приземные слон воздуха также охлаждаются и становятся холоднее вышележащих слоев. В результате на высоте воздух оказывается более теплым, чем внизу. Такие инверсии называются радиационными . Сильные радиационные инверсии наблюдаются обычно над снежным покровом и особенно в горных котловинах, я также при штиле. Слои инверсии простираются до высоты нескольких десятков или сотен метров.

    Инверсии возникают также вследствие перемещения (адвекции) теплого воздуха на холодную подстилающую поверхность. Это так называемые адвективные инверсии . Высота этих инверсии - несколько сот метров.

    Кроме этих инверсий, наблюдаются инверсии фронтальные и инверсии сжатия. Фронтальные инверсии возникают при натекании теплых воздушных масс на более холодные. Инверсии сжатия возникают при опускании воздуха из верхних слоев атмосферы. При этом опускающийся воздух нагревается иногда настолько сильно, что нижележащие слои его оказываются более холодными.

    Инверсии температуры наблюдаются на различных высотах тропосферы, наиболее часто-на высотах около 1 км. Толщина инверсионного слоя может колебаться от нескольких десятков, до нескольких сотен метров. Разность температур при инверсии может достигать 15-20°.

    Слои инверсий играют большую роль в погоде. Вследствие того что воздух в слое инверсии теплее нижележащего слоя, воздух нижних слоев не может подняться. Следовательно, слои инверсий задерживают вертикальные движения в нижележащем слое воздуха. При полете под слоем инверсии обычно наблюдается рему («болтанка»). Выше же слоя инверсии полет самолета обычно происходит нормально. Под слоями инверсий развиваются так называемые волнистые облака.

    Температура воздуха оказывает влияние на технику пилотирования и эксплуатацию материальной части. При температурах у земли ниже -20° застывает масло, поэтому заливать его приходится в подогретом состоянии. В полете при низких температурах интенсивно охлаждается вода в охлаждающей системе мотора. При повышенных же температурах (выше+30°) может получиться перегрев мотора. Температура воздуха влияет также и на работоспособность экипажа самолета. При низкой температуре, доходящей в стратосфере до -56°, требуется специальное обмундирование для экипажа.

    Температура воздуха имеет весьма большое значение для прогноза погоды.

    Измерение температуры воздуха во время полета на самолете производится при помощи электрических термометров, прикрепляемых на самолете. При измерении температуры воздуха необходимо иметь в виду, что вследствие больших скоростей современных самолетов термометры дают ошибки. Большие скорости самолетов вызывают повышение температуры самого термометра, обусловленное трением его резервуара о воздух и влиянием нагрева вследствие сжатия воздуха. Нагревание от трения с повышением скорости полета самолета возрастает и выражается следующими величинами:

    Скорость в км/час............. 100 200 З00 400 500 600

    Нагревание от трения....... 0°,34 1°,37 3°.1 5°,5 8°,6 12°,б

    Нагревание же от сжатия выражается следующими величинами:

    Скорость в км/час............. 100 200 300 400 500 600

    Нагревание от сжатия....... 0°,39 1°,55 3°,5 5°,2 9°,7 14°,0

    Искажения показаний термометра, установленного на самолете, при полете в облаках на 30 % меньше приведенных выше величин, вследствие того что часть тепла, возникающего при трении и сжатии, расходуется на испарение воды, сконденсированной в воздухе в виде капель.



    ← Вернуться

    ×
    Вступай в сообщество «servizhome.ru»!
    ВКонтакте:
    Я уже подписан на сообщество «servizhome.ru»