Качественное определение свинца в биологическом материале. Свинец. Исследование качества питьевой воды

Подписаться
Вступай в сообщество «servizhome.ru»!
ВКонтакте:

Урок – практикум

(проектная деятельность учащихся 9 класса на обобщающем уроке химии при изучении элементов - металлов)

«Изучение содержания ионов свинца в почве и растительных пробах села Слободчики и его воздействие на организм человека».

Подготовила и провела

учитель биологии, химии

Сивоха Наталья Геннадьевна


Цель урока:

Показать влияние тяжёлых металлов на здоровье человека на примере свинца и изучить экологическую обстановку села Слободчики путём определения ионов свинца в почве и растительных пробах.

Задачи урока:

Обобщить полученные знания о тяжёлых металлах. Более подробно познакомить учащихся со свинцом, его биологической ролью и токсическим воздействием на организм человека;

Расширить знания учащихся о взаимосвязи применения металла свинца и путей поступления его в организм человека;

Показать тесную взаимосвязь биологии, химии и экологии, как предметов дополняющих друг друга;

Воспитание бережного отношения к своему здоровью;

Привитие интереса к изучаемому предмету.


Оборудование: компьютер, мультимедийный проектор, презентации мини-проектов выполненных обучающимися, штатив с пробирками, стеклянная палочка, воронка с фильтром, химические стаканы на 50 мл, фильтровальная бумага, измерительный цилиндр, весы с гирями, фильтровальная бумага, ножницы, спиртовка или лабораторная плитка.

Реактивы: этиловый спирт, вода, 5% раствор сульфида натрия, иодид калия, пробы почвы, пробы растительности приготовленные учителем.


  • Почему группу элементов называют «тяжёлые металлы»? (все эти металлы имеют большую массу)
  • Какие элементы относятся к тяжёлым металлам? (железо, свинец, кобальт, марганец, никель, ртуть, цинк, кадмий, олово, медь, марганец)
  • Какое воздействие на организм человека оказывают тяжёлые металлы?

В Древнем Риме, знатные люди пользовались водопроводом, изготовленным из свинцовых труб. Расплавленным свинцом заливали места стыков каменных блоков и труб водопровода (недаром в английском языке слово plumber означает «водопроводчик»). Кроме этого, рабы пользовались дешевой деревянной посудой и пили воду прямо из колодцев, а рабовладельцы – из дорогих свинцовых сосудов. Продолжительность жизни богатых римлян была намного меньше, чем рабов. Учёные высказали предположение, что причиной ранней смерти было свинцовое отравление от воды, используемой для приготовления пищи. Однако эта история имеет продолжение. В штате Виргиния (США) исследовали захоронения тех лет. Оказалось, что на самом деле скелеты рабовладельцев содержат значительно больше свинца, чем кости рабов. Свинец был известен за 6-7 тыс. лет до н. э. народам Месопотамии, Египта и других стран древнего мира. Он служил для изготовления статуй, предметов домашнего обихода, табличек для письма. Алхимики называли свинец сатурном и обозначали его знаком этой планеты. Соединения свинца - "свинцовая зола" PbO, свинцовые белила 2PbCO3 Pb (OH)2 применялись в Древней Греции и Риме как составные части лекарств и красок. Когда было изобретено огнестрельное оружие, свинец начали применять как материал для пуль. Ядовитость свинца отметили ещё в 1 в. н. э. греческий врач Диоскорид и Плиний Старший.


Объём современного производства свинца составляет более 2,5 млн. тонн в год. В результате производственной деятельности в природные воды ежегодно попадает более 500-600 тыс. тонн свинца, а через атмосферу на поверхность Земли оседает около 400 тыс. тонн. До 90% от общего количества выброса свинца принадлежит к продуктам сгорания бензина с примесью свинцовых соединений. Основная его часть попадает в воздух с выхлопными газами автотранспорта, меньшая – при сжигании каменного угля. Из около почвенного слоя воздуха происходит оседание свинца в почву и поступление его в воду. Содержание свинца в дождевой и снеговой воде колеблется от 1,6 мкг/л в районах удалённых от промышленных центров, до 250-350 мкг/л в крупных городах. Через корневую систему он транспортируется в наземную часть растений. В 23 м от дороги с напряжённостью движения до 69 тыс. автомобилей в день растения фасоли накапливали до 93 мг свинца на 1 кг сухого веса, а в 53 м – 83 мг. Кукуруза, растущая в 23 м от дороги, накапливала в 2 раза больше свинца, чем 53 м. Где сеть дорог очень густая, в ботве кормовой свеклы обнаружено 70 мг свинца на 1 кг сухого вещества, а в собранном сене – 90 мг. С растительной пищей свинец попадает в организм животных. Содержание свинца в различных продуктах (в мкг); свиное мясо – 15, хлеб и овощи – 20, фрукты – 15. С растительной и животной пищей свинец попадает в организм человека, оседая до 80% в скелете, а также во внутренних органах. Человек, представляющий одно из последних звеньев пищевой цепи, испытывает на себе наибольшую опасность нейротоксического воздействия тяжёлых металлов.


Определение ионов свинца в растительных пробах.

Цель работы: определить наличие ионов в растительных пробах.

Приборы: два химических стакана по 50 мл, измерительный цилиндр, весы с гирями, стеклянная палочка, воронка, фильтровальная бумага, ножницы, спиртовка или лабораторная плитка.

Реактивы: этиловый спирт, вода, 5% раствор сульфида натрия

Методика исследования.

1. Взвесить по 100 гр. растений, желательно одного вида, для более точногорезультата (подорожник), на разной удалённости друг от друга.

2. Тщательно измельчить, к каждой пробе добавить по 50 мл. смеси этилового спирта и воды, перемешать, чтобы соединения свинца перешли в раствор.

3. Отфильтровать и упарить до 10 мл. Полученный раствор добавлять по каплям в свежеприготовленный 5%-ный раствор сульфида натрия.

4. При наличии в экстракте ионов свинца, появится чёрный осадок.


Определение ионов свинца в почве.

Цель работы: определить наличие ионов свинца в почве.

Приборы: два химических стакана по 50 мл, измерительный цилиндр, весы с ги­рями, стеклянная палочка, воронка, фильтровальная бумага.

Реактивы: иодид калия, вода.

Методика исследования:

1.Взвесить 2 г почвы, высыпать ее в химический стакан. Затем, залив 4 мл воды, хорошо размешать стеклянной палочкой.

2.Полученную смесь профильтровать.

3. К фильтрату добавить 1 мл 5% иодида калия. При взаимодействии иона свинца с иодидом калия образуется желтый осадок.

РЬ +2 + 2 I - = Р bI 2 (желтый осадок)

4.Опустить край полоски фильтровальной бумаги размером 1 см в полученный раствор. Когда вещество поднимется до середины бумаги, её вынуть и положить сушить. На высохшей фильтровальной бумаге ясно обозначится след осадка. Со временем (через 3-5 дней) жёлтая окраска иодида свинца проявится ярче.

Растения, произрастающие на территории школьного двора и прилегающей к нему территории заметно угнетены и имеют плачевный вид.

Мы предполагаем, что одной из причин данных явлений можно считать накопление в почве школьного двора ионов тяжелых металлов и анионов кислот. Ззагрязнение происходит в основном через атмосферу, на поверхность почвы оседают аэрозоли, пары, пыль, сажа, растворимые вещества, принесенные с дождем, снегом. Загрязнители поступают из дымовых труб тепловозов и автомобилей. Все почвенные загрязнители включаются в пищевые цепи и с продуктами питания или водой попадают в желудочно-кишечный тракт человека. Организм человека испытывает влияние факторов окружающей среды. Вблизи котельных, железнодорожных сетей, обслуживаемых тепловозами на мазутном топливе, большого потока автотранспорта, работающего на дизельном серосодержащем топливе следует ожидать повышенное содержание соединений тяжелых металлов.

В Большой Советской энциклопедии дается такое определение:

Тяжелые металлы- группы металлов, включающие Cu, Ni, Co, Pb, Sn, Zn, Cd, Bi, Sb, Hg. Тяжелые металлы применяют как в элементарном состоянии, так и в виде разнообразных сплавов с другими металлами.

В словаре Даля:

Тяжелые металлы- металлы, имеющие высокий удельный вес, например: медь, свинец, цинк, олово.

Поэтому свою работу я посвящаю определению содержания тяжелых металлов и анионов кислот в почве и снеге школьного двора, а также выяснению влияния ионов тяжелых металлов на рост и развитие растений.

Теоретическая часть

В окружающую среду свинец поступает из природных источников. Это ветровая эрозия почвы, вулканическая деятельность, лесные пожары. Но основное поступление идет из антропогенных источников: бытовые и промышленны отходы, автотранспорт, авиация, ракетно-космическая техника, а также охота, в результате которой в окружающую среду ежегодно поступает до 1400 тонн свинцовой дроби.

Свинец легко проникает в почву и аккумулируется в растениях. Эти растения включаются в трофическую цепь, что приводит к возрастанию концентрации этого элемента. Человек, как конечное звено пищевой цепи, испытывает на себе наибольшую опасность токсического воздействия свинца. В литературных источниках мы не нашли описания влияния свинца на рост и развитие растений.

Источники поступления свинца в организм человека

Органические соединения свинца поступают в организм человека через кожу и слизистые оболочки с пищей и водой, неорганические (например, содержащиеся в выхлопных газах) - через дыхательные пути и пищеварительный тракт.

1, Больше половины всего поступающего в организм свинца приходится на воздух. Ежедневно житель города вдыхает 20 м воздуха с содержанием свинца2 * 10" мг/мг.

Немалый вред приносит автотранспорт. Быстрый рост числа автомобилей в последние годы привел к тому, что в некоторых городах, где нет ни обогатительных комбинатов, ни металлургических заводов, за год в воздух выбрасывается до 8 тыс. т свинца, что превышает допустимый уровень.

С ежедневным приемом пищи в организм поступает свинца 0,06-0,5 мг. В продуктах растительного и животного происхождения естественное содержание свинца не превышает 0,5-1,0 мг/кг. В больших количествах он содержится в хищных рыбах, например в тунце (до 2,0 мг/кг), в моллюсках и ракообразных (до 10 мг/кг). Токсическая доза свинца -1 мг, летальная -10 г.

Много свинца в пищевых продуктах, выращенных вдоль автомагистралей. Свинец образуется при сгорании этилированного бензина (бензина, содержащего тетраэтилсвинец) и легко проникает в почву. Соединения свинца добавляют к бензину для улучшения работы двигателя.

Поглощенный свинец проникает в кровь, распределяется в костных (до 90%) и мягких (печень, почки, мозг) тканях, а также в волосах, ногтях и зубах. Более активно свинец усваивается при дефиците в организме соединений железа, кальция, цинка и при повышенном поступлении витамина D.

Основной механизм действия свинца на организм заключается в том, что он блокирует ферменты, участвующие в синтезе гемоглобина, в результате чего красные кровяные тельца не могут переносить кислород, развивается анемия и хроническая недостаточность кислорода.

Свинцовые отравления весьма различны в проявлениях и включают психическое возбуждение, тревогу, ночные кошмары, галлюцинации, нарушение памяти и интеллекта с симптоматикой распада личности. Очень опасны неврологические нарушения у детей – гиперактивность, ухудшение показателей психического развития, снижение работоспособности к обучению. Отравления свинцом и его солями вызывает поражение десен, расстройство кишечника заболевания почек. Соединения свинца обладают канцерогенностью и генотоксичностью – они могут вызвать мутации, нарушая третичную структуру и функции ферментов синтеза и репарации ДНК.

По результатам официальной статистики среди профессиональных интоксикаций свинцовая занимает первое место.

Более точно определить количество выбросов в атмосферу двигателями автомобилей свинца практически невозможно, так как величина выбросов зависит от многих трудно учитываемых факторов.

Для того чтобы уменьшить загрязнение среды свинцом необходимо уменьшить использование этилированного бензина, т. к. этот бензин и является источником выбросов свинца в атмосферу. Также необходимо создать ряд установок, которые бы задерживали свинец, т. е. количество свинца оседало в этих установках. Естественной такой установкой являются любые виды растительности.

Создание хотя бы незначительных преград не намного, но уменьшило бы степень отравления свинцом населения нашей планеты.

В настоящее время трудно найти область промышленности, где бы ни использовались медь, ее сплавы или соединения. Из меди изготовляют теплообменники, вакуум-аппараты, трубопроводы, электрические провода. Бронза, латунь, медно-никелевые и другие медные сплавы применяют как конструкционный материал, антифрикционные, коррозионно-стойкие, высоко тепло- и электропроводные материалы в машиностроении, судостроении, авиационной промышленности. Оксиды меди используют в производстве стекла и эмали, сульфат меди (II) - в гальванотехнике, при консервировании древесины, изготовлении красок, обогащении руд. Оксидно-медные катализаторы применяют для очистки газов, хлорид и нитрат меди (II) - в пиротехнике. Многие соединения меди представляют собой пестициды или удобрения, поэтому их широко используют в сельском хозяйстве.

Масштабы использования меди и ее соединений необходимо учитывать при анализе влияния содержания меди в окружающей среде на живые организмы. Влияние меди на живые организмы неоднозначно, так как, с одной стороны, она важный микроэлемент, участвующий в обменных процессах, а с другой - ее соединения токсичны (в высоких концентрациях). Ярко выраженная способность к комплексообразованию, взаимодействие с кислородом, подверженность обратимому восстановлению - вот особенности меди, которые определяют ее биологическую роль в живых клетках.

Избыточное содержание меди токсично и для растений. При медной интоксикации изменяется окраска листьев до красной и буро-коричневой, что свидетельствует о разрушении хлорофилла. Кроме того, происходит угнетение роста, задержка развития.

Биологические функции меди

Является составной частью 11 ферментов.

Необходима для образования гемоглобина, т. к. она активизирует железо, которое накапливается в печени, в противном случае оно не может участвовать в образовании гемоглобина. Стимулирует кроветворную функцию костного мозга.

Необходима для правильного обмена витаминов групп В, А, С, Е, Р

Обладает инсулиноподобным действием и влияет на энергообмен.

Необходима для процессов роста и развития, ее значительная часть захватывается из материнского организма плодом в период внутриутробного развития.

Реакция организма на недостаток и избыток меди

Недостаток меди приводит к деструкции кровеносных сосудов, заболеванию костной системы, возникновению опухолевых заболеваний. Удаление меди из соединительной ткани вызывает заболевание «красная волчанка».

Избыток меди в различных тканях приводит к тяжелым и часто необратимым заболеваниям. Накопление меди в печени и мозге, ведет к болезни Вильсона (гепатоцеребральная дистрофия).

Влияние на организм: при недостатке железа человек начинает быстро утомляться, возникают головные боли, появляется плохое настроение.

ВЛИЯНИЕ КИСЛОТНЫХ ДОЖДЕЙ НА ЖИВУЮ ПРИРОДУ.

Дождевая вода, которая образуется при конденсации водяного пара, должна иметь нейтральную реакцию, т. е. рН = 7 (рН - показатель, характеризующий кислотность). Дождевая вода, растворяя диоксид углерода, чуть подкисляется (рН = 5,6-5,7). А вобрав кислоты, образующейся из диоксидов серы и азота, дождь становится заметно кислым.

Земля и растения страдают от кислотных дождей: снижается продуктивность почв, сокращается поступление питательных веществ, меняется состав почвенных микроорганизмов. Огромный вред наносят кислотные дожди лесам. По мере снижения рН воды происходит процесс заболачивания водоемов. Первое время в водоеме сохраняется основная реакция (рН природной воды около 8) благодаря его естественным буферным свойствам - способность нейтрализовывать поступающую кислоту. Однако возможности буферных систем не безграничны. Понемногу вода в водоеме начинает подкисляться, что приводит к необратимым процессам в нем: гибнут планктон моллюски, рыба, исчезают некоторые виды водорослей, бурно развиваются кислотолюбивые мхи, грибы и нитчатые водоросли, появляется сухопутный мох сфагнум, и водоем заболачивается. Гибель обитателей водоема обусловлена не столько закислением, сколько теми процессами, которые оно вызывает:падение содержание ионов кальция, выщелачивание (извлечение)из донных отложений токсичных ионов тяжелых металлов, дефицит кислорода, дефицит анаэробных процессов, образование метана, сероводорода, углекислого газа.

Цели исследовательской работы:

1. Определить содержание тяжелых металлов в почве и снеге на школьном дворе.

2. Определить содержание анионов в почве и снеге на школьном дворе.

Задачи исследовательской работы:

Провести качественное определение химических элементов в почве и снеге;

2)Определить содержание тяжелых металлов в снеге и почве методом тонкослойной хроматографии.

3) Определить содержание анионов кислот в почве и снеге.

Пути решения данных задач:

Исследования проб снега и почвы были проведены в течении года: пробы почвы в сентябре, а пробы снега в январе 2007 и январе 2008гг.

Этапы исследовательской работы:

1. Качественное определение тяжелых металлов в снеге и почве.

2. Определение тяжелых металлов в снеге и почве методом хроматографии.

3. Опредееление анионов кислот в почве и снеге.

4. Изучение влияния ионов тяжелых металлов на рост и развитие растений.

Районы исследования:

Спортивная площадка на школьном дворе.

Полоса земли вдоль автодороги.

Район нового элеватора в степной зоне

Экспериментальный этап №1.

Тема: Качественное определение ионов тяжелых металлов в снеге и почве.

Цель: Провести качественные реакции на ионы: Pb2+, Fe3+,Cr +6, Cu2+, Mn2+.

Тяжелые металлы поступают в почву преимущественно из атмосферы с выбросами промышленных предприятий, а свинец - выхлопными газами автомобилей. Наиболее типичные тяжелые металлы - свинец, кадмий, ртуть, цинк, молибден, никель, кобальт, олово, титан, медь, ванадий. Из атмосферы в почву тяжелые металлы «опадают» чаще всего в форме оксидов, где постепенно растворяются, переходя в гидроксиды, карбонаты или в форму обменных катионов.

О степени экологической опасности химические вещества, попадающие в почву различными путями, делят на 3 класса:

1- кадмий, ртуть, свинец, цинк, фтор, мышьяк, селен;

2- кобальт, молибден, бор, медь, никель, сурьма;

3 - вольфрам, марганец, ванадий, стронций.

Определение химического состава почвы чаще всего начинают с анализа водной почвенной вытяжки, так как хорошо растворимые соединения почвы в первую очередь поглощаются растениями. Избыточные количества растворимых солей (более 0,2 % от массы сухой почвы) создают повышенную концентрацию ионов в почвенном растворе, а это снижает плодородие почвы и ее экологическое состояние.

Этапы работы:

Подготовка почвы к анализу;

Подготовка водной вытяжки; качественное определение химических элементов в почве, в воде.

Подготовка почвы к анализу состоит в измельчении материала, удалении посторонних примесей, просеивании через сито с диаметром отверстий 1 мм м сокращении до небольшой массы. Для сокращения пробы пользуются разными методами. Один из них - метод квартования. Измельченный материал тщательно перемешивала, рассыпала ровным тонким слоем в виде квадрата или круга, делила на четыре сектора. Содержимое двух противоположных секторов отбрасывала, а двух остальных соединяла вместе.

Водную почвенную вытяжку используют чаще всего для определения водорастворимых соединений, а также для определения актуальной кислотности почвы.

Для её приготовления 20 г воздушно – сухой просеянной её экологическое состояние, почвы помещала в колбу на 100 мл, добавила 50 мл дистиллированной воды, взбалтывала в течение 5 - 10 мин и фильтровала. Результаты работы показали, что в водной вытяжке почвы содержатся катионы тяжелых металлов.

Обнаружение ионов свинца

Качественное определение с родизонатом натрия.

На лист фильтровальной бумаги нанести несколько капель исследуемого раствора и добавить 1 каплю свежеприготовленного 0,2% раствора родизоната натрия. В присутствии ионов свинца образуется синее пятно или кольцо. При добавлении 1 капли буферного раствора синий цвет превращается в красный. Реакция очень чувствительна: обнаруживаемый минимум 0,1 мкг

Количественное определение с дихроматом калия.

Дихромат и хромат-ионы образуют с ионами свинца малорастворимый хромат свинца желтого цвета. 0,5-1 л анализируемой воды упарить до объема 10 мл. К полученной пробе прилить 5 мл раствора азотной кислоты (1:2). Нагреть на водяной бане в течение 15 мин. , отфильтровать и в фарфоровой чашке выпарить. К сухому остатку прилить 2 мл 0,5% раствора ацетата натрия и 8 мл дистиллированной воды. Раствор перемешать и отфильтровать в пробирку. Подготовить стандартную шкалу.

Обнаружение ионов железа.

Предельно допустимая концентрация общего железа в воде водоемов и питьевой воде 0,3 мг/л, лимитирующий показатель вредности органолептический.

Общее железо.

В пробирку помещают 10 мл исследуемой воды, прибавляют 1 каплю концентрированной азотной кислоты, несколько капель раствора пероксида водорода и примерно 0,5 мл раствора роданида калия. При содержании железа 0,1 мг/л появляется розовое окрашивание, а при более высоком - красное.

Железо (II).

Гексацианоферрат (III) калия, в кислой среде (рН ~ 3) образует с катионом Fe~ осадок турнбулевой сини темно-синего цвета:

К 1 мл исследуемой воды добавить 2-3 капли раствора серной кислоты и 2-3 капли раствора реактива.

Железо (III).

1. Гексацианоферрат (II) калия в слабокислой среде с катионом

Fe образует темно-синий осадок берлинской лазури:

К 1 мл исследуемой воды прибавить 1-2 капли раствора соляной кислоты и 2 капли раствора реактива.

2. Роданид аммония или калия KSCN образуют в кислой среде с роданиды железа, окрашенные в кроваво-красный цвет. В зависимости от концентрации роданид-иона могут образовываться комплексы различного состава:

К 1 мл исследуемой воды прибавить 2-3 капли раствора соляной кислоты и 2-3 капли раствора реактива.

Обнаружение ионов марганца

ПДК марганца в воде водоемов 0,1 мг/л, лимитирующий показатель вредности органолептический.

Качественное обнаружение.

В колбу помещают 25 мл исследуемой воды, подкисляют несколькими каплями 25%-ной азотной кислоты, прибавляют по каплям 2%-ный раствор нитрата серебра до тех пор, пока продолжается помутнение. Затем вводят 0,5 г персульфата аммония или несколько кристалликов диоксида свинца, нагревают до кипения. В присутствии марганца при концентрации 0,1 мг/л и выше появляется бледно-розовая окраска:

2 Mn2++5 РЬО2+4Н МпО4+5 РЬ2++2Н2О

Обнаружение ионов меди

ПДК меди в воде 0,1 мг/л, лимитирующий показатель вредности органолептический.

Качественное обнаружение

Первый способ.

В фарфоровую чашку поместить 3-5 мл исследуемой воды, осторожно выпарить досуха и на периферийную часть пятна нанести каплю концентрированного раствора аммиака. Появление интенсивно синей или фиолетовой окраски свидетельствуете присутствии Cu+:

Второй способ.

5-10 мл исследуемой воды встряхнуть в цилиндре с небольшим количеством (10-20 мг) адсорбента - фторида кальция или талька. Ионы меди (11), находящиеся в воде, адсорбируются на его поверхности. Осадок отделить, осторожно слив воду, поместить на часовое стекло или в углубление на фарфоровой пластинке. Рядом для сравнения нанести каплю дистиллированной воды («холостой опыт»). К испытуемому осадку и воде одновременно прибавить по капле раствора хлорида железа (III) и по капле 0,2 М раствора тиосульфата натрия, перемешать стеклянной палочкой и сравнить скорость обесцвечивания обеих проб.

В «холостом опыте» наблюдается медленное обесцвечивание интенсивно окрашенного в фиолетовый цвет комплексного аниона в присутствии же ионов меди, играющих роль катализатора, фиолетовый раствор обесцвечивается моментально. Результаты работы показали, что водной вытяжке почвы содержатся ионы металлов.

Экспериментальный этап №2.

Тема: Определение тяжелых металлов в снеге и почве методом хроматографии.

Цель: Подтвердить содержание тяжелых металлов методом хроматографии.

Данные исследования проводила методом тонкослойной хроматографии. В январе проводила качественный анализ снежного покрова, состав которого по содержанию ионов тяжелых металлов, соответствует водной вытяжке почвы.

Потому что снеговой покров накапливает в своем составе практически все вещества, поступающие в атмосферу. В связи с этим снег можно рассматривать как своеобразный индикатор чистоты воздуха. Снег - один из наиболее информативных и удобных индикаторов загрязнения воздушной среды. На его запыленность оказывают влияние природные факторы и особенный ветровой режим. Снег нужно брать по всей глубине его отложения в стеклянные банки (удобнее трехлитровые) Сразу после таяния пробы, когда температура талой воды сравняется с комнатной, проводят ее анализ.

Методика эксперимента

Пробы снега для исследования отбираем со всей глубины снежного покрова. Снег растапливаем, подкисляем азотной кислотой и упариваем с 1 л до 5 мл. Пробы почвы отбираем на глубину до 10 см, так как именно в верхнем горизонте почвы накапливаются тяжелые металлы. Сухую измельченную почву массой 10 г заливаем 50 мл 1 М раствора азотной кислоты и оставляем на сутки, затем смесь фильтруем и упариваем фильтрат до 3 мл. Суть метода ТСХ заключается в разделении сложных смесей веществ на индивидуальные соединения за счет различий в сорбируемости в тонком слое сорбента. Для этого используем силуфоловые пластинки, представляющие собой закрепленный слой силикагеля с крахмалом, нанесенный на алюминиевую фольгу. На вырезанной пластинке размером 3 х 7 см отмечаем линию старта, на которую с помощью капилляров наносим анализируемую смесь и свидетель (водный раствор соли соответствующего металла). Затем эту пластинку помещаем в стакан с растворителем (н-бутанол, дистиллированная вода с добавлением уксусной кислоты до установления в системе pH). Под действием капиллярных сил растворитель поднимается в слое сорбента, увлекая за собой анализируемые вещества, при этом они перемещаются с различными скоростями и в слое сорбента происходит их разделение. Через 15 – 20 мин, когда растворитель достигнет линии финиша, вынимаем хроматограмму.

Для обнаружения ионов металлов опрыскиваем хроматограмму из пульверизатора растворами реагентов, дающих цветные реакции, для обнаружения ионов проводим реакцию с раствором йодистого калия; ионов - раствором гексацианоферрата (II) калия; ионов - раствором 1,5- дифенилкарбазида. При этом появляются окрашенные пятна (желтое, берлинской лазури, розовое, соответственно). По высоте пятна на хроматограмме проводим количественное сравнение анализиркемых ионов тяжелых металлов.

РЬ2+ Fe3+ Сг2О72- Сu2+ Мп2+

Снег (спортплощадка) 2. 0 1. 6 2,1 1. 4 0. 4

Снег (вдоль автодороги) 1,7 2,4 0,01 1. 2 0. 31

Снег (степная зона) 0. 5 0. 7 - 0. 2 0. 2

Объект исследования Высота пятна анализируемого вещества на хроматограмме, см

Fe3+ Сг2О72 Сu2+ Мп2+

Почва (спортплощадка) 2,2 2 2,2 1,1 0,6

Почва (вдоль автодороги) 1,8 1,6 1,3 1,1 0,6

Почва (степная зона) 0,4 0,7 0,2 0,4

Анализ проб снега и почвы со спортплощадки, расположенной непосредственно вблизи железной дороги, показал присутствие в них ионов свинца, причем концентрация свинца в почве оказалась больше, чем в снеге. Это логично объясняется тем, что снег накапливает загрязняющие вещества в течение сезона, а почва из года в год. Содержание свинца в почве зависит от интенсивности автомобильного потока, выбросов котельных.

Пробы почвы, взятые у автодороги, также показали значительное содержание свинца.

В пробах почвы, взятой около дороги и со спортплощадки было обнаружено значительное содержание хромат ионов и ионов железа. Соединение железа могут присутствовать в почве по естественным причинам:

(выветривание горных пород и размывание их водой). Однако наличие ионов железа в снеге свидетельствует о техногенном загрязнении почвы этим элементом.

Придя к таким результатам, меня заинтересовал вопрос: «Какое влияние оказывают тяжелые металлы на организм человека и растений?»

Экспериментальный этап №3

Тема: Качественное определение анионов в почве

Цель: провести качественные реакции на наличие содержания карбонат-, сульфат-, хлорид-, нитрат-ионов в почве

1. Приготовление водной вытяжки.

Пробу почвы тщательно разотрите в фарфоровой ступке. Возьмите 25 г почвы, поместите её в колбу ёмкостью 200 мл и прилейте 50 мл дистиллированной воды. Содержимое колбы тщательно взболтайте и дайте отстояться в течение 5-10 мин. , а затем отфильтруйте в колбу ёмкостью 100 мл.

2. Приготовление солянокислой вытяжки.

Почву, оставшуюся после фильтрования водной вытяжки, перенесите в колбу, где находиться исходная масса, налейте в колбу 50 мг 10% раствора соляной кислоты и взбалтывайте содержимое в течение 30 мин, а затем дайте отстояться в течение 5 мин.

3. Качественное определение содержания карбонат-ионов в почвенном образце.

Небольшое количество сухой почвы поместите в фарфоровую чашку и прилейте пипеткой несколько капель 10% раствора соляной кислоты. Если почва соли угольной кислоты, то наблюдается характерное «шипение» - выделение при реакции оксида углерода (4). По интенсивности выделения газа судят о более или менее значительном содержании карбонатов в почве.

4. Качественное определение содержания хлорид –ионов.

В пробирку прилейте 5 мл водной вытяжки и добавьте в неё несколько капель 10% раствора азотной кислоты и с помощью пипетки 1-2 капли 0,1 н раствора нитрата серебра. При наличии хлорид-ионов в почвенной вытяжке в количестве десятых долей процента и более происходит образование белого хлопьевидного осадка. При содержании хлорид-ионов в количестве сотых и тысячных долей процента осадка не выпадает, но раствор мутнеет.

5. Качественное определение содержания сульфат-ионов.

В пробирку прилейте 5 мл водной вытяжки, добавьте в неё несколько капель концентрированной соляной кислоты и с помощью пипетки прилейте 3-3 мл 20% раствора хлорида бария. При наличии сульфатов в водной вытяжке в количестве нескольких десятых процента и более происходит выпадение белого мелкокристаллического осадка. Сотые и тысячные доли процента сульфатов в растворе определяются помутнением раствора.

6. Качественное определение нитрат – ионов.

В пробирку налейте 5 мл фильтрата водной вытяжки почвы и по каплям прибавьте раствор дифениламина в серной кислоте. При наличии нитратов раствор окрашивается в синий цвет.

Fe3+ CO32- Cl- SO42- NO3-

Спортплощадка + + + + +

У автодороги + + + + +

Степная зона + + + - -

Качественных химический анализ образцов показал наличие в почвенной вытяжке различных анионов: хлорид-, сульфат- ионов. Действуя на сухую почву раствором соляной кислоты, мы определили наличие карбонат – ионов в каждом почвенном образце. В ходе приготовления солянокислой вытяжки обнаружилось выделение сероводорода, что говорит о наличие в почве сульфид-ионов. В солянокислой вытяжке всех образцов почв наблюдается содержание солей железа (2 и 3).

Визуального отличия в количественном содержании в почвенных образцах вышеназванных анионов не отмечается.

2. Качественный состав вод.

Для определения путей проникновения в почву обнаруженных катионов и анионов была предпринята попытка осуществить качественный анализ талых снеговых вод на содержание тех же ионов.

Для определения качественного состава водных образцов были использованы те же методики, что и для определения содержания ионов в почве Наличие ионов в талых водах можно свести в таблицу, которая отражает наличие тех или иных катионов и анионов в исследуемых образцах.

№ пробы Наличие ионов хлорид-ионы сульфат-ионы ионы железа (2,3)

1 спортплощадка + - +

2 у автодороги + - +

3 степная зона + + +

Практически во всех талых водах, кроме контрольной пробы, отмечено наличие небольшого количества хлорид-ионов. Очевидно, что попадение в снеговые воды хлорид-ионов связано с «приземным» загрязнением: хлориды почвы «растворяются» в снеговых массах и обнаруживаются при исследовании. Это говорит о том, что содержание хлоридов в почве достаточно велико.

Экспериментальный этап №4.

Тема: Влияние ионов тяжелых металлов и анионов кислот на растения.

Цель: Выяснить влияние ионов тяжелых металлов на рост и развитие растений.

МЕТОДИКА ЭКСПЕРИМЕНТА

1. Подготовка материала для исследования.

Проращивают зерна злакового растения до ювенильного состояния в полной питательной смеси Прянишникова.

2. Приготовление растворов.

В 5 литровых банок помещают по 243 мг NH4NO3, 23 MgMgSO4 7Н2О, 160 мг КС1, 25 мгFеС136Н20, 172 мг СаНРО4 и 344 мг CaSO4 2H2O (полная питательная смесь Прянишникова - ППСП). Затем во 2-ю и 4-ю банки добавляют по 10 мг сульфата меди (II), а в 3-ю и 5-ю - по 8 мг ацетата свинца (П). В банки наливают воду (водопроводную, в которой содержатся микроэлементы), доведя объемы растворов до 1 л. Растворы, находящиеся в 4-й и 5-й банках, подкисляют.

3. Проведение эксперимента. 13. 10. 04 - замочили пшеницу и фасоль; 14. 10. 04 - пшеница набухла;

15. 10. 04 - поместили пшеницу в пробирки; набухла фасоль;

18. 10. 04 - поместили фасоль в пробирки.

Пшеницу и фасоль проращивали до ювенильного состояния.

Ювенильные растения поместили в пробирки с приготовленными растворами: 1 - ППСП (контроль); 2 -- ППСП + избыток ионов меди; 3 - ППСП + избыток ионов свинца; 4 - подкисленная ППСП

Избыток ионов меди; 5 - подкисленная ППСП + избыток ионов свинца.

Результаты эксперимента

Номер колбы Общий вид растения Длина стебля Длина корня Длина листовой Ширина листовой пластинки пластинки

№1 контроль Хорошо развитое растение, 32,5 2 9 2,5

стебель толстый, корень хорошо развит

№2 ППСП+ избыток ионов Угнетенное растение, листья 37 0,1 6 2

меди бледные, стебель тонкий

№3 ППСП+ избыток ионов Хорошо развитое растение, 30 7 8 2,3

свинца стебель толстый, корень хорошо развит

№4 подкисленная ППСП+ Чахлое растение 24 - 5,5 2

избыток ионов меди

№5 подкисленная ППСП+ Угнетенное растение, жист я 27 4 7,5 2,2

избыток ионов свинца бдеднде, птебыль еонккй

Проведенный эксперимент показал, что:

1. Растения, выращенные в полной питательной смеси, развиваются нормально.

2. Растения, выращенные в питательных растворах, содержащих избыток ионов тяжелых металлов (меди и свинца), отстают в развитии от растений, выращенных в ППСП, согласно данным табл. 1,4,5. Но некоторые исследования привели к неожиданным результатам. Наблюдается опережению роста стеблей пшеницы в присутствии ионов свинца по сравнению с ППСП

3. Растения, выращенные в подкисленных растворах, сильно отстают в развитии, а некоторые из них гибнут. У растений значительно тормозится рост надземной части, происходит задержка образования боковых корней, не образуются корневые волоски, наблюдается хлороз (в банке с подкисленной смесью ППСП и избытком ионов меди): отмирают листья, наблюдается потеря тургора, тормозится рост корней в длину и образование корневых волосков (в банке с подкисленной смесью ППСП и избытком ионов свинца).

Заключение

Данная работа носит исследовательский характер, так как исследования проб снега и почвы проводились в течение года. В работе четко поставлены цели, задачи, пути решения задач, этапы исследовательской работы. Для того, чтобы получить наиболее достоверные результаты по содержанию ионов тяжелых металлов, я провела сравнительные анализы: 1) качественное определение,2)определение методом тонкослойной хроматографии. Оба метода подтвердили содержание ионов тяжелых металлов и анионов кислот в снеге и почве. Был смоделирован эксперимент, выявляющий влияние ионов тяжелых металлов на рост и развитие растений.

На основании проведенных исследований можно сделать следующие выводы:

1. В процессе проведенного эксперимента было установлено, что соли тяжелых металлов, а именно свинца и меди, а также кислая среда тормозят рост и развитие как надземной (стеблей), так и подземной (корней) частей пшеницы и других растений. Это происходит в результате повышенного усвоения ионов тяжелых металлов растениями при подкислении питательного раствора. Ионы тяжелых металлов в больших концентрациях оказывают токсическое действие и вызывают гибель растений.

2. Качественный анализ почвенных и водных образцов, взятых в районе школы и с прилегающих территорий, показал наличие в них достаточно большого количества разнообразных ионов: хлорид, сульфат-, карбонат,- сульфид-ионов, катионов железа (2 и 3).

4. Избыточное содержание хлорид-ионов в почве и грунтовых водах также пагубно сказывается на жизнедеятельности растений, так как нарушается процесс накопления крахмала.

Поступление минеральных солей в почву и воду обусловлено рядом антропогенных и естественных факторов. Для снижения загрязнения почвы и воды следует перейти на другой вид топлива.

5. Мы убедились, что наличие тяжелых металлов в организме- это один из отрицательных факторов, влияющих на здоровье.

6. Для поглощения из атмосферы соединений серы, а из почвы солей тяжелых металлов имеет смысл на территории школьного двора выращивать растения, их улавливающие. Такими способностями обладают немногие деревья и кустарники. Мы предлагаем включить в список проекта озеленения школьного двора тополь и сосну.

Башурова Мария

В данной работе рассмотрена одна из главных экологических проблем нашего времени: загрязнение окружающей среды одним из тяжелых металлов – свинцом. За последние года чаще всего фиксируются отравления соединениями именно этого металла.

Здесь впервые рассчитано количество выбрасываемых соединений свинца автомобильным транспортом для п.Новоорловск. В результате качественных реакций соединения свинца обнаружены в окружающей среде п.Новоорловск.

А также выявлены главные источники загрязнений соединениями свинца в п.Новоорловск.

Скачать:

Предварительный просмотр:

Научно-практическая конференция «Шаг в будущее»

Изучение содержания

соединений свинца

В окружающей среде п.Новоорловск

Выполнила: Башурова Мария Викторовна

ученица 10 класса МОУ «Новоорловская средняя

общеобразовательная школа».

Руководитель: Гордеева Валентина Сергеевна

учитель химии МОУ «Новоорловская средняя

общеобразовательная школа».

Российская Федерация

Забайкальский край, Агинский район, пгт.Новоорловск

2010

Введение

1.1 Характеристика и применение свинца и его соединений.

1.2 Источники загрязнения соединениями свинца.

Глава 2. Изучение содержания соединений свинца в окружающей среде п.Новоорловск.

2.1. Методики исследований.

2.3. Выводы по результатам исследований.

Заключение.

Библиографический список.

Приложения.

Башурова Мария

Введение.

Роль металлов в развитии и становлении технической культуры человечества исключительно велика. Исторически сложившиеся названия «Бронзовый век», «Железный век» говорят о сильном влиянии металлов и их сплавов на все направления развития производства. И в нашей повседневной практике мы ежеминутно сталкиваемся с металлами. И в нас самих есть металлы. Они используются для осуществления различных процессов в организме. Но не всегда металлы являются необходимыми. Многие из них даже являются для организма опасными. Так, например, некоторые металлы чрезвычайно токсичны для позвоночных уже в малых дозах (ртуть, свинец, кадмий, таллий), другие вызывают токсические эффекты в больших дозах, хотя и являются микроэлементами (например, медь, цинк). У беспозвоночных животных, имеющих твердые покровы, свинец в наибольшей степени концентрируется в них. У позвоночных животных свинец в наибольшей степени накапливается в костной ткани, у рыб - в гонадах, у птиц - в перьях, у млекопитающих - в головном мозге и печени.

Свинец - металл, который при контактах с кожей и при попадании в организм вызывает наибольшее количество тяжелейших заболеваний, поэтому по степени воздействия на живые организмы свинец отнесен к классу высокоопасных веществ наряду с мышьяком, кадмием, ртутью, селеном, цинком, фтором и бензапреном (ГОСТ 3778-98).

Огромное влияние на загрязнение окружающей среды свинцом оказывают автомобили со свинцовыми аккумуляторами. Выхлопные газы являются важнейшим источником свинца. Увеличение свинца в почве, как правило, ведет к его накоплению растениями. Многие данные свидетельствуют о резком возрастании содержания свинца в растениях, выросших по краям автострад. Загрязнение вод свинцом вызывают сточные воды предприятий, содержащие в токсичных количествах соли свинца, а также свинцовые трубы. Токсические вещества, содержащиеся в водах, весьма опасны для человека, так как активно накапливаются в пищевых цепях.

По данным аналитического агентства «Автостат» в России в 2009г. приблизительно насчитывается 41,2 млн. автомобилей. Состав парка автомобилей по видам используемого топлива следующий: количество автомобилей, использующих газ в виде топлива, не превышает 2%. Остальные автомобили используют дизельное топливо – 37% или «освинцованный» бензин – 61%.

Одной из важных проблем любого региона является загрязнение почвы, воды, воздуха тяжёлыми металлами.

При проведении данного исследования мы выдвинули гипотезу , что в окружающей среде п.Новоорловск присутствуют соединения свинца.

Объект исследования – загрязнения соединениями свинца окружающей среды.

Предмет исследования – автомобильная трасса и автомобили, проезжающие по ней; почва; снег; растения.

Цель исследования: изучить содержание соединений свинца, выбрасываемых в воздух; накапливаемых в почве, растениях, снеге.

Для реализации поставленной цели мы решали следующие задачи:

1. Изучить научную литературу и Интернет-сайты по поставленной цели исследования.

2. Провести качественный анализ проб почвы, снега и растений на содержание соединений свинца.

3. Выяснить уровень загрязнённости соединениями свинца окружающей среды данной местности.

4. Определить количество выбрасываемых соединений свинца автотранспортом.

5. Определить основные источники загрязнения соединениями свинца на данной территории.

Научная новизна . В результате работы проведен качественный анализ на содержание соединений свинца проб почвы, снега и растений, взятых из окружающей среды поселка Новоорловск. Определено количество выбрасываемых соединений свинца автотранспортом. Определены основные источники загрязнения соединениями свинца на данной территории.
Практическая значимость работы. Изучены методы выявления содержания соединений свинца в почве, снеге, растениях, которыми можно пользоваться. Установлено, что соединения свинца содержатся вблизи основных источников загрязнения. Определено в ходе исследований, что основными источниками загрязнения соединениями свинца является автотрасса, Центральная котельная, ЗАО «Новоорловский ГОК».

«Изучение содержания соединений свинца в окружающей среде поселка Новоорловск»

Башурова Мария

Российская Федерация, Забайкальский край, Агинский район, пгт.Новоорловск

МОУ «Новоорловская средняя общеобразовательная школа», 10 класс

Глава 1. Загрязнения окружающей среды соединениями свинца.

1.1. Характеристика и применение свинца и его соединений.

Свинец - Pb (Plumbum), порядковый номер 82, атомный вес 207,21. Этот голубовато-серый металл знаком с незапамятных времен. Происхождение названия «свинец» - от слова «вино» - связано с применением этого металла при изготовлении сосудов для хранения вина. Ряд экспертов считает, что свинец сыграл решающую роль в падении Римской империи. В древние времена вода стекала с покрытых свинцом крыш по свинцовым желобам в покрытые свинцом бочки. При изготовлении вина пользовались свинцовыми котлами. В большинстве мазей, косметических средств и красок присутствовал свинец. Все это, возможно, привело к снижению рождаемости и появлению психических расстройств в среде аристократов.

Он ковок, мягок. Даже ноготь оставляет на нём след. Плавится свинец при температуре 327,4 градуса. На воздухе он быстро покрывается слоем окиси. В наши дни свинец переживает « вторую молодость». Его главные потребители – кабельная и аккумуляторная промышленность, где он идёт на изготовление оболочек и пластин. Из него делают кожухи башен, змеевики холодильников и другую аппаратуру на сернокислых заводах. Он незаменим при изготовлении подшипников (баббит), типографского сплава (гарта) и некоторых сортов стекла. Из соединений свинца наибольшее практическое значение имеют нитрат свинца Pb(NО 3 ) 2 , который применяют в пиротехнике – при изготовлении осветительных, зажигательных, сигнальных и дымовых составов; дигидроксокарбонат свинца – Pb 3 (OH) 2 (CO 3 ) 2 – используется для приготовления высококачественной краски – свинцовых белил. Правда у неё есть небольшой изъян: под действием сероводорода она постепенно тускнеет. Поэтому-то такими тёмными становятся старинные картины, написанные масляными красками. В больших количествах выпускается сурик (Pb 3 O 4 ) – вещество ярко-красного цвета, из которого получают обыкновенную масляную краску. Также для приготовления красок широко используется свинцовый пигмент хромат свинца PbCrO 4 («желтый крон»). Исходным продуктом для получения соединений свинца является ацетат свинца Pb 3 (СН 3 COО) 2 . Хотя его соединение ядовито, но его 2%-ный раствор используют в медицине для примочек воспаленных поверхностях тела, так как он обладает вяжущими и болеутоляющими свойствами. Самыми высоко токсичными свойствами обладают алкилированные соединения, в частности, тетраэтилсвинец (С 2 Н 5 ) 4 Pb и тетраметилсвинец (СН 3 ) 4 Pb – это летучие ядовитые жидкие вещества. Тетраэтилсвинец (ТЭС) – антидетонатор для моторного топлива, поэтому его добавляют в бензин.

1.2. Источники загрязнения соединениями свинца.

Свинец попадает в воду различными путями. В свинцовых трубах и других местах, где возможен контакт этого металла с водой и кислородом воздуха, протекают процессы окисления: 2Pb+O 2 +2H 2 O→2Pb(OH) 2 .

В подщелоченной воде свинец может накапливаться в значительных концентрациях, образуя плюмбиты: Pb(OH) 2 +2OHֿ→PbO 2 ²ֿ+2H 2 O.

Если в воде присутствует СО 2 , то это приводит к образованию довольно хорошо растворимого гидрокарбоната свинца: 2Pb+O 2 →2PbO, PbO+CO 2 →Pb CO 3 , PbCO 3 +H 2 O+CO 2 →Pb(HCO 3 ) 2 .

Также в воду свинец может попадать из загрязненных им почв, а также путем прямых сбросов отходов в реки и моря. Существует проблема загрязнения питьевых вод в районах расположения плавильных заводов или мест складирования промышленных отходов с высоким содержанием свинца.

Наиболее высокие концентрации свинца обнаруживаются в почве вдоль автотрассы, а также где расположены металлургические предприятия или предприятия по производству свинецсодержащих аккумуляторов или стекла.

Автомобильный транспорт, который работает на жидком топливе (бензине, дизельном топливе и керосине), теплоэлектроцентрали (ТЭЦ) и теплоэлектростанции (ТЭС) представляют собой один из основных источников загрязнения воздуха. В выхлопных выбросах автомобилей содержатся тяжёлые металлы, в том числе свинец. Более высокие концентрации свинца в атмосферном воздухе городов с крупными промышленными предприятиями.

В организм человека большая часть свинца поступает с продуктами питания. Наиболее высокие уровни содержания свинца отмечаются в консервах в жестяной таре, рыбе свежей и мороженной, пшеничных отрубях, желатине, моллюсках и ракообразных. Высокое содержание свинца наблюдается в корнеплодах и других растительных продуктах, выращенных на землях вблизи промышленных районов и вдоль дорог. Питьевая вода, атмосферный воздух, курение – тоже источники поступления соединений свинца в организм человека.

1.3. Последствия поступления соединений свинца в организм человека.

В 1924 году в США, когда для производства бензина потребовался в больших количествах ТЭС, на заводах, где его синтезировали начались несчастные случаи. Было зарегистрировано 138 отравлений, из которых 13 кончились смертельным исходом. Это было первое зарегистрированное свинцовое отравление.

Как и радиация, свинец является кумулятивным ядом. Попадая в тело, он накапливается в костях, печени и почках. Явными симптомами свинцового отравления являются: сильная слабость, спазмы в брюшной области и параличи. Бессимптомным, но также опасным является постоянное присутствие свинца в крови. Он влияет на образование гемоглобина и вызывает анемию. Возможно появление нарушений психики.

В настоящее время свинец занимает первое место среди причин промышленных отравлений. Загрязнение свинцом атмосферного воздуха, почвы и воды в окрестности таких производств, а также вблизи крупных автомобильных дорог создает угрозу поражения свинцом населения, проживающего в этих районах, и прежде всего детей, которые более чувствительны к воздействию тяжелых металлов.

Отравление свинцом (сатурнизм) – представляет собой пример наиболее частого заболевания, обусловленного воздействием окружающей среды. В большинстве случаев речь идет о поглощении малых доз и накопление их в организме, пока его концентрация не достигнет критического уровня необходимого для токсического проявления.
Органами - мишенями при отравлении свинцом являются кроветворная и нервная системы, почки. Менее значительный ущерб сатурнизм наносит желудочно-кишечному тракту. Один из основных признаков болезни - анемия. На уровне нервной системы отмечается поражение головного мозга и периферических нервов. Интоксикация свинцом может быть, по большей части предупреждена, особенно у детей. Законы запрещают использовать краски на основе свинца, равно как и его присутствие в них. Соблюдение этих законов может хоть частично решить проблему этих “тихих эпидемий”. Общепринятой является следующая классификация свинцовых отравлений, утвержденная МЗ РФ:

1. Носительство свинца (при наличии свинца в моче и отсутствии симптомов отравления).

2. Легкое свинцовое отравление.

3. Свинцовые отравления средней тяжести: а) анемия (гемоглобин ниже 60 % -до 50 %); б) нерезко выраженная свинцовая колика; в) токсический гепатит.

4. Тяжелое свинцовое отравление: а) анемия (гемоглобин ниже 50%); б) свинцовая колика (выраженная форма); в) свинцовые параличи.

При лечении свинцовых отравлений используют такие препараты, как тетацин и пентацин. (Приложение 1) Также необходимы профилактические меры. (Приложение 2)

Глава 2. Изучение содержания соединений свинца в окружающей среде п.Новоорловск

2.1. Методики исследований.

Для расчета количества вредных выбросов автотранспортом за 1 час мы использовали методику, утвержденную приказом Госкомэкологии России № 66 от 16 февраля 1999 года .

  1. На автомобильной трассе определить участок дороги протяженностью в 100м.
  1. Рассчитайте общий путь (S), пройденный всеми машинами за 1 час: S = N*100м.
  2. Взяв измерения выбросов автомобилями на 1 км, вычислить сколько выбросов соединений свинца дали автомобили за 1 час.
  3. Рассчитайте примерное количество соединений свинца, выбрасываемых за 1 час на общем пройденном пути.

Для определения содержания соединений свинца на поверхности земли (в снеге) мы использовали методику из школьного практикума .

  1. Для взятия пробы потребуется посуда ёмкостью не менее 250 мл.
  2. Ёмкость погружается в снег с открытым концом, стараясь достичь его нижнего слоя.
  3. Проба вынимается и доставляется в лабораторию для растаивания.
  4. От каждой пробы отливается по 100 мл жидкости и фильтруется.
  5. В опытные пробирки отливается по 1 мл талой воды из каждой пробы и добавляется по 1 мл раствора КI и 1 мл 6% HNO 3 .
  6. Определяются изменения в пробирках.

Для определения содержания соединений свинца в почве мы использовали методику из школьного практикума :

  1. Делается забор проб почвы.
  2. Почва подсушивается в течении 5 дней.
  3. Из каждой пробы делаются навески по 10 мг и помещаются в пробирки.
  4. В каждую пробирку добавляется по 10 мл дистиллированной воды.
  5. Содержимое пробирок в течении 10 минут перемешивать и оставить на сутки.

6. Через сутки в опытные пробирки добавить по 1 мл KI и HNO 3 и отметить изменения.

Для определения содержания соединений свинца в растениях мы использовали методику из школьного практикума :

  1. Отбирается по 50 штук листьев или 50 г травы.
  2. Растительный материал подсушивается и измельчается.
  3. Растительная масса помещается в пробирки, заливается 20 мл дистиллированной воды и оставляется на сутки.

4. Через сутки добавляется по 1 мл KI и HNO 3

5. Отметить изменения.

2.2. Результаты исследований.

Исследования проводились в летнее и осеннее время 2010 года.

Для расчета количества вредных выбросов автотранспортом за 1 час была выбрана автомобильная трасса, проходящая в центре поселка Новоорловск. В результате этих расчетов мы получили, что за 1 час выбрасывается 0,644г соединений свинца в воздух (Приложение 3).

Для определения содержания соединений свинца в окружающей среде мы брали по пять проб на поверхности почвы (в снеге), в почве, в растениях на определенных участках: 1. Дорога возле школы 2. Центральная котельная 3. ЗАО «Новоорловский ГОК» 4. Лес 5. Дорога вдоль дачного кооператива. Мы оценивали уровень загрязненности соединениями свинца по степени окрашенности осадка: интенсивный желтый – сильный уровень загрязненности; желтоватый – средний уровень; нет желтого осадка – слабый уровень.

В ходе изучения содержания соединений свинца на поверхности почвы (в снеге) было установлено, что на обочине дороги возле школы, Центральной котельной и ЗАО «Новоорловский ГОК» самый высокий уровень соединений свинца. Это видно по ярко жёлтому осадку, который был получен в ходе эксперимента и являлся качественным показателем содержания свинца. (Приложение 4)

При изучении содержания соединений свинца в почве выяснилось, что высокий уровень загрязненности соединениями свинца на обочине дороги возле школы и ЗАО «Новоорловский ГОК». (Приложение 5)

Анализ растительной массы показал, что растения, растущие возле Центральной котельной, ЗАО «Новоорловский ГОК» и дороги вдоль дачного кооператива, накапливают в своих тканях наибольшее количество соединений свинца. (Приложение 6)

Самый низкий показатель уровня загрязненности соединениями свинца поверхности почвы (снега), почвы и растений мы получили в пробах, взятых в лесу.

Все полученные нами результаты были доведены до населения в виде бюллетеней и листовок об опасности загрязнений соединениями свинца. (Приложение 7,8)

2.3. Выводы.

  1. Экспериментальные данные подтвердили, что источником соединений свинца в нашем поселке является центральная автомобильная дорога, а также ЗАО «Новоорловский ГОК» и котельная.
  2. Соединения свинца обнаружены на поверхности почвы (снеге), в почве и в растениях.

3. В результате расчетов количества вредных выбросов автотранспортом мы получили, что за 1 час выбрасывается 0,644г соединений свинца в воздух.

4. Соединения свинца для человека – причина многих серьезных заболеваний.

«Изучение содержания соединений свинца в окружающей среде поселка Новоорловск»

Башурова Мария

Российская Федерация, Забайкальский край, Агинский район, пгт.Новоорловск

МОУ «Новоорловская средняя общеобразовательная школа», 10 класс

Заключение.

Данная работа показывает, что автомобильная трасса и машины проезжающие по ней могут стать довольно сильным источником тяжелых металлов в окружающей среде. Свинец из бензина попадает в выхлопные газы, а затем в атмосферу. Уровень загрязнённости будет зависеть и от транспортной нагрузки автодороги. Так как почва и растения возле дороги сильно загрязнены свинцом, то использовать землю под выращивание сельскохозяйственной продукции и выпаса скота нельзя, а растения - для корма сельскохозяйственных животных.

В результате работы проведен качественный анализ на содержание соединений свинца проб почвы, снега и растений, взятых из окружающей среды поселка Новоорловск. Определено количество выбрасываемых соединений свинца автотранспортом.

Необходима просветительская работа среди местного населения, особенно владельцев дачных участков, вплотную подходящих к трассе.

Нами были разработаны информационные бюллетени и листовки, в которых даны рекомендации по уменьшению воздействия трассы на огороды:

  1. По возможности удалить свой участок от источника загрязнения путём не использования земли непосредственно прилегающей к трассе.
  2. Не использовать землю на участке засадить растениями высотой более 1 метра (кукуруза, укроп и т. п.)
  3. В дальнейшем эти растения убрать с огорода, не используя их.

Список используемых источников:

1. Вишневский Л.Д. Под знаком углерода: Элементы IV группы периодической системы Д.И. Менделеева. М.: Просвещение, 1983.-176с.

2. Лебедев Ю.А. Второе дыхание марафонца (О свинце). М.: Металлургия, 1984 – 120с.

3. Мансурова С.Е. Школьный практикум «Следим за окружающей средой нашего города». М.: Владос, 2001.-111с.

4. Некрасов Б.В. Основы общей химии. Том 2. М.: Издательство «Химия», 1969 – 400с.

5. Никитин М.К. Химия в реставрации. Л.: Химия, 1990. – 304с.

6. Николаев Л.А. Металлы в живых организмах. М.: Просвещение, 1986. – 127с.

7. Петряков-Соколов И.В. Популярная библиотека химических элементов. Том 2. М.: Издательство «Наука», 1983. – 574с.

8. Рувинова Э.И. Загрязнения среды свинцом и здоровье детей. «Биология», 1998 №8 (февраль).

9. Сумаков Ю.Г. Живые приборы. М.: Знание, 1986. – 176с.

10. Сударкина А.А. Химия в сельском хозяйстве. М.: Просвещение, 1986. – 144с.

11. Шалимов А.И. Набат тревоги нашей: экологические размышления. Л.: Лениздат, 1988. – 175с.

12. Шеннон С. Питание в атомном веке, или как уберечь себе от малых доз радиации. Минск: Издательство «Беларусь», 1991. – 170с.


Подписи к слайдам:

Башурова Мария 10 класс Новоорловская СОШ

Тема работы: ИЗУЧЕНИЕ СОДЕРЖАНИЯ СОЕДИНЕНИЙ СВИНЦА В ОКРУЖАЮЩЕЙ СРЕДЕ п.НОВООРЛОВСК

Источники загрязнений соединений свинца: автомобильные аккумуляторы, выбросы авиационных двигателей, масляные краски на свинцовой основе, удобрения из костной муки, керамические покрытия на фарфоре, дым сигарет, трубы из свинца или со свинцовым покрытием, процесс получения свинца из руды, выхлопные газы, припои, растения, выращенные вблизи автомагистралей

Гипотеза работы: В окружающей среде п.Новоорловск присутствуют соединения свинца.

Цель работы: изучение содержания соединений свинца, выбрасываемых в воздух, накапливаемых в почве, растениях, снеге.

Свинец - Pb (Plumbum) порядковый номер 82 атомный вес 207,21 Этот голубовато-серый металл. Он ковок, мягок. Тпл = 327,4 градуса. На воздухе он быстро покрывается слоем окиси.

Применение свинца: аккумуляторная и кабельная промышленность. Незаменим при изготовлении подшипников, типографского сплава и некоторых сортов стекла.

Соединения свинца: Pb (N О3)2 – нитрат свинца, Pb 3(OH)2(CO 3)2 - дигидроксокарбонат свинца (Pb 3 O 4) – сурик (С2Н5)4 Pb - тетраэтилсвинец (ТЭС) (СН3)4 Pb – тетраметилсвинец

Источники поступления соединений свинца в организм человека: Продукты питания (консервы в жестяной таре, рыба свежая и мороженная, пшеничные отруби, желатин, моллюски и ракообразных.) Питьевая вода Атмосферный воздух Курение

Свинец - кумулятивный яд. Накапливается в костях, печени и почках.

Сатурнизм – свинцовое отравление. Симптомы: сильная слабость, спазмы в брюшной области, параличи, нарушение психики

Наименование группы автомобилей Количество за 20 мин, шт Кол-во за час (N), шт Общий путь, пройденный за час всеми автомобилями, км Выбросы на 1 км одним автомобилем, г/км Выбросы за 1 км всеми автомобилями, г/км Выбросы за общий путь, г/км Легковые 6 18 1,8 0,019 0,342 0,62 Легковые дизельные 2 6 0,6 - - - Грузовые карбюраторные с грузоподъемностью до 3 т 1 3 0,3 0,026 0,078 0,02 Грузовые карбюраторные с грузоподъемностью более 3 т - - - 0,033 - - Автобусы карбюраторные 1 3 0,3 0,041 0,123 0,004 Грузовые дизельные 2 6 0,6 - - - Автобусы дизельные 1 3 0,3 - - - Газобалонные, работающие на сжатом природном газе - - - - - - Всего 13 39 3,9 0,119 0,543 0,644

Участки забора проб: 1. Дорога возле школы 2. Центральная котельная 3. ЗАО «Новоорловский ГОК» 4. Лес 5. Дорога вдоль дачного кооператива.

Содержание соединений свинца на поверхности почвы (в снеге). Номер пробной пробирки Участок забора пробы Наличие осадка Уровень загрязнённости 1 Дорога возле школы Жёлтый осадок Сильный 2 Центральная котельная Желтый осадок Сильный 3 ЗАО «Новоорловский ГОК» Жёлтый осадок Сильный 4 Лес Нет осадка Слабый 5 Дорога вдоль дачного кооператива Желтоватый осадок Средний

Источники соединений свинца в п.Новоорловск: Центральная котельная Автомобильная дорога ЗАО «Новоорловский ГОК»

Свинец опасен для человека!!!

Спасибо за внимание!

Предварительный просмотр:

Приложение 1.

Лечение свинцовых отравлений. При острых отравлениях используются комплексообразователи, среди которых наиболее эффективны тетацин и пентацин при внутривенном введении (6 г препарата на курс лечения в виде 5 % раствора). Применяются также средства, стимулирующие кроветворение: препараты железа, камполон, цианокобаламин, аскорбиновая кислота. Для уменьшения боли при колике рекомендуются теплые ванны, 0,1 % раствор атропина сульфата, 10 % раствор натрия бромида, 0,5 % раствор новокаина, молочная диета. Для уменьшения вегетативно-астенических явлений можно применять внутривенно глюкозу с тиамином и аскорбиновой кислотой, бром, кофеин, хвойные ванны, гальванический воротник. При энцефалопатиях назначают дегидратирующие средства (25 % раствор магния сульфата, 2,4 % раствор эуфиллина, 40 % раствор глюкозы); при полинейропатиях - тиамин, антихолинэстеразные средства, четырехкамерные ванны, массаж, лечебную физкультуру.

Для выведения свинца из депо применяют диатермию печени, внутривенное введение 20 % раствора натрия гипосульфита.

Защитные средства: витамины группы В, витамин С, витамин D, кальций, магний, цинк, пектиновые соединения, альгинат натрия, различные сорта капусты.

Приложение 2.

Профилактика свинцовых отравлений. Основным мероприятием по предупреждению отравлений свинцом является замена его другими, менее токсичными веществами на тех производствах, где он применяется. Например, свинцовые белила заменяют титаново-цинковыми, вместо свинцовых прокладок для насечки напильников применяются прокладки из сплава олова с цинком, свинцовые пасты для отделки кузовов легковых автомобилей заменяются пастой из пластических материалов. При технологических процессах, а также при транспортировке свинца и содержащих свинец материалов обязательно герметичное укрытие источников пылевыделения, оборудование мощной аспирационной вентиляции с очисткой загрязненного пылью и парами свинца воздуха перед выбросом его в атмосферу. Запрещается использование труда женщин и подростков в процессах плавки свинца. Необходимо соблюдение таких мер личной гигиены, как санация полости рта, мытье рук 1 % раствором уксусной кислоты, использование специальной одежды и респираторов, лечебно-профилактическое питание.

Приложение 3.

Результаты проведенной методики

определения выбросов соединений свинца автотранспортом.

Наименование группы автомобилей

Количество за 20 мин, шт

Кол-во за час (N), шт

Общий путь,

пройденный за час всеми автомобилями,

Км

Выбросы на 1 км одним автомобилем, г/км

Выбросы за 1 км всеми автомобилями, г/км

Выбросы за общий путь, г/км

Легковые

0,019

0,342

0,62

Легковые дизельные

Грузовые карбюраторные с грузоподъемностью до 3 т

0,026

0,078

0,02

Грузовые карбюраторные с грузоподъемностью более 3 т

0,033

Автобусы карбюраторные

0,041

0,123

0,004

Грузовые дизельные

Автобусы дизельные

Газобалонные, работающие на сжатом природном газе

Всего

0,119

0,543

0,644

Приложение 4.

Номер пробной пробирки

Участок забора пробы

Наличие осадка

Уровень загрязнённости

Дорога возле школы

Жёлтый осадок

Сильный

Центральная котельная

Желтый осадок

Сильный

ЗАО «Новоорловский ГОК»

Жёлтый осадок

Сильный

Лес

Нет осадка

Слабый

Желтоватый осадок

Средний

Приложение 5.

Номер пробной пробирки

Участок забора пробы

Наличие осадка

Уровень загрязнённости

Дорога возле школы

Жёлтый осадок

Сильный

Центральная котельная

Желтоватый осадок

Средний

ЗАО «Новоорловский ГОК»

Жёлтый осадок

Сильный

Лес

Желтоватый

Слабый

Дорога вдоль дачного кооператива

Желтоватый осадок

Средний

Приложение 6.

Номер пробной пробирки

Участок забора пробы

Наличие осадка

Уровень загрязнённости

Дорога возле школы

Желтоватый осадок

Средний

Центральная котельная

Желтый осадок

Сильный

ЗАО «Новоорловский ГОК»

Жёлтый осадок

Сильный

Лес

Нет осадка

Слабый

Дорога вдоль дачного кооператива

Желтый

Сильный

Дата создания: 2013/12/30

В настоящее время вопрос об очистке воды и качестве бытовых фильтров волнует многих людей.

Исследование качества питьевой воды

Для исследования были взяты образцы воды водопроводной и прошедшей очистку с помощью бытовых фильтров Аквафор (кувшин), Аквафор (кран), Барьер (кувшин). Изучались показатели: водородный показатель рН, содержание ионов цинка (II), меди (II), железа (III), жёсткость воды.

Водородный показатель рН

В пробирку наливается 5 мл исследуемой воды, рН определяется с помощью универсального индикатора, по шкале оценивается величина рН:

  • Розово-оранжевая - рН=5;
  • Светло-желтая - pH=6;
  • Светло-зелёная - рН=7;
  • Зеленовато-голубая - рН=8.

Отфильтрованная вода имеет слабокислую реакцию среды, а среда воды нефильтрованной близка к нейтральной.

Определение ионов железа

К 10 мл исследуемой воды прибавляли 1-2 капли HCl (1:2) и 0,2 мл (4 капли) 50%-го раствора роданида калия KNCS. Перемешивается и проводятся наблюдения за развитием окраски. Этот метод чувствителен, можно определить до 0,02 мг/л ионов железа.

Fe3+ + 3NCS- = Fe(NCS)3

  • Отсутствие окраски - менее 0,05;
  • Едва заметное желтовато-розовое - от 0,05 до 0,1;
  • Слабое желтовато-розовое - от 0,1 до 0,5;
  • Желтовато-розовое - от 0,5 до 1,0;
  • Желтовато-красное - от 1,0 до 2,5;
  • Ярко-красное более 2,5.

Наибольшая концентрация ионов железа (III) - в нефильтрованной воде.

Определение иона свинца (качественное)

Иодид калия дает в растворе с ионами свинца характерный осадок PbI2. К испытуемому раствору прибавляется немного KI, после чего, добавив CH3COOH, нагревается содержимое пробирки до полного растворения первоначально выпавшего мало характерного желтого осадка PbI2. Охлаждается полученный раствор под краном, при этом PbI2 выпадает снова, но уже в виде красивых золотистых кристаллов Pb2+ +2I- = PbI2. Вода, прошедшая очистку и нефильтрованная, не содержат ионы свинца (II).

Определение иона меди (качественное)

В фарфоровую чашку помещается 5 мл исследуемой воды, выпаривается досуха, затем прибавляется 1 капля концентрированного (25%) раствора аммиака. Появление интенсивного синего цвета свидетельствует о наличии ионов меди. 2Сu2+ +4NH4ОН = 22+ +4H2O

Определение жёсткости воды

В коническую колбу на 250 мл вносится 100 мл исследуемой воды, прибавляется 5 мл аммиачного буферного раствора и на кончике шпателя вносится индикатор (эриохром черный). Затем следует раствор перемешать и медленно титровать 0,05 н раствором трилона Б до изменения окраски индикатора от вишневой до синей.

Приготовление индикатора эриохрома черного (сухого): для этого 0, 25 г индикатора смешивают с 50 г сухого хлорида натрия, предварительно тщательно растертого в ступке.

Приготовление буферного раствора: 10 г хлористого аммония (NH4Cl) растворяют в дистиллированной воде, добавляют 50см3 25 %-ного раствора аммиака и доводят до 500 см3 дистиллированной водой.

Приготовление 0,05 н раствора трилона Б: 9, 31 г трилона Б растворяют в дистиллированной воде и доводят до 1 дм3. Раствор устойчив в течение нескольких месяцев.

Расчет общей жесткость производят по формуле:

Ж мг-экв/л = (Vмл*N г-экв/л*1000мг-экв/г экв) / V1мл,

где: V - объем раствора трилона "Б", пошедшего на титрование, мл.

N - нормальность раствора трилона "Б" г-экв/л.

V1- объем исследуемого раствора, взятого для титрования, мл.

При оценке жёсткости воды её характеризуют следующим образом:

  • очень мягкая - до 1,5 мг-экв/л;
  • мягкая - от 1,5 до 4 мг-экв/л;
  • средней жёсткости - от 4 до 8 мг-экв/л;
  • жесткая - от 8 до 12 мг-экв/л;
  • очень жесткая - более 12 мг-экв/л.

Водопроводная вода является жёсткой, вода, прошедшая очистку на фильтре Барьер, обладает средней жёсткостью, вода прошедшая очистку на фильтре Аквафор (кувшин и кран), мягкая и средней жёсткости.

Может ли вода приносить вред здоровью? В водопроводной воде могут содержаться очень опасные и даже ядовитые вещества, что водоочистные станции изношены, что вода, перед тем, как попасть в дом, должна проделать большой путь по старым водопроводным трубам, где она загрязняется солями тяжёлых металлов и неорганическим железом (ржавчиной). Потребность в чистой воде постоянно увеличивается, а исходная вода, попадающая на очистные станции, год от года становится все грязнее. После очистки вода становится пригодной для питья, но пахнет хлоркой. Концентрация хлора не являются опасными для здорового человека, но для некоторых категорий больных людей присутствие хлора даже в небольших концентрациях очень ухудшает самочувствие. Всё это неблагоприятно сказывается на здоровье человека. Фильтры для очистки воды в домашних условиях применять необходимо. Качество очищенной в домашних условиях воды лучше, чем качество воды из-под крана. С помощью бытовых фильтров можно очистить воду, которая содержит не только механические частицы (песок, ржавчина и т.п.), но и различные органические и неорганические соединения, опасные для здоровья. Вода, прошедшая очистку через фильтр становится менее жёсткой.

Фильтры полностью удаляют из воды хлор, который убивает бактерии и играет роль «консерванта». Но употреблять очищенную воду надо как можно быстрее после фильтрации, ведь в воде, лишенной «консерванта», бактерии начинают размножаться в приятной для них чистой и теплой среде (воде) особенно быстро.

Итак, что такое вода? Вопрос далеко не простой… Однозначно можно сказать лишь то, что вода - самое уникальное вещество на земле, от которого зависит состояние здоровья.

Определения рН исследуемой воды:

  • Барьер - розово-оранжевая (рН=5);
  • Аквафор (кувшин) - розово-оранжевая (рН=5);
  • Аквафор (кран) - розово-оранжевая (рН=5);
  • Нефильтрованная вода - светло-желтая (рН=6).

Результаты определения ионов железа (III):

  • Барьер - Едва заметное желтовато-розовое от 0,05 до 0,1;
  • Аквафор (кувшин) - отсутствие менее 0,05;
  • Аквафор (кран) - отсутствие менее 0,05;
  • Нефильтрованная вода - желтовато-розовое от 0,5 до 1,0.

Результаты определения ионов свинца (II):

  • Барьер - осадка нет. За 3 капли вода обесцветилась;
  • Аквафор (кувшин) - осадка нет. За 2 капли вода обесцветилась;
  • Аквафор (кран) - осадка нет. За 2 капли вода обесцветилась;
  • Нефильтрованная вода - осадка нет. За 10 капли вода обесцветилась.

Жёсткость исследуемой воды:

  • Барьер - 7 мг-экв/л;
  • Аквафор (кувшин) - 5 мг-экв/л;
  • Аквафор (кран) - 4 мг-экв/л;
  • Нефильтрованная вода - 9 мг-экв/л.

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Курсовая работа

Определение свинца в растительности городской зоны

Введение

свинец титриметрический металл реактив

Свинец является отравляющим веществом, накопление которого влияет на целый ряд систем организма и которое особенно вредно для детей младшего возраста.

По оценкам, воздействие свинца в детском возрасте является одним из факторов, вызывающих ежегодно порядка 600 000 новых случаев развития у детей нарушений умственной деятельности.

По оценкам, воздействие свинца вызывает 143 000 смертей в год, причем самое тяжелое бремя отмечается в развивающихся регионах.

В организме свинец попадает в мозг, печень, почки и кости. Со временем свинец накапливается в зубах и костях. Воздействие на людей, как правило, определяется при помощи определения содержания свинца в крови.

Не существует какого-либо известного уровня воздействия свинца, который считается безопасным.

Основными источниками загрязнения свинцом являются автомобильный транспорт, использующий свинец - содержащий бензин, металлургические предприятия, источники дыма, такие как тепловые электростанции и прочее.

Растения поглощают свинец из почв и воздуха.

Они выполняют полезную для человека роль, выступая адсорбентами свинца, находящегося в почве и в воздухе. Пыль, содержащая свинец, накапливается на растениях, не распространяясь.

Согласно данным содержания подвижных форм тяжелых металлов в растениях можно судить о загрязненности ими определенного пространства.

В данной курсовой работе исследуется содержание свинца в растительности городской зоны.

1. Ли тературный обзор

Литературный обзор выполнен на основе книги «Аналитическая химия элементов. Свинец».

1. 1 Об щие сведения о свинце

Свинемц (лат. Plumbum; обозначается символом Pb) - элемент 14-й группы (поустаревшей классификации - главной подгруппы IV группы), шестого периодической системы химических элементов Д.И. Менделеева, с атомным номером 82 и, таким образом, содержит магическое число протонов. Простое вещество свинец (CAS-номер: 7439-92-1) - ковкий, сравнительно легкоплавкий металл серебристо-белого цвета с синеватым отливом. Известен с глубокой древности.

Атом свинца имеет электронную структуру 1s 2 2s 2 p 6 3s 2 p 6 d 10 4s 2 p 6 d 10 f 14 5s 2 p 6 d 10 6s 2 p 2 . Атомная масса принимается равной 207,2, однако возможны ее колебания на 0,03 - 0,04 у.ч.

Свинец является составной частью более 200 минералов, но только три из них (галенит, англезит, церуссит) находятся в природе в виде промышленных залежей свинцовых руд. Самым важным из них является галенит PbS (86,5% Pb).

Под действием веществ, растворенных в природных водах, и при выветривании он переходит в англезит PbSO 4 (63,3% Pb), который в результате двойного обмена с карбонатами кальция и магния образует церуссит PbCO 3 (77,5% Pb).

По объему промышленного производства свинец занимает четвертое место в группе цветных металлов, уступая только алюминию, меди и цинку.

Для получения свинца наибольшее значение имеют полиметаллические сульфидные и смешанны руды, так как чисто свинцовые руды встречаются редко.

Он применяется в целях радиационной защиты, в качестве конструкционного материала в химической промышленности, для изготовления защитных покрытий электрических кабелей и электродов аккумуляторов. Большие количества свинца идут на изготовление разнообразных сплавов: с висмутом (теплоноситель в ядерной технологии), с оловом и небольшими добавками золота и меди (припои для изготовления печатных схем), с сурьмой, оловом и другими металлами (припои и сплавы типографского и антифрикционногоназначения). Способность к образованию интерметаллических соединений используют для получения теллурида свинца, из которого готовят детекторы ИК-лучей и преобразователи тепловой энергии излучения в электрическую. Большая доля свинца идет на синтез металлоорганических соединений.

Многие свинец - содержащие органические соединения являются продуктами «малой» химии, но имеют большое практическое значение. К их числу относятся стеарат и фталат свинца (термо- и светостабилизаторы пластмасс), основной фумарат свинца (термостабилизатор для электрических изоляторов и вулканизирующий агент для хлорсульфополиэтилена), диамилдитиокарбамат свинца (многофункциональная добавка к смазочным маслам), этилендиаминтетраацетат свинца (рентгеноконтрастный препарат), тетраацетат свинца (окислитель в органической химии). Из числа практически важных неорганических соединений можно назвать оксид свинца (идущий на производство стекол с высоким показателем преломления, эмалей, аккумуляторных батарей и высокотемпературных смазок); хлорид свинца (изготовление источников тока); основной карбонат, сульфат и хромат свинца, сурик (компоненты красок); титанат - цирконат. свинца (производство пьезоэлектрической керамики). Нитрат свинца применяют в качестве титранта.

Исключительное разнообразие и важность упомянутых областей применения свинца стимулировали разработку многочисленных методов количественного анализа различных объектов. 1.2. Содержание свинца в природных объектах

Земная кора содержит 1,6*10 -3 % по массе РЬ. Космическая распространенность этого элемента, согласно данным различных авторов, варьирует от 0,47 до 2,9 атомов на 106 атомов кремния. Для Солнечной системы соответствующая величина составляет 1,3 атома на 10 6 атомов кремния.

В высокой концентрации свинец содержится во многих минералах и рудах, в микро- и ультрамикроколичествах - практически во всех объектах окружающего мира.

Прочие объекты содержат свинца (% массе); дождевая вода - (6-29) *10 -27 , воды открытых источников - 2 * 10 -8 , морские воды - 1,3 воды открытого океана на поверхности - 1,4*10 -9 , на глубине 0,5 и 2 км - соответственно 1,2*10 -9 и 2* 10 -10 , граниты, черный сланец, базальты - (1 - 30)*10 -4 , осадочные глинистые минералы - 2*10 -3 , вулканические породы Тихоокеанского пояса - 0,9*10 -4 , фосфориты - от 5*10 -4 до 3*10 -2 .

Бурый уголь - от 10 -4 до 1,75*10 -2 , нефть - 0,4 4 *10 -4 , метеориты - от 1,4*10 -4 до 5,15*10 -2 .

Растения: среднее содержание - 1*10 -4 , в районах свинцовых оруднений - 10 -3 , продукты питания 16*10 -6 , грибы-дождевики, собранные вблизи автострады - 5,3*10 -4 , зола: лишайников - 10 -1 , хвойных деревьев - 5*10 -3 , лиственных деревьев и кустарников - до3*10 -3 . Общее содержание свинца (в тоннах): в атмосфере - 1,8*10 4 , в почвах - 4,8*10 9 , в осадочных отложениях -48*10 12 , в водах океанов - 2,7*10 7 , в водах рек и озер - 6,1*10 -4 , в подпочвенных водах - 8,2*10 4 , в организмах воды и суши: живущих - 8,4*10 4 , отмерших - 4,6*10 6 .

1.2 Ис точники загрязнения свинцом

Источники поступления свинца в различные сферы обитания человека и животных подразделяются на природные (извержения вулканов, пожары, разложение умерших организмов, морская и ветровая пыль) и антропогенные (деятельность свинец производящих и перерабатывающих предприятий, сжигание ископаемого топлива и отходов его переработки).

По масштабам выброса в атмосферу свинец занимает первое место среди микроэлементов.

Значительная часть свинца, содержащегося в каменном угле, при сжигании вместе с дымовыми газами поступает в атмосферу. Деятельность только одной ТЭЦ, потребляющей в сутки 5000 т угля, ежегодно направляет в воздух 21т свинца и соизмеримые количества других вредных элементов. Немалый вклад в загрязнение атмосферы свинцом вносят производства металлов, цемента и т.д.

Атмосфера загрязняется не только стабильными, но и радиоактивными изотопами свинца. Их источником являются радиоактивные инертные газы, из которых наиболее долгоживущий - радон достигает даже стратосферы. Образующийся свинец частично возвращается на землю с атмосферными осадками и аэрозолями, загрязняя поверхность почвы и водоемы.

1.3 То ксичность свинца и его соединений

Свинец является ядом, действующим на все живое. Он и его соединения опасны не только болезнетворным действием, но также кумулятивностью терапевтического эффекта, высоким коэффициентом накопления в организме, малой скоростью и неполнотой выделения с продуктами жизнедеятельности. Факты о опасности свинца:

1. Уже при концентрации 10 -4 % в почве свинец угнетает активность ферментов, причем особенно вредны в этом отношении хорошо растворимые соединения.

2. Присутствие в воде 2*10 -5 % свинца вредно для рыб.

3. Даже низкие концентрации свинца в воде уменьшают количество каротиноида и хлорофилла у водорослей.

4. Зарегистрировано множество случаев профессиональных заболеваний у работающих со свинцом.

5. По результатам 10-летней статистики установлена корреляция между числом смертельных исходов от заболевания раком легких и повышенным содержанием свинца и других металлов в воздухе районов промышленных предприятий, потребляющих уголь и нефтепродукты.

Степень токсичности зависит от концентрации, физико-химического состояния и природы соединений свинца. Особенно опасен свинец в состоянии молекулярно-ионной дисперсности; он проникает из легких в кровеносную систему и оттуда транспортируется по всему организму. Хотя качественно свинец и его неорганические соединения действуют сходно, токсичность растет симбатно их растворимости в биологических жидкостях организма. Это не умаляет опасность труднорастворимых соединений, изменяющихся в кишечнике с последующим повышением их всасываемости.

Свинец подавляет многие ферментативные процессы в организме. При свинцовой интоксикации наступают серьезные изменения в нервной системе, нарушаются терморегуляция, кровообращение и трофические процессы, изменяются иммунобиологические свойства организма и его генетический аппарат.

1. 4 Ос адительные и титриметрические методы

1. Гравиметрический метод- используется образование весовых форм свинца с органическими и неорганическими реагентами. Среди неорганических предпочтение отдается сульфату и хромату свинца. Методы, основанные на их осаждении, сравнимы по селективности и величине фактора пересчета, но определение РЬ в виде хромата требует меньшего расхода времени. Оба осадка рекомендуется получать методами «гомогенного» осаждения

Органические реагенты дают весовые формы, пригодные для определения меньших количеств РЬ, с более благоприятными факторами пересчета, чем у хромата или сульфата свинца.

Преимущества метода: кристалличность осадка и высокая точность результатов при отсутствии мешающих примесей. Относительная погрешность определения 0,0554-0,2015 г. Рb < 0,3%. С применением микроаппаратуры выполнены определения 0,125-4,528 мг РЬ с относительной погрешностью < 0,8%. Однако присутствие свободной HN0 3 недопустимо, а содержание солей щелочных металлов и аммония должно быть возможно малым.

2. Осадительное титрование с визуальными индикаторами. Используется титрование органическими и неорганическими реагентами. При отсутствии примесных ионов, осаждаемых хроматом, наиболее удобны прямые титриметрические методы с индикацией конечной точки титрования (КТТ) по изменению окраски метилового красного или адсорбционных индикаторов. Лучшим вариантом титриметрического определения Рb хроматным методом считается осаждение РbСг0 4 из уксуснокислого раствора с последующим растворением осадка в 2 М НС1 или 2 М НС10 4 , добавлением избытка иодида калия и титрованием выделившегося йода Na 2 S 2 0 3 .

3. Титрование растворами ЭДТА. Ввиду универсальности ЭДТА как аналитического реагента на большинство катионов встает вопрос о повышении селективности определения Рb. Для этого прибегают к предварительному разделению смесей, введению маскирующих реагентов и регулированию реакции среды до значений рН > 3. Обычно же титруют в слабокислой или в щелочной среде.

Конечную точку титрования чаще всего индицируют с помощью металлохромных индикаторов из группы азо- и трифенилметановых красителей, производных двухатомных фенолов и некоторых других веществ, окрашенные комплексы Рb которых менее устойчивы, чем этилендиаминтетраацетат свинца. В слабокислых средах титруют по 4 - (2-пиридилазо) - резорцину, тиазолил-азо-и-крезолу, 2 - (5-бром-2-пиридилазо) - 5-диэтиламинофенолу, 1 - (2-пиридилазо) - 2-нафтолу, 2 - (2-тиазолилазо) - резорцину, азопроизводным 1-нафтол4-сульфоновой кислоты, ксиленоловому оранжевому, пирокатехиновомуфиолетовому, метилксиленоловому синему, пирогаллоловому и бромпирогаллоловому красному, метилтимоловому синему, гематоксилину, родизонату натрия, ализарину S и дитизону.

В щелочных средах применяют эриохром черный Т, сульфарсазен, 4 - (4,5 - димегил-2-тиазолилазо) - 2-метилрезорцин, смесь кислотного ализаринового черного SN и эриохром красного В, пирокатехинфталеин, солохром прочный 2 RS, метилтимоловый синий и мурексид (титрование суммарных количеств Pb и Cu).

4. Титрование другими комлексообразующими веществами. Используется образование хелатов с ДЦТА, ТТГА, серосодержащие комплексообразующие вещества.

1.5 Фо тометрические методы анализа п о светопоглощению и рассеиванию

1. Определение в виде сульфида. Истоки этого метода и его первой критической оценки приходятся на начало нашего 20 века. Окраска и устойчивость золя PbS зависят от размера частиц дисперсной фазы, на который влияют природа и концентрация растворенных электролитов, реакция среды и способ приготовления. Поэтому необходимо строго соблюдать эти условия.

Метод малоспецифичен, особенно в щелочной среде, но сходимость результатов в щелочных растворах лучше. В кислых растворах чувствительность определения меньше, но ее можно несколько увеличить добавлением электролитов, например NH 4 C1, в анализируемую пробу. Улучшить селективность определения в щелочной среде можно введением маскирующих комплексообразователей.

2. Определение в виде комплексных хлоридов. Уже было указано, что хлоркомплексы РЬ поглощают свет в УФ-области, причем молярный коэффициент погашения зависит от концентрации ионов Cl - В 6 М растворе НС1 максимумы поглощения Bi, Рb и Тl достаточно удалены друг от друга, что дает возможность их одновременного определения по светопоглощению соответственно при 323, 271 и 245 нм. Оптимальный интервал концентраций для определения Pb равен от 4-10*10-4%.

3. Определение примесей Рb в концентрированной серной кислоте основано на использовании характеристического поглощения при 195 нм по отношению к стандартному раствору, который готовят растворением свинца в H2S04 (ос. ч).

Определение с применением органических реагентов.

4. В анализе различных природных и промышленных объектов фотометрическое определение РЬ с применением дитизона благодаря его высокой чувствительности и селективности занимает ведущее место. В различных вариантах существующих методов фотометрическое определение РЬ выполняют при длине волны максимума поглощения дитизона или дитизоната свинца. Описаны другие варианты дитизонового метода: фотометрическое титрование без разделения фаз и безэкстракционный способ для определения свинца в полимерах, в котором в качестве реагента применяют раствор дитизона в ацетоне, перед использованием разбавляемый водой до концентрации органического компонента 70%.

5. Определение свинца по реакции с диэтилдитиокарбаматом натрия. Свинец хорошо экстрагируется CCl4 в виде бесцветного диэтилдитиокарбамата при различных значениях рН. Полученный экстракт используют в косвенном методе определения Рb, основанном на образовании эквивалентного количества желто-коричневого диэтилдитиокарбамата меди в результате обмена с CuS04.

6. Определение по реакции с 4 - (2-пиридилазо) - резорцином (ПАР). Высокая устойчивость красного комплекса Рb с ПАР и растворимость реагента в воде составляют достоинства метода. Для определения Рb в некоторых объектах, например в стали, латуни и бронзе, метод, основанный на образовании комплекса с этим азо-соединением, предпочтительнее дитизонового. Однако он менее селективен и потому в присутствии мешающих катионов требует предварительного разделения методом БХ или экстракции дибензилдитиокарбамата свинца четыреххлористым углеродом.

7. Определение по реакции с 2 - (5-хпорпиридип-2-азо) - 5-диэтиламинофенолом и 2 - (5-бромпиридил-2-азо) - 5-диэтиламинофенолом. Оба реагента образуют с Рb комплексы состава 1:1 с почти тождественными спектрофотометрическими характеристиками.

8. Определение по реакции с сульфарсазеном. В методе использовано образование красновато-коричневого водорастворимого комплекса состава 1: 1 с максимумом поглощения при 505-510 нм и молярным коэффициентом погашения 7,6*103 при этой длине волны и pH 9-10.

9. Определение по реакции с арсеназо 3. Этот реагент в интервале pH 4-8 образует со свинцом синий комплекс состава 1:1с двумя максимумами поглощения - при 605 и 665 нм.

10. Определение по реакции с дифенилкарбазоном. По чувствительности реакции, при экстракции хелата в присутствии KCN и по селективности он приближается к дитизону.

11. Косвенный метод определения Рb с применением дифенилкарбазида. Метод основан на осаждении хромата свинца, его растворении в 5%-ной НС1 и фотометрическом определении двухромовой кислоты по реакции с дифенилкарбазидом при использовании фильтра с максимумом пропускания при 536 нм. Метод длителен и не очень точен.

12. Определение по реакции с ксиленоловым оранжевым. Ксиленоловый оранжевый (КО) образует со свинцом комплекс состава 1:1, оптическая плотность которого достигает предела при рН 4,5-5,5.

13. Определение по реакции с бромпирогалполовым красным (БПК) в присутствии сенсибилизаторов. В качестве сенсибилизаторов, повышающих интенсивность окраски, но не влияющих на положение максимума поглощения при 630 нм, при рН 6,5 применяют хлориды дифе-нилгуанидиния, бензилтиурония и тетрафенилфосфония, а при рН 5,0 - бромиды цетилтриметиламмония и цетилпиридиния.

14. Определение по реакции с глицинтимоловым синим. Комплекс с глицинтимоловым синим (ГТС) состава 1: 2 имеет максимум поглощения при 574 нм и соответствующий ему молярный коэффициент погашения 21300 ± 600.

15. Определение с метилтимоловым синим выполняют в условиях, как для образования комплекса с ГТС. По чувствительности обе реакции приближаются друг к другу. Светопоглощение измеряют при рН 5,8-6,0 и длине волны 600 нм, которая отвечает положению максимума поглощения. Молярный коэффициент погашения равен 19 500. Помехи со стороны многих металлов устраняют маскированием.

16. Определение по реакции с ЭДТА. ЭДТА применяют в качестве титранта в безиндикаторном и в индикаторном фотометрическом титровании (ФТ). Как и в визуальной титриметрии, надежное ФТ растворами ЭДТА возможно при рН > 3 и концентрации титранта не менее 10-5 М.

Люминисцентный анализ

1. Определение РЬ с применением органических реагентов

Предложен метод, в котором измеряется интенсивность излучения хемилюминесценции в присутствии Рb за счет каталитического окисления люминола пероксидом водорода. Метод использован для определения от 0,02 до 2 мкг Рb в 1 мл воды с точностью 10%. Анализ длится 20 мин и не требует предварительной подготовки проб. Кроме Рb, реакцию окисления люминола катализируют следы меди. Значительно сложнее в аппаратурном оформлении метод, основанный на использовании эффекта тушения флуоресценции производных флуорес-132 ценна при образовании хелатов со свинцом. Более селективным в присутствии многих геохимических спутников Рb, хотя и менее чувствительным, является довольно простой метод, основанный на увеличении интенсивности флуоресценции люмогена водно-голубого в смеси диоксан-вода (1: 1) в присутствии Рb.

2. Методы низкотемпературной люминесценции в замороженных растворах. Замораживание раствора проще всего решено в методе определения свинца в НС1, основанном на фотоэлектрической регистрации зеленой флуоресценции хлоридных комплексов при -70°С.

3. Анализ по всплеску люминесценции при размораживании проб. Методы этой группы основаны на смещении спектров люминесценции при размораживании анализируемой пробы и измерении наблюдаемого при этом повышения интенсивности излучения. Длина волны максимума спектра люминесценции при -196 и - 70° С соответственно равна 385 и 490 нм.

4. Предложен метод, основанный на измерении аналитического сигнала при 365 нм в квазилинейчатом спектре люминесценции кристаллофосфора СаО-Рb, охлажденного до температуры жидкого азота. Это наиболее чувствительный из всех люминесцентных методов: если наносить активатор на поверхность таблеток (150 мг СаО, диаметр 10 мм, давление при прессовании 7-8 МН/м2), то предел определения на спектрографе ИСП-51 равен 0,00002 мкг. Метод характеризуется хорошей избирательностью: 100-кратный избыток Со, Cr(III), Fe (III), Mn(II), Ni, Sb (III) и T1 (I) не мешает определению Pb. Одновременно с Рb можно определять и Bi.

5. Определение свинца по люминесценции хлоридного комлекса, сорбированного на бумаге. В этом методе люминесцентный анализ комбинируют с отделением РЬ от мешающих элементов с помощью кольцевой бани. Определение ведется при обычной температуре.

1.6 Эл ектрохимические методы

1. Потенциометрические методы. Используется прямое и косвенное определение свинца - титрованием с кислотно - основными, комплексонометрическими и осадительными реагентами.

2.В электрогравиметрических методах используется осаждение свинца на электродах, с последующим взвешиванием или растворением.

3. Кулонометрия и кулонометрическое титрование. В качестве титрантов используются электрогенерируемые сульфогидрильные реагенты.

4. Вольт-амперометрия. Классическая полярография, сочетающая экспрессность с довольно высокой чувствительностью, считается одним из наиболее удобных методов определения РЬ в интервале концентраций 10-s-10 М. В подавляющем большинстве работ свинец определяют по току восстановления РЬ2+ до РЬ° на ртутном капельном электроде (РКЭ), обычно протекающему обратимо и в диффузионном режиме. Как правило, катодные волны хорошо выражены, а полярографические максимумы особенно легко подавляются желатином и Тритоном Х-100.

5. Амперометрическое титрование

При амперометрическом титровании (AT) точку эквивалентности определяют по зависимости величины тока электрохимического превращения РЬ и (или) титранта при определенном значении потенциала электрода от объема титранта. Амперометрическое титрование точнее обычного полярографического метода, не требует обязательного термостатирования ячейки и в меньшей мере зависит от характеристик капилляра и индифферентного электролита. Следует отметить и большие возможности метода AT, поскольку анализ возможен по электрохимической реакции с участием как самого Рb, так и титранта. Хотя общий расход времени на выполнение AT больше, он вполне компенсируется тем, что отпадает надобность в калибровке. Используется титрование растворами дихромата калия, хлораниловой кислоты, 3,5 - диметилдимеркапто - тиопирона, 1,5-6 ис (бензилиден) - тио - карбогидразона, тиосалициламида.

1.7 Фи зические методы определения свинца

Свинец определяют методами атомной эмиссионной спектроскопии, атомно-флуоресцентной спектрометрии, атомно-абсорбционной спектрометрии, рентгеновскими методами, радиометрическими методами, радиохимическими и многими другими.

2 . Экспериментальная часть

2.1 Ме тод определения

В работе используется определение свинца в виде дитизонатного комплекса.

Рисунок 1 - структура дитизона:

Максимум поглощения дитизонатных комплексов свинца-520 нм. Используется фотометрирование против раствора дитизона в CCl 4 .

Производится двойное озоление исследуемой пробы - сухим и «мокрым» методом.

Двойная экстракция и реакция со вспомогательными реагентами служит для отделения мешающих примесей и ионов, и повышения стабильности комплекса.

Метод обладает высокой точностью.

2. 2 Пр иборы и реактивы

Спектрофотометр с кюветами.

Сушильный шкаф.

Муфельная печь.

Электрическая плита.

Электронные весы

Капельная воронка 100 мл.

Химическая посуда.

Навеска сухого растительного материала 3 шт. по 10 гр.

0,01% раствор дитизона в CCl 4 .

0,02 н раствор HCl.

0,1% раствор гидроксиламина.

10% раствор желтой кровяной соли.

10% раствор лимоннокислого аммония.

10% раствор HCl.

Раствор аммиака.

Раствор соды.

Индикаторы-тимоловый синий и феноловый красный.

Стандартные растворы свинца, с его содержанием от 1,2,3,4,5,6 мкг/мл.

2. 3 Пр иготовление растворов

1. 0,1% раствор гидроксиламина.

W=m в-ва /m р-ра =0,1%. Масса раствора - 100 гр. Тогда навеска - 0,1 гр. Растворил в 99,9 мл бидистиллированной воды.

2.10% раствор желтой кровяной соли. W=m в-ва /m р-ра =10%. Масса раствора - 100 гр. Тогда навеска - 10 гр. Растворена в 90 мл бидистиллированной воды.

3.10% раствор лимоннокислого аммония. W=m в-ва /m р-ра =10%. Масса раствора - 100 гр. Навеска - 10 гр. Растворена в 90 мл бидистиллированной воды.

4.10% раствор HCl. Приготовлен из концентрированной HCl:

Необходимо 100 мл раствора с W=10%. d конц HCl =1,19 г./мл. Следовательно, необходимо взять 26 гр концентрированной HCl, V= 26/ 1,19=21,84 мл. 21,84 мл концентрированной HCl развел до 100 мл бидистиллированной водой в мерной колбе на 100 мл до метки.

5. 0,01% раствор дитизона в CCl 4 . W=m в-ва /m р-ра =10%. Масса раствора - 100 гр. Тогда навеска - 0,01 гр. Растворена в 99,9 мл CCl 4 .

6. Раствор соды. Приготовлен из сухой Na 2 CO 3 .

7. 0,02 н раствор HCl. W=m в-ва /m р-ра =? Пересчет на массовую долю. 1 л 0,02 н раствора HCl содержит 0,02*36,5= 0,73 гр раствора HCl. d конц HCl =1,19 г./мл. Следовательно, необходимо взять 1,92 гр концентрированной HCl, объем = 1,61 мл. 1,61 мл концентрированной HCl развел до 100 мл бидистиллированной водой в мерной колбе на 100 мл до метки.

9. Раствор индикатора тимолового синего был приготовлен из сухого вещества растворением в этиловом спирте.

2. 4 Ме шающие влияния

В щелочной среде, содержащей цианид, дитизоном экстрагируются вместе со свинцом таллий, висмут и олово (II). Таллий не мешает колориметрическому определению. Олово и висмут удаляют экстрагированием в кислой среде.

Определению не мешают серебро, ртуть, медь, мышьяк, сурьма, алюминий, хром, никель, кобальт и цинк в концентрациях, не превышающих двенадцатикратную концентрацию свинца. Мешающее влияние некоторых из этих элементов, если они присутствуют в пятидесятикратной концентрации, устраняют двойной экстракцией.

Определению мешает марганец, который при экстрагировании в щелочной среде каталитически ускоряет окисление дитизона кислородом воздуха. Это мешающее влияние устраняется добавлением солянокислого гидроксиламина к экстрагируемой пробе.

Сильные окислители мешают определению, так как окисляют дитизон. Их восстановление гидроксиламином включено в ход определения.

2. 5 Те хника эксперимента

Растительный материал высушивался в сушильном шкафу в измельченном состоянии. Сушка велась при температуре 100 0 C. После высушивания до абсолютно сухого состояния растительный материал тщательно измельчался.

Было взято три навески сухого материала по 10 гр. Они были помещены в тигль и помещены в муфельную печь, где озолялись 4 часа при температуре 450 0 C.

После зола растений окапывалась азотной кислотой при нагревании и высушивалась (отсюда и далее - операции повторяются для всех образцов).

Затем зола снова обрабатывалась азотной кислотой, высушивалась на электрической плите и ставилась в муфельную печь на 15 минут при температуре 300 0 C.

После осветленная зола окапывалась соляной кислотой, высушивалась, и снова окапывалась. Затем образцы были растворены в 10 мл 10% соляной кислоты.

Далее растворы были помещены в капельные воронки на 100 мл. Было прибавлено 10 мл 10% раствора лимоннокислого аммония, затем раствор нейтрализовывался аммиаком до перехода окраски тимолового синего в синюю.

После этого производилась экстракция. Было прилито 5 мл 0,01% раствора дитизона в CCl 4 . Раствор в капельной воронке интенсивно встряхивался в течении 5 минут. Дитизоновый слой после его отделения от основного раствора был слит отдельно. Операция экстракции повторялась до тех пор, пока исходная окраска каждой новой порции дитизона не перестала переходить в красную.

Водная фаза была помещена в капельную воронку. Была произведена ее нейтрализация раствором соды до перехода окраски фенолового красного в ораньжевую. Затем было добавлено 2 мл 10% раствора желтой кровяной соли, 2 мл 10% раствора лимоннокислого аммония, 2 мл 1% раствора гидроксиламина.

Затем растворы нейтрализовывались раствором соды до перехода окраски индикатора (фенолового красного) в малиновую.

Далее прибавлялось 10 мл 0,01% раствора дитизона в CCl 4 , образец интенсивно встряхивался в течении 30 секунд, затем дитизоновый слой сливался в кювету и спектофотометрировался против раствора дитизона в CCl 4 при 520 нм.

Были получены следующие значения оптических плотностей:

Градуировочный график строился при таких - же условиях, использовались стандартные растворы свинца концентраций от 1 до 6 мкг/мл. Они были приготовлены из раствора свинца концентрации 1 мкг/мл.

2.6 Ре зультаты эксперим ента и статистическая обработка

Данные для построения градуировочного графика

Градуировочный график

Согласно градуировочному графику, концентрация свинца в одном килограмме сухой растительной массы равна

1) 0,71 мг/кг

2) 0,71 мг/кг

3) 0,70 мг/кг

Что следует из условий определения - концентрация свинца в стандартах измеряются в мкг/мл, для анализа было измерено содержание свинца в 10 мл, пересчитано для одного килограмма сухого растительного материала.

Среднее значение массы: X ср = 0,707 гр.

Дисперсия =0,000035

Среднее квадратическое отклонение: = 0,005787

Вы воды

1. По литературному обзору.

С помощью литературного обзора изучены общие сведения о элементе, его методах определения, выбран наиболее подходящий из них согласно его точности и соответствия используемым в повседневной практике.

2. По результатам эксперимента.

Эксперимент показал, что с помощью метода можно определять малые содержания свинца, результаты отличаются высокой точностью и сходимостью.

3. По соответствию с ПДК.

Список использованных литературных источников

1. Полянский Н.Г. Свинец.-М.: Наука, 1986. - 357 с. (Аналитическая химия элементов).

2. Васильев В.П. Аналитическая химия. В 2 ч.Ч. 2. Физико - химические методы анализа: Учеб. Для химико-технол. Спец. Вузов.-М.: Высш. шк., 1989. - 384 с.

3. Основы аналитической химии. В 2 кн. Кн. 2. Методы химического анализа: Учеб. Для вузов/Ю.А. Золотов, Е.Н. Дорохова, В.И. Фадеева и др. Под ред. Ю.А. Золотова. - 2-е изд., перераб. И доп. - М.: Высш. шк., 2002. - 494 с.

Размещено на Allbest.ru

Подобные документы

    Физико-химические оценки механизмов поглощения свинца. Почва как полифункциональный сорбент. Методы обнаружения и количественного определения соединений свинца в природных объектах. Пути поступления тяжелых металлов в почву. Реакции с компонентами почвы.

    курсовая работа , добавлен 30.03.2015

    Контроль качества пищевых продуктов как основная задача аналитической химии. Особенности применения атомно-абсорбционного метода определения свинца в кофе. Химические свойства свинца, его физиологическая роль. Пробоподготовка, методики определения свинца.

    курсовая работа , добавлен 25.11.2014

    Изучение химических и физических свойств оксидов свинца, их применение, способы синтеза. Нахождение самого рационального способа получения оксида свинца, являющегося одним из наиболее востребованных соединений, используемых в повседневной жизни.

    реферат , добавлен 30.05.2016

    Области применения свинца. Его вред как экотоксиканта, который способен в различных формах загрязнять все три области биосферы. Источники свинцового загрязнения. Свойство свинца задерживать губительных для человека излучений. Свинцовые аккумуляторы.

    презентация , добавлен 03.03.2016

    Основные свойства свинца и бензойной кислоты. Бензоаты - соли и эфиры бензойной кислоты. Первичные сведения о растворимости бензоата свинца в стационарных условиях. Характеристика кинетики растворения. Температурный ход растворимости бензоата свинца.

    курсовая работа , добавлен 18.02.2011

    Методы отбора проб, область действия стандарта. Общие требования к подготовке реактивов и посуды к колориметрическим методам определения цинка, свинца и серебра. Суть плюмбонового метода определения свинца, дитизоновый метод определения цинка и серебра.

    методичка , добавлен 12.10.2009

    Атомно-флуоресцентный анализ. Рентгеновская флуоресценция. Электрохимические методы анализа. Инверсионная вольтамперометрия. Полярографический метод. Определение содержание свинца и цинка в одной пробе. Определение содержания цинка дитизоновым методом.

    курсовая работа , добавлен 05.11.2016

    Сущность метода измерений при определении содержания свинца, требования к средствам измерения и оборудованию, реактивам, подготовка лабораторной посуды. Методика расчета неопределенностей измерений, источники неопределенности и анализ корреляции.

    курсовая работа , добавлен 28.12.2011

    Химический элемент IV группы. Химические свойства. Диоксид свинца - сильный окислитель. Органические производные свинца - бесцветные очень ядовитые жидкости. Компонент типографских и антифрикционных сплавов, полупроводниковых материалов.

    реферат , добавлен 24.03.2007

    Титриметрические методы, основанные на реакциях образования растворимых комплексных соединений или комплексометрия. Методы с получением растворимых хелатов - хелатометрия. Определение ионов-комплексообразователей и ионов или молекул, служащих лигандами.



← Вернуться

×
Вступай в сообщество «servizhome.ru»!
ВКонтакте:
Я уже подписан на сообщество «servizhome.ru»