Как рассчитать кол во теплоты. Как рассчитать количество теплоты, тепловой эффект и теплоту образования

Подписаться
Вступай в сообщество «servizhome.ru»!
ВКонтакте:

«Физика - 10 класс»

В каких процессах происходят агрегатные превращения вещества?
Как можно изменить агрегатное состояние вещества?

Изменить внутреннюю энергию любого тела можно, совершая работу, нагревая или, наоборот, охлаждая его.
Так, при ковке металла совершается работа, и он разогревается, в то же время металл можно разогреть над горящим пламенем.

Также если закрепить поршень (рис. 13.5), то объём газа при нагревании не меняется и работа не совершается. Но температура газа, а следовательно, и его внутренняя энергия возрастают.

Внутренняя энергия может увеличиваться и уменьшаться, поэтому количество теплоты может быть положительным и отрицательным.

Процесс передачи энергии от одного тела другому без совершения работы называют теплообменом .

Количественную меру изменения внутренней энергии при теплообмене называют количеством теплоты .


Молекулярная картина теплообмена.


При теплообмене на границе между телами происходит взаимодействие медленно движущихся молекул холодного тела с быстро движущимися молекулами горячего тела. В результате кинетические энергии молекул выравниваются и скорости молекул холодного тела увеличиваются, а горячего уменьшаются.

При теплообмене не происходит превращения энергии из одной формы в другую, часть внутренней энергии более нагретого тела передаётся менее нагретому телу.


Количество теплоты и теплоёмкость.

Вам уже известно, что для нагревания тела массой т от температуры t 1 до температуры t 2 необходимо передать ему количество теплоты:

Q = cm(t 2 - t 1) = cm Δt. (13.5)

При остывании тела его конечная температура t 2 оказывается меньше начальной температуры t 1 и количество теплоты, отдаваемой телом, отрицательно.

Коэффициент с в формуле (13.5) называют удельной теплоёмкостью вещества.

Удельная теплоёмкость - это величина, численно равная количеству теплоты, которую получает или отдаёт вещество массой 1 кг при изменении его температуры на 1 К.

Удельная теплоёмкость газов зависит от того, при каком процессе осуществляется теплопередача. Если нагревать газ при постоянном давлении, то он будет расширяться и совершать работу. Для нагревания газа на 1 °С при постоянном давлении ему нужно передать большее количество теплоты, чем для нагревания его при постоянном объёме, когда газ будет только нагреваться.

Жидкие и твёрдые тела расширяются при нагревании незначительно. Их удельные теплоёмкости при постоянном объёме и постоянном давлении мало различаются.


Удельная теплота парообразования.


Для превращения жидкости в пар в процессе кипения необходима передача ей определённого количества теплоты. Температура жидкости при кипении не меняется. Превращение жидкости в пар при постоянной температуре не ведёт к увеличению кинетической энергии молекул, но сопровождается увеличением потенциальной энергии их взаимодействия. Ведь среднее расстояние между молекулами газа много больше, чем между молекулами жидкости.

Величину, численно равную количеству теплоты, необходимой для превращения при постоянной температуре жидкости массой 1 кг в пар, называют удельной теплотой парообразования .

Процесс испарения жидкости происходит при любой температуре, при этом жидкость покидают самые быстрые молекулы, и она при испарении охлаждается. Удельная теплота испарения равна удельной теплоте парообразования.

Эту величину обозначают буквой r и выражают в джоулях на килограмм (Дж/кг).

Очень велика удельная теплота парообразования воды: r Н20 = 2,256 10 6 Дж/кг при температуре 100 °С. У других жидкостей, например у спирта, эфира, ртути, керосина, удельная теплота парообразования меньше в 3-10 раз, чем у воды.

Для превращения жидкости массой m в пар требуется количество теплоты, равное:

Q п = rm. (13.6)

При конденсации пара происходит выделение такого же количества теплоты:

Q к = -rm. (13.7)


Удельная теплота плавления.


При плавлении кристаллического тела всё подводимое к нему тепло идёт на увеличение потенциальной энергии взаимодействия молекул. Кинетическая энергия молекул не меняется, так как плавление происходит при постоянной температуре.

Величину, численно равную количеству теплоты, необходимой для превращения кристаллического вещества массой 1 кг при температуре плавления в жидкость, называют удельной теплотой плавления и обозначают буквой λ.

При кристаллизации вещества массой 1 кг выделяется точно такое же количество теплоты, какое поглощается при плавлении.

Удельная теплота плавления льда довольно велика: 3,34 10 5 Дж/кг.

«Если бы лёд не обладал большой теплотой плавления, то тогда весной вся масса льда должна была бы растаять в несколько минут или секунд, так как теплота непрерывно передаётся льду из воздуха. Последствия этого были бы ужасны; ведь и при существующем положении возникают большие наводнения и сильные потоки воды при таянии больших масс льда или снега». Р. Блек, XVIII в.

Для того чтобы расплавить кристаллическое тело массой m, необходимо количество теплоты, равное:

Q пл = λm. (13.8)

Количество теплоты, выделяемой при кристаллизации тела, равно:

Q кр = -λm (13.9)


Уравнение теплового баланса.


Рассмотрим теплообмен внутри системы, состоящей из нескольких тел, имеющих первоначально различные температуры, например теплообмен между водой в сосуде и опущенным в воду горячим железным шариком. Согласно закону сохранения энергии количество теплоты, отданной одним телом, численно равно количеству теплоты, полученной другим.

Отданное количество теплоты считается отрицательным, полученное количество теплоты - положительным. Поэтому суммарное количество теплоты Q1 + Q2 = 0.

Если в изолированной системе происходит теплообмен между несколькими телами, то

Q 1 + Q 2 + Q 3 + ... = 0. (13.10)

Уравнение (13.10) называется уравнением теплового баланса .

Здесь Q 1 Q 2 , Q 3 - количества теплоты, полученной или отданной телами. Эти количества теплоты выражаются формулой (13.5) или формулами (13.6)-(13.9), если в процессе теплообмена происходят различные фазовые превращения вещества (плавление, кристаллизация, парообразование, конденсация).

В данном уроке мы научимся рассчитывать количество теплоты, необходимое для нагревания тела или выделяемое им при охлаждении. Для этого мы обобщим те знания, которые были получены на предыдущих уроках.

Кроме того, мы научимся с помощью формулы для количества теплоты выражать остальные величины из этой формулы и рассчитывать их, зная другие величины. Также будет рассмотрен пример задачи с решением на вычисление количества теплоты.

Данный урок посвящен вычислению количества теплоты при нагревании тела или выделяемого им при охлаждении.

Умение вычислять необходимое количество теплоты является очень важным. Это может понадобиться, к примеру, при вычислении количества теплоты, которое необходимо сообщить воде для обогрева помещения.

Рис. 1. Количество теплоты, которое необходимо сообщить воде для обогрева помещения

Или для вычисления количества теплоты, которое выделяется при сжигании топлива в различных двигателях:

Рис. 2. Количество теплоты, которое выделяется при сжигании топлива в двигателе

Также эти знания нужны, например, чтобы определить количество теплоты, которое выделяется Солнцем и попадает на Землю:

Рис. 3. Количество теплоты, выделяемое Солнцем и попадающее на Землю

Для вычисления количества теплоты необходимо знать три вещи (рис. 4):

  • массу тела (которую, обычно, можно измерить с помощью весов);
  • разность температур, на которую необходимо нагреть тело или охладить его (обычно измеряется с помощью термометра);
  • удельную теплоемкость тела (которую можно определить по таблице).

Рис. 4. Что необходимо знать для определения

Формула, по которой вычисляется количество теплоты, выглядит так:

В этой формуле фигурируют следующие величины:

Количество теплоты, измеряется в джоулях (Дж);

Удельная теплоемкость вещества, измеряется в ;

- разность температур, измеряется в градусах Цельсия ().

Рассмотрим задачу на вычисление количества теплоты.

Задача

В медном стакане массой грамм находится вода объемом литра при температуре . Какое количество теплоты необходимо передать стакану с водой, чтобы его температура стала равна ?

Рис. 5. Иллюстрация условия задачи

Сначала запишем краткое условие (Дано ) и переведем все величины в систему интернационал (СИ).

Дано:

СИ

Найти:

Решение:

Сначала определи, какие еще величины потребуются нам для решения данной задачи. По таблице удельной теплоемкости (табл. 1) находим (удельная теплоемкость меди, так как по условию стакан медный), (удельная теплоемкость воды, так как по условию в стакане находится вода). Кроме того, мы знаем, что для вычисления количества теплоты нам понадобится масса воды. По условию нам дан лишь объем. Поэтому из таблицы возьмем плотность воды: (табл. 2).

Табл. 1. Удельная теплоемкость некоторых веществ,

Табл. 2. Плотности некоторых жидкостей

Теперь у нас есть все необходимое для решения данной задачи.

Заметим, что итоговое количество теплоты будет состоять из суммы количества теплоты, необходимого для нагревания медного стакана и количества теплоты, необходимого для нагревания воды в нем:

Рассчитаем сначала количество теплоты, необходимое для нагревания медного стакана:

Прежде чем вычислить количество теплоты, необходимое для нагревания воды, рассчитаем массу воды по формуле, хорошо знакомой нам из 7 класса:

Теперь можем вычислить:

Тогда можем вычислить:

Напомним, что означает: килоджоули. Приставка «кило» означает , то есть .

Ответ: .

Для удобства решения задач на нахождение количества теплоты (так называемые прямые задачи) и связанных с этим понятием величин можно пользоваться следующей таблицей.

Искомая величина

Обозначение

Единицы измерения

Основная формула

Формула для величины

Количество теплоты

Как мы уже знаем, внутренняя энергия тела может изменяться как при совершении работы, так и при помощи теплопередачи (не совершая работу). Главное различие между работой и количеством теплоты заключается в том, что работа определяет процесс преобразования внутренней энергии системы, который сопровождается трансформацией энергии из одного вида в другой.

В том случае, если изменение внутренней энергии протекает с помощью теплопередачи , переход энергии из одного тела в другое осуществляется за счет теплопроводности , излучения, либо конвекции .

Энергия, которую тело теряет или получает во время теплопередачи, называется количеством теплоты.

При вычислении количества теплоты, необходимо знать, какие величины влияют на него.

От двух одинаковых горелок будем нагревать два сосуда. В одном сосуде 1 кг воды, в другом – 2 кг. Температура воды в двух сосудах изначально одинакова. Мы можем видеть, что за одно и тоже время вода в одном из сосудов нагревается быстрее, хотя оба сосуда получают равное количество теплоты.

Таким образом, делаем вывод: чем больше масса данного тела, тем большее количество теплоты следует затратить, для того чтобы понизить, или повысить его температуру на такое же количество градусов.

Когда тело остывает, оно отдает соседним предметам тем большее количество теплоты, чем больше его масса.

Мы все знаем, что если нужно нагреть полный чайник воды до температуры 50°C, мы затратим меньше времени на это действие, чем для нагревания чайника с тем же объемом воды, но только до 100 °C. В случае номер один воде будет отдано меньшее количество теплоты, нежели во втором.

Таким образом, количество теплоты, требуемое для нагревания, напрямую зависит от того, на сколько градусов сможет нагреться тело. Можно сделать вывод: количество теплоты напрямую зависит от разности температур тела.

Но возможно ли определить количество теплоты, требуемой не для нагревания воды, а какого-нибудь другого вещества, допустим, масла, свинца или железа.

Наполним один сосуд водой, а другой наполним растительным маслом. Массы воды и масла равные. Оба сосуда будем равномерно подогревать на одинаковых горелках. Начнем опыт при равной начальной температуре растительного масла и воды. Через пять минут, измерив температуры нагревшихся масла и воды, мы заметим, что температура масла намного выше температуры воды, хотя обе жидкости получали одинаковое количество тепла.

Напрашивается очевидный вывод: при нагревании равных масс масла и воды при одинаковой температуре нужно разное количество теплоты.

И мы тут же делаем еще одни вывод: количество теплоты, которое требуется для нагревания тела, напрямую зависит от вещества, из которого состоит само тело (рода вещества).

Таким образом, количество теплоты, нужное для нагревания тела (либо выделяемое при остывании), напрямую зависит от массы данного тела, вариативности его температуры, а также рода вещества.

Количество теплоты обозначают символом Q. Как и другие различные виды энергии, количество теплоты измеряется в джоулях (Дж) либо в килоджоулях (кДж).

1 кДж = 1000 Дж

Однако история показывает, что ученые стали измерять количество теплоты задолго того, как в физике появилось такое понятие как энергия. В то время, была выведена специальная единица для измерения количества теплоты – калория (кал) либо килокалория (ккал). Слово имеет латинские корни, калор – жара.

1 ккал = 1000 кал

Калория – это то количество теплоты, которое нужно для нагревания 1 г воды на 1°C

1 кал = 4,19 Дж ≈ 4,2 Дж

1 ккал = 4190 Дж ≈ 4200 Дж ≈ 4,2 кДж

Остались вопросы? Не знаете, как сделать домашнее задание?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

>>Физика: Количество теплоты

Изменить внутреннюю энергию газа в цилиндре можно, не только совершая работу, но и нагревая газ.
Если закрепить поршень (рис.13.5 ), то объем газа при нагревании не меняется и работа не совершается. Но температура газа, а следовательно, и его внутренняя энергия возрастают.

Процесс передачи энергии от одного тела к другому без совершения работы называют теплообменом или теплопередачей.
Количественную меру изменения внутренней энергии при теплообмене называют количеством теплоты . Количеством теплоты называют также энергию, которую тело отдает в процессе теплообмена.
Молекулярная картина теплообмена
При теплообмене не происходит превращения энергии из одной формы в другую, часть внутренней энергии горячего тела передается холодному телу.
Количество теплоты и теплоемкость. Вам уже известно, что для нагревания тела массой m от температуры t 1 до температуры t 2 необходимо передать ему количество теплоты:

При остывании тела его конечная температура t 2 оказывается меньше начальной температуры t 1 и количество теплоты, отдаваемое телом, отрицательно.
Коэффициент c в формуле (13.5) называют удельной теплоемкостью вещества. Удельная теплоемкость - это величина, численно равная количеству теплоты, которое получает или отдает вещество массой 1 кг при изменении его температуры на 1 К.
Удельная теплоемкость зависит не только от свойств вещества, но и от того, при каком процессе осуществляется теплопередача. Если нагревать газ при постоянном давлении, то он будет расширяться и совершать работу. Для нагревания газа на 1°С при постоянном давлении ему нужно передать большее количество теплоты, чем для нагревания его при постоянном объеме, когда газ будет только нагреваться.
Жидкие и твердые тела расширяются при нагревании незначительно. Их удельные теплоемкости при постоянном объеме и постоянном давлении мало различаются.
Удельная теплота парообразования. Для превращения жидкости в пар в процессе кипения необходима передача ей определенного количества теплоты. Температура жидкости при кипении не меняется. Превращение жидкости в пар при постоянной температуре не ведет к увеличению кинетической энергии молекул, но сопровождается увеличением потенциальной энергии их взаимодействия. Ведь среднее расстояние между молекулами газа много больше, чем между молекулами жидкости.
Величину, численно равную количеству теплоты, необходимому для превращения при постоянной температуре жидкости массой 1 кг в пар, называют удельной теплотой парообразования . Эту величину обозначают буквой r и выражают в джоулях на килограмм (Дж/кг).
Очень велика удельная теплота парообразования воды: r H2O =2,256 10 6 Дж/кг при температуре 100°С. У других жидкостей, например у спирта , эфира, ртути, керосина, удельная теплота парообразования меньше в 3-10 раз, чем у воды.
Для превращения жидкости массой m в пар требуется количество теплоты, равное:

При конденсации пара происходит выделение такого же количества теплоты:

Удельная теплота плавления. При плавлении кристаллического тела вся подводимая к нему теплота идет на увеличение потенциальной энергии молекул. Кинетическая энергия молекул не меняется, так как плавление происходит при постоянной температуре.
Величину, численно равную количеству теплоты, необходимому для превращения кристаллического вещества массой 1 кг при температуре плавления в жидкость, называют удельной теплотой плавления .
При кристаллизации вещества массой 1 кг выделяется точно такое же количество теплоты, какое поглощается при плавлении.
Удельная теплота плавления льда довольно велика: 3,34 10 5 Дж/кг. «Если бы лед не обладал большой теплотой плавления, - писал Р. Б л эк еще в XVIII в., - то тогда весной вся масса льда должна была бы растаять в несколько минут или секунд, так как теплота непрерывно передается льду из воздуха. Последствия этого были бы ужасны; ведь и при существующем положении возникают большие наводнения и сильные потоки воды при таянии больших масс льда или снега».
Для того чтобы расплавить кристаллическое тело массой m , необходимо количество теплоты, равное:

Количество теплоты, выделяемое при кристаллизации тела, равно:

Внутренняя энергия тела меняется при нагревании и охлаждении, при парообразовании и конденсации, при плавлении и кристаллизации. Во всех случаях телу передается или от него отнимается некоторое количество теплоты.

???
1. Что называют количеством теплоты ?
2. От чего зависит удельная теплоемкость вещества?
3. Что называют удельной теплотой парообразования?
4. Что называют удельной теплотой плавления?
5. В каких случаях количество теплоты положительная величина, а в каких случаях отрицательная?

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,

Задание 81.
Вычислите количество теплоты, которое выделится при восстановлении Fe 2 O 3 металлическим алюминием, если было получено 335,1 г железа. Ответ: 2543,1 кДж.
Решение:
Уравнение реакции:

= (Al 2 O 3) - (Fe 2 O 3) = -1669,8 -(-822,1) = -847,7 кДж

Вычисление количества теплоты, которое выделяется при получении 335,1 г железа, про-изводим из пропорции:

(2 . 55,85) : -847,7 = 335,1 : х; х = (0847,7 . 335,1)/ (2 . 55,85) = 2543,1 кДж,

где 55,85 атомная масс железа.

Ответ: 2543,1 кДж.

Тепловой эффект реакции

Задание 82.
Газообразный этиловый спирт С2Н5ОН можно получить при взаимодействии этилена С 2 Н 4 (г) и водяных паров. Напишите термохимическое уравнение этой реакции, предварительно вычислив ее тепловой эффект. Ответ: -45,76 кДж.
Решение:
Уравнение реакции имеет вид:

С 2 Н 4 (г) + Н 2 О (г) = С2Н 5 ОН (г) ; = ?

Значения стандартных теплот образования веществ приведены в специальных таблицах. Учитывая, что теплоты образования простых веществ условно приняты равными нулю. Рассчитаем тепловой эффект реакции, используя следствие из закона Гесса, получим:

= (С 2 Н 5 ОН) – [ (С 2 Н 4) + (Н 2 О)] =
= -235,1 -[(52,28) + (-241,83)] = - 45,76 кДж

Уравнения реакций, в которых около символов химических соединений указываются их агрегатные состояния или кристаллическая модификация, а также числовое значение тепловых эффектов, называют термохимическими. В термохимических уравнениях, если это специально не оговорено, указываются значения тепловых эффектов при постоянном давлении Q p равные изменению энтальпии системы . Значение приводят обычно в правой части уравнения, отделяя его запятой или точкой c запятой. Приняты следующие сокращенные обозначения агрегатного состояния вещества: г - газообразное, ж - жидкое, к

Если в результате реакции выделяется теплота, то < О. Учитывая сказанное, составляем термохимическое уравнение данной в примере реакции:

С 2 Н 4 (г) + Н 2 О (г) = С 2 Н 5 ОН (г) ; = - 45,76 кДж.

Ответ: - 45,76 кДж.

Задание 83.
Вычислите тепловой эффект реакции восстановления оксида железа (II) водородом, исходя из следующих термохимических уравнений:

а) ЕеО (к) + СО (г) = Fe (к) + СO 2 (г); = -13,18 кДж;
б) СO (г) + 1/2O 2 (г) = СO 2 (г) ; = -283,0 кДж;
в) Н 2 (г) + 1/2O 2 (г) = Н 2 O (г) ; = -241,83 кДж.
Ответ: +27,99 кДж.

Решение:
Уравнение реакции восстановления оксида железа (II) водородом имеет вид:

ЕеО (к) + Н 2 (г) = Fe (к) + Н 2 О (г) ; = ?

= (Н2О) – [ (FeO)

Теплота образования воды определяется уравнением

Н 2 (г) + 1/2O 2 (г) = Н 2 O (г) ; = -241,83 кДж,

а теплоту образования оксида железа (II) можно вычислить, если из уравнения (б) вычесть уравнение (а).

=(в) - (б) - (а) = -241,83 – [-283,o – (-13,18)] = +27,99 кДж.

Ответ: +27,99 кДж.

Задание 84.
При взаимодействии газообразных сероводорода и диоксида углерода образуются пары воды и сероуглерод СS 2 (г) . Напишите термохимическое уравнение этой реакции, предварительно вычислите ее тепловой эффект. Ответ: +65,43 кДж.
Решение:
г - газообразное, ж - жидкое, к -- кристаллическое. Эти символы опускаются, если агрегатное состояние веществ очевидно, например, О 2 , Н 2 и др.
Уравнение реакции имеет вид:

2H 2 S (г) + CO 2 (г) = 2Н 2 О (г) + СS 2 (г); = ?

Значения стандартных теплот образования веществ приведены в специальных таблицах. Учитывая, что теплоты образования простых веществ условно приняты равными нулю. Тепловой эффект реакции можно вычислить, используя следствии е из закона Гесса:

= (Н 2 О) +(СS 2) – [(Н 2 S) + (СO 2)];
= 2(-241,83) + 115,28 – = +65,43 кДж.

2H 2 S (г) + CO 2 (г) = 2Н 2 О (г) + СS 2 (г) ; = +65,43 кДж.

Ответ: +65,43 кДж.

Tермохимическое уравнение реакции

Задание 85.
Напишите термохимическое уравнение реакции между СО (г) и водородом, в результате которой образуются СН 4 (г) и Н 2 О (г). Сколько теплоты выделится при этой реакции, если было получено 67,2 л метана в пересчете на нормальные условия? Ответ: 618,48 кДж.
Решение:
Уравнения реакций, в которых около символов химических соединений указываются их агрегатные состояния или кристаллическая модификация, а также числовое значение тепловых эффектов, называют термохимическими. В термохимических уравнениях, если это специально не оговорено, указываются значения тепловых эффектов при постоянном давлении Q p равные изменению энтальпии системы. Значение приводят обычно в правой части уравнения, отделяя его запятой или точкой c запятой. Приняты следующие сокращенные обозначения агрегатного состояния вещества: г - газообразное, ж - кое, к - кристаллическое. Эти символы опускаются, если агрегатное состояние веществ очевидно, например, О 2 , Н 2 и др.
Уравнение реакции имеет вид:

СО (г) + 3Н 2 (г) = СН 4 (г) + Н 2 О (г) ; = ?

Значения стандартных теплот образования веществ приведены в специальных таблицах. Учитывая, что теплоты образования простых веществ условно приняты равными нулю. Тепловой эффект реакции можно вычислить, используя следствии е из закона Гесса:

= (Н 2 О) + (СН 4) – (СO)];
= (-241,83) + (-74,84) – (-110,52) = -206,16 кДж.

Термохимическое уравнение будет иметь вид:

22,4 : -206,16 = 67,2 : х; х = 67,2 (-206,16)/22?4 = -618,48 кДж; Q = 618,48 кДж.

Ответ: 618,48 кДж.

Теплота образования

Задание 86.
Тепловой эффект какой реакции равен теплоте образования. Вычислите теплоту образования NO, исходя из следующих термохимических уравнений:
а) 4NH 3 (г) + 5О 2 (г) = 4NO (г) + 6Н 2 O (ж) ; = -1168,80 кДж;
б) 4NH 3 (г) + 3О 2 (г) = 2N 2 (г) + 6Н 2 O (ж); = -1530,28 кДж
Ответ: 90,37 кДж.
Решение:
Стандартная теплота образования равна теплоте реакции образования 1 моль этого вещества из простых веществ при стандартных условиях (Т = 298 К; р = 1,0325 . 105 Па). Образование NO из простых веществ можно представить так:

1/2N 2 + 1/2O 2 = NO

Дана реакция (а), в которой образуется 4 моль NO и дана реакция (б), в которой образуется 2 моль N2. В обеих реакциях участвует кислород. Следовательно, для определения стандартной теплоты образования NO составим следующий цикл Гесса, т. е. нужно вы-честь уравнение (а) из уравнения (б):

Таким образом, 1/2N 2 + 1/2O 2 = NO; = +90,37 кДж.

Ответ: 618,48 кДж.

Задание 87.
Кристаллический хлорид аммония образуется при взаимодействии газообразных аммиака и хлороводорода. Напишите термохимическое уравнение этой реакции, предварительно вычислив ее тепловой эффект. Сколько теплоты выделится, если в реакции было израсходовано 10 л аммиака в пересчете на нормальные условия? Ответ: 78,97 кДж.
Решение:
Уравнения реакций, в которых около символов химических соединений указываются их агрегатные состояния или кристаллическая модификация, а также числовое значение тепловых эффектов, называют термохимическими. В термохимических уравнениях, если это специально не оговорено, указываются значения тепловых эффектов при постоянном давлении Q p равные изменению энтальпии системы. Значение приводят обычно в правой части уравнения, отделяя его запятой или точкой c запятой. Приняты следующие кое, к -- кристаллическое. Эти символы опускаются, если агрегатное состояние веществ очевидно, например, О 2 , Н 2 и др.
Уравнение реакции имеет вид:

NH 3 (г) + НCl (г) = NH 4 Cl (к). ; = ?

Значения стандартных теплот образования веществ приведены в специальных таблицах. Учитывая, что теплоты образования простых веществ условно приняты равными нулю. Тепловой эффект реакции можно вычислить, используя следствии е из закона Гесса:

= (NH4Cl) – [(NH 3) + (HCl)];
= -315,39 – [-46,19 + (-92,31) = -176,85 кДж.

Термохимическое уравнение будет иметь вид:

Теплоту, выделившуюся при реакции 10 л аммиака по этой реакции, определим из про-порции:

22,4 : -176,85 = 10 : х; х = 10 (-176,85)/22,4 = -78,97 кДж; Q = 78,97 кДж.

Ответ: 78,97 кДж.



← Вернуться

×
Вступай в сообщество «servizhome.ru»!
ВКонтакте:
Я уже подписан на сообщество «servizhome.ru»