Чем отличается дифракционный спектр от дисперсионного? Список отличий, основы разложения света. Дифракционный спектр

Подписаться
Вступай в сообщество «servizhome.ru»!
ВКонтакте:

В оптике различают дифракционный и дисперсионный световые спектры. В чем их особенности?

Что представляет собой дифракционный спектр?

Данный спектр образуется при прохождении света через множество небольших отверстий или щелей. Так, его можно разглядеть, если прищуриться и посмотреть на солнце или лампу. Если обратить внимание на луну зимой в мороз, то вокруг нее несложно увидеть разноцветные круги: они также являются дифракционными спектрами . В данном случае они образуются вследствие прохождения света через замерзшие частицы воды в атмосфере. В целях проведения научных экспериментов своего рода эталонные дифракционные спектры создаются с помощью специальных дифракционных решеток.

Дифракционный спектр

Рассматриваемый вид спектра характеризуется отклонением лучей, которое является пропорциональным показателю длины волны. Поэтому ультрафиолетовые, а также фиолетовые лучи спектра, которые имеют короткие волны, отклоняются в наименьшей степени. В свою очередь, длинноволновые красные и инфракрасные - наоборот. Можно отметить, что рассматриваемый спектр в наибольшей степени растянут в сторону длинноволновых лучей.

Что представляет собой дисперсионный спектр?

Данный спектр образуется в результате преломления света - например, при его прохождении через призму. Выглядит он, таким образом, как совокупность световых полос разного цвета. Дисперсия света представляет собой разложение его потока, имеющего белый цвет, на монохроматические лучи, которые формируют световой спектр.


Дисперсионный спектр

В истории физики известен примечательный факт: до того, как был открыт дисперсионный спектр , была распространена точка зрения, что белый свет окрашивается при прохождении через призму. Оказалось, что это не так.

В дисперсионном спектре наибольшее отклонение при преломлении свойственно фиолетовым лучам. Растягивается рассматриваемый спектр более равномерно, чем дифракционный, - по всем типам лучей, но при этом в наибольшей степени - в сторону коротковолновых.

Сравнение

Главное отличие дифракционного спектра от дисперсионного заключается в том, что первый спектр образуется в результате прохождения света через узкие отверстия (и иные не препятствующие прохождению лучей области между некоторыми близко расположенными объектами), а второй - в результате его преломления (например, вследствие прохождения через призму).

Также между рассматриваемыми спектрами могут наблюдаться различия с точки зрения:

  • отклонения красных и фиолетовых лучей;
  • степени растяжения спектра;
  • степени растяжения спектра относительно красных и фиолетовых лучей.

Более наглядно отобразить то, в чем разница между дифракционным и дисперсионным спектром заключается с точки зрения отмеченных параметров, нам поможет небольшая таблица.

На вопрос Чем отличается дифракционный спектр от дисперсионного? заданный автором Европейский лучший ответ это Дисперсионный спектр получается при преломлении света призмой (радуга) .
Дифракционный спектр получается при дифракции на решётке.
Отличаются порядком цветов. В дисперсионном они идут (считая, от первоначального луча) - красный, оранжевый, жёлтый, зелёный, голубой, синий, фиолетовый; в дифракционном (считая от главного максимума) - фиолетовый, синий, голубой, зелёный, жёлтый, оранжевый, красный.

Ответ от 22 ответа [гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: Чем отличается дифракционный спектр от дисперсионного?

Ответ от Ёаша Бодченко [новичек]
дифракция - это волновое явление - рассеяние света (ну, электромагнитной волны в общем случае) на препятствии. В частности на щели.
Дифракционная решётка - это спектральный прибор, состоящий из большого количества щелей (параллельных). На каждой щели происходит дифракция света. При изменении угла наблюдения (относительно решётки) , между светом, прошедшим в определённом направлении от щелей возникает разность хода (между лучами из разных щелей). Для излучения с определённой длиной волны возникают максимумы при некоторых углах. Углы зависят от длины волны и от шага решётки.
Таким образом можно наблюдать спектр света, который падает на решётку (поскольку есть зависимость направления на спектральный максимум от длины волны) .
Длинноволновые сигналы отклоняются сильнее.
Главные максимумы есть нескольких порядков. Количество эффективно наблюдаемых (неперекрывающихся) зависит от ширины спектра наблюдаемого излучения и качества решётки (количества штрихов на мм) .
Дисперсия - это зависимость показателя преломления среды от длины волны электромагнитного излучения.
Поскольку от показателя преломления зависит отношения углов падения и преломления, призмой можно разложить свет на спектральные составляющие.
Здесь каждая составляющая идёт только в одном направлении.
Какой свет сильнее отклоняется - зависит от отношения показателей преломления среды и материала из которого сделана призма.
Отличия.
После призмы каждая спектральная составляющая отклоняется только в одном направлении. После дифракционной решётки - каждая составляющая идёт во всех направлениях, но неравномерно - имеет свои главные и побочные максимумы.
Визуально это проявляется так:
После призмы видна сплошная полоса или линейчатый спектр - от синего до красного.
После дифракционной решётки виден ахроматический максимум (посередине) и несколько максимумов справа и слева - уже расслаивающиеся на составляющие. Если рассматривается предмет - в максимумах первого порядка - его составляющие разных цветов могут перекрываться. Дальше они лучше разведены, но могут начать перекрываться соседние максимумы.
Природа явлений разная.
Частоты отклоняются по-разному.
Короче, дифракция - это "проникновение", дисперсия - огибание


Ответ от Ёебастьян Рачовски [гуру]
Хм, странно, нам сегодня задали такой же вопрос. Кароч вроде все ответы перебрали, которые тут есть, а ей всё равно не нравится.


Ответ от разбросать [гуру]
Мой мозг плавится!! ААА!


Ответ от сложносокращенный [гуру]
Один сек.
Спектр есть набор значений. Например, длин волн. Белый свет представляет собой совокупность лучей света различных длин волн (различных цветов) ; если направить на поверхность трехгранной призмы пучок параллельных лучей света, то по выходе из призмы пучок уже не будет параллельным, а каждый луч пойдет по своему направлению, и на экране получится спектр волн разной длинны. Т. е. "радуга", полоски к-ой (они разного цвета) разнесены на разное расстояние. Набор этих полосок и есть дисперсионный спектр. Т. е. дисперсионный спектр - это спектр волн (имеется в виду их длин) , полученный в результате разной степени преломления волн разной длины (разного цвета). Если короче: дисп. спектр - это спектр, полученный в результате дисперсии. С чем же связано понятие дифракционного спектра? Конечно же с дифракцией - огибанием волн различных препятствий, размеры к-ых соизмеримы с размерами рассматриваемых волн. Например, во время дождя образуются мелкие капельки воды в атмосфере, что приводит к дифракции. Однако разные длины волн дифрагируют по разному - они ведь разной длины. Дифрагируют по разному, значит отклоняются на разные расстояния. Поэтому мы можем наблюдать радугу во время дождя. Итак, дифракционный спектр - это спектр волн, полученный в результате различий огибания препятсвий волн разной длинны. Если короче: дифр. спектр - это спектр, полученный в результате дифракции. Обобщение: слова "дисперсионный" или "дифракционный" спектр дополняют о чем идет речь - о процессе дисперсии, или процессе дифракции. Вообще можно говорить и о волне одной длинны. Тогда спектр будет состоять из одной полоски. Хотя в случае дифракции тогда возможно еще и перераспределение интенсивности волны на экране - это называют дифракционной картиной.


Школьный курс физики кажется совсем не сложным, понятным и достаточно интересным. Не так уж трудно объяснить на уроке учителю, чем отличается дифракционный спектр от дисперсионного, и получить хорошую оценку. Но когда речь идет о физике в высших учебных заведениях, все резко усложняется. Некоторые задачки могут заставить провести за их решением не одну бессонную ночь.

Разные способы разложения света на спектр

И дифракция и дисперсия представляют собой разложение светового луча на составляющие , но всегда есть свои нюансы:

Опыт с дисперсией многие видели на уроках физики. Для этого достаточно было направить луч на призму, рядом с которой находился простой альбомный лист. И обычный солнечный свет или направленный луч из фонарика раскладывался на все цвета радуги.

Но при этом, красный цвет занимал на листе совсем немного места , ширина остальных цветов увеличивалась, по направлению к фиолетовому. Именно он занимал значительную часть всего спектра.

Наибольший порядок спектра дифракционной решетки

Оптика это точная наука, которая требует логического мышления и верных расчетов. Некогда физики вывели формулу, которой мы можем пользоваться, по сей день:

В этом сложном, но только на первый взгляд, равенстве, искомой величиной является k - порядок спектра:

  • λ - длина волны света, падающего на решетку.
  • φ - угол дифракции.
  • ά - угол падения на решетку световой волны.
  • đ - период решетки.

Из этого равенства можно вывести интересующую нас формулу , для определения максимального порядка спектра. Для этого достаточно правую часть равенства поделить на длину световой волны, при этом синус угла дифракции можно заменить единицей, для простоты вычисления.

Часть из необходимых для вычисления величин - постоянная, так что никаких проблем возникнуть не должно. Главное, не запутаться в подсчетах.

К сожалению, порой наука слишком далеко отходит от практики и смысл большинства таких вычислений для студентов и школьников остается загадкой, они решают это как абстрактную задачку, никоим образом не связанную с реальной жизнью.

Простой способ вычисления максимального порядка спектра

А еще у физиков есть более простой способ определения максимального порядка . Для формулы можно использовать значения из предыдущего равенства. Только в этот раз исходных данных будет гораздо меньше, а сами расчеты можно представить в виде:

Как несложно понять, искомое значение напрямую зависит от периода решетки и длины волны . Синусы мы благополучно откинули, а максимальный порядок выразили в виде m.

На деление двух чисел сложно потратить больше минуты, так что любая задача на оптику, в которой требуется лишь определить значение порядка, не займет так уж много времени. Но чаще всего это вычисление - только первый шаг на пути к поиску ответа на более сложный вопрос.

Если разобраться в вопросе и вникнуть в суть понятия, формула кажется предельно логичной. Проще всего решать задачу с белым светом, ведь в таком случае длина волны одинакова для всего светового потока.

А теперь представьте, что в потоке несколько оттенков, которые, конечно же, имеют разную длину . Задача несколько усложняется, на вычисления уйдет больше времени. А так уж вышло, в реальной жизни, что волны исключительно белого света встречаются крайне редко.

Ширина дифракционного спектра

На опыте с призмой вы могли понаблюдать за неоднородностью и шириной спектра. Этот параметр имеет огромное значение в оптике , особенно когда речь идет о дифракционном спектре. Дело в том, что в отличие от дисперсионного он не сжат ни в одном направлении, все оттенки представлены равномерно и ширина зависит только от показателей самой решетки, с помощью которой и проводится разложение луча на спектр. В то время как значения ширины дисперсионного спектра зависит от длины волны. В дифракционной решетке:

  1. Есть прозрачные штрихи.
  2. Есть непрозрачные промежутки.
  3. Сумма их длин является периодом решетки.
  4. Получить это значение можно поделив единицу на количество штрихов на единицу длины решетки.

Интересующая нас ширина спектра находится в обратной зависимости от периода решетки, который уже фигурировал в предыдущих формулах. Только теперь чем меньше этот период, тем больше ширина .

Если вернуться к определению максимального порядка, можно заметить, что с увеличением значения периода решетки возрастал и порядок. Из этого, чисто логически, несложно сделать еще один вывод - ширина дифракционного спектра и его максимальный порядок находятся в обратной взаимосвязи.

Чем меньше одно значение, тем больше другое, и наоборот. Конечно же, это знание не поможет получить точные значения. Но проверить свои вычисления, таким нехитрым способом, вполне реально.

Разница между спектрами

Чтобы выделить различия дисперсионного и дифракционного спектра, необходимо понять, что каждый из них собой представляет.
Дисперсионный:

  • Появляется в результате разложения луча света на составляющие, после прохождения через призму.
  • Распространяется от красного цвета к фиолетовому.
  • Спектр сжат в том же направлении, наименьшей шириной обладает красный диапазон, наибольшей - фиолетовый.
  • Может существовать только одна цветная картинка.

Дифракционный:

  • Получается в результате попадания света на дифракционную решетку.
  • Идет в обратном порядке, от фиолетового к красному цвету.
  • Спектр равномерен на всем своем протяжении.
  • Может быть несколько цветных картинок.

Вот и основные четыре различая, позволяющие понять, что представляют собой оба спектра. Хоть названия и немного созвучны, но в их основе лежат абсолютно разные принципы, так что не стоит путать эти понятия.

Со знания, чем отличается дифракционный спектр от дисперсионного спектра, можно начать изучение оптики. Перспективы этой дисциплины недооценены, так что исследователей ждет гарантированная занятость в будущем, а может быть и серьезные открытия.

Видео: различия дифракционного и дисперсионного спектра

В этом видео ученый-физик Денис Логачев проведет урок, в котором расскажет об отличии дифракционного спектра от дисперсионного, мы узнаем, что такое дифракционная решетка:

Большинство фактических сведений про окружающие нас явления и природу получены человеком при помощи восприятия по средствам органов зрительного восприятия, которые созданы светом. Явления света, которые изучаются в физике, рассматриваются в разделе Оптика.

По своей природе свет является явлением электромагнитным, а это говорит про одновременное проявление как волновых (интерференция, дифракция, дисперсия), так и квантовых свойств (фотоэффект, люминесценция).
Рассмотрим два важных волновых свойства света: дифракцию и дисперсию.

Понятие светового луча широко используют в геометрической оптике. Таким явлением считается узкий пучок света, который распространяется прямолинейно. Подобное распространение света в однородной среде для нас кажется таким обычным, что принимается как очевидное. Достаточно убедительным подтверждением этого закона может быть образование тени, которое появляется за непрозрачным препятствием, которое стоит на пути света. А свет в свою очередь излучается точечным источником.

Явления, которые возникают при распространении света в среде с резко выраженными неоднородностями, являются дифракцией света.

Итак, дифракцией называют совокупность явлений, которые обусловлены огибанием световыми лучами препятствий, которые встречаются на их пути (в широком смысле: любое отклонение от законов геометрической оптики при распространении волн и попадание их в участки геометрической тени).

Дифракция четко проявляется в случае, когда параметры неоднородности (прорези решетки) соразмерны с длинной волны. Если же размеры слишком большие, то она наблюдается только на значительных расстояниях от неоднородности.

При огибании неоднородностей световой луч раскладывается в спектр. Спектр разложения, который получен при данном явлении называется дифракционным спектром. Дифракционный спектр ещё называют решетчатым.

Разным скоростям распространения волн отвечают различные абсолютные показатели преломления среды. Из исследований Ньютона следует, что абсолютный показатель преломления увеличивается с ростом частоты света. С течением времени ученые установили тот факт, что при рассмотрении света как волны каждый цвет необходимо ставить в соответствие длине волны. Важным является то, что эти длины волн изменяются непрерывно, отвечая различным оттенкам каждого цвета.

Если тонкий пучок солнечного света направить на стеклянную призму, то в ней после преломления можно наблюдать разложение белого света (белый свет – совокупность электромагнитных волн с разной длинной волны) в разноцветный спектр: семь основных цветов – красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый цвета. Все эти цвета плавно переходят друг в друга. В меньшей степени от начального направления откланяются красные лучи, а в большей – фиолетовые.

Этим можно объяснить возникновение окраски предметов различными цветами, поскольку белый свет представляет собой совокупность различных цветов. Например, цвет листьев растений, в частности, зеленый цвет, обусловлен тем, что на поверхности листьев происходит поглощение всех цветов кроме зеленого цвета. Именно его мы и видим.

Итак, дисперсия – это явление, которое характеризует зависимость преломления вещества от длинны волны. Если говорить о световых волнах, то дисперсия дисперсией называют явление зависимости скорости света (а также и показателя преломления света веществом) от длинны (частоты) светового луча. Благодаря дисперсии белый свет раскладывается в спектр при прохождении через стеклянную призму. Именно поэтому подобным образом полученный спектр называют дисперсионным. На выходе из призмы мы получим расширенную световую полосу с расцветкой, которая непрерывно (плавно) меняется. Дисперсионный спектр ещё называют призматическим.

Дифракционный и дисперсионный спектры

Мы рассмотрели явления дифракции и дисперсии, а также их следствия – получение дифракционного и дисперсионного спектров. Теперь обратим особое внимание на их отличия.

Способы получения спектров:

  • Дифракционный спектр: зачастую получен при помощи, так называемой, дифракционной решетки. Она состоит из полос прозрачных и непрозрачных (или же отражающих и неотражающих). Эти полосы чередуются с периодом, значение которого зависит от длинны волны. При попадании на решетку свет разбивается на пучки, для которых наблюдается явление дифракции и разложение света на спектр.
  • Дисперсионный спектр: в отличии от дифракционного получен в результате проникновения световой волны сквозь вещество (призму). В результате прохождения монохроматические волны претерпевают преломление, причем угол преломления будет разным.

Распределение и характер цветов в спектрах:

  • Дифракционный спектр: от первого до последнего в спектре цвета располагаются равномерно. И проявляются от фиолетового до красного, а именно в порядке возрастания.
  • Дисперсионный спектр: в красной части спектра сжат, а в фиолетовой – растянут. Цвета располагаются в порядке от красного до фиолетового, то есть в порядке убывания, в отличии от возрастания в дифракционном спектре.

Заключительные сведения

Итак, рассмотренный характеристики показывают, что дифракционная картина значительным образом зависит от длинны волны света, которое огибает препятствие. Поэтому, если свет немонохроматический (например, рассматриваемый нами белый свет), то дифракционные максимумы интенсивности для разных длин волн просто разойдутся, при этом они образуют дифракционный спектры. Они имеют значительное преимущество перед спектрами, которые возникают вследствие дисперсии лучей проходящих сквозь призму. Взаимное расположение цветов у них не зависит от свойств материалов, из которых изготовлены экраны и щели решетки, а определяется однозначно лишь длинами волн и геометрией прибора (например, призмы) и может быть рассчитано исключительно из геометрических соображений.

Дисперсия света представляет собой разложение его потока, имеющего белый цвет, на монохроматические лучи, которые формируют световой спектр.

Отличаются порядком цветов. В дисперсионном они идут (считая, от первоначального луча) - красный, оранжевый, жёлтый, зелёный, голубой, синий, фиолетовый; в дифракционном (считая от главного максимума) - фиолетовый, синий, голубой, зелёный, жёлтый, оранжевый, красный.

45. Внешний фотоэффект. Законы Столетова.

Позже сокращу.

Внешний фотоэффект – это явление вырывания электронов из твердых и жидких тел под действием света.

Затем в 1888-1890 -х годах фотоэффект исследовалАлександр Григорьевич Столетов (1839 – 1896).

Он установил, что:

    наибольшее действие оказывают ультрафиолетовые лучи;

    с ростом светового потока растет фототок;

    заряд частиц, вылетающих из твердых и жидких тел под действием света отрицателен.

Прежде чем сформулировать эти законы, рассмотрим современную схему для наблюдения и исследования фотоэффекта. Она проста. В стеклянных баллон впаяны два электрода (катод и анод), на которые подается напряжениеU. В отсутствии света амперметр показывает, что тока в цепи нет.

Когда катод освещается светом даже при отсутствии напряжения между катодом и анодом амперметр показывает наличие небольшого тока в цепи – фототока. То есть электроны, вылетевшие из катода, обладают некоторой кинетической энергией
и достигают анода «самостоятельно».

При увеличении напряжения фототок растет.

Зависимость величины фототока от величины напряжения между катодом и анодом называется вольтамперной характеристикой.

Она имеет следующий вид. При одной и той же интенсивности монохроматического света с ростом напряжения ток сначала растет, но затем его рост прекращается. Начиная с некоторого значения ускоряющего напряжения, фототок перестает изменяться, достигая своего максимального (при данной интенсивности света) значения. Этот фототок называется током насыщения.

Чтобы «запереть» фотоэлемент, то есть фототок уменьшить до нуля, необходимо подать «запирающее напряжение»
. В этом случае электростатическое поле совершает работу и тормозит вылетевшие фотоэлектроны

. (1)

Это означает, что ни один из вылетающих из металла электронов не достигает анода, если потенциал анода ниже потенциала катода на величину.

Эксперимент показал, что при изменении частоты падающего света начальная точка графика сдвигается по оси напряжений. Из этого следует, что величина запирающего напряжения, а, следовательно, кинетическая энергия и максимальная скорость вылетающих электронов, зависят от частоты падающего света.

Первый закон фотоэффекта . Величина максимальной скорости вылетающих электронов зависит от частоты падающего излучения (растет с ростом частоты) и не зависит от его интенсивности.

Если сравнить вольтамперные характеристики, полученные при разных значениях интенсивности (на рисунке I 1 и I 2) падающего монохроматического (одночастотного) света, то можно заметить следующее.

Во-первых, все вольтамперные характеристики берут начало в одной и той же точке, то есть, при любой интенсивности света фототок обращается в ноль при конкретном (для каждого значения частоты) задерживающем напряжении. Это является еще одним подтверждением верности первого закона фотоэффекта.

Во-вторых. При увеличении интенсивности падающего света характер зависимости тока от напряжения не изменяется, лишь увеличивается величина тока насыщения.

Второй закон фотоэффекта . Величина тока насыщения пропорциональна величине светового потока.

При изучении фотоэффекта было установлено, что не всякое излучение вызывает фотоэффект.

Третий закон фотоэффекта . Для каждого вещества существует минимальная частота (максимальная длина волны) при которой еще возможен фотоэффект.

Эту длину волны называют «красной границей фотоэффекта» (а частоту – соответствующей красной границе фотоэффекта).

Через 5 лет после появления работы Макса Планка Альберт Эйнштейн использовал идею дискретности излучения света для объяснения закономерностей фотоэффекта. эйнштейн предположил, что свет не только излучается порциями, но и распространяется и поглощается порциями. Это означает, что дискретность электромагнитных волн – это свойство самого излучения, а не результат взаимодействия излучения с веществом. По Эйнштейну, квант излучения во многом напоминает частицу. Квант либо поглощается целиком, либо не поглощается вовсе. Эйнштейн представил вылет фотоэлектрона как результат столкновения фотона с электроном металла, при котором вся энергия фотона передается электрону. Так Эйнштейн создал квантовую теорию света и, исходя из нее, написал уравнение для фотоэффекта:

.

Здесь – постоянная Планка,– частота,
– работа выхода электрона из металла,
– масса покоя электрона,v– скорость электрона.

Это уравнение объясняло все экспериментально установленные законы фотоэффекта.

    Так как работа выхода электрона из вещества постоянна, то, с ростом частоты, растет и скорость электронов.

    Каждый фотон выбивает один электрон. Следовательно, количество выбитых электронов не может быть больше числа фотонов. Когда все выбитые электроны достигнут анода, фототок расти прекращает. С ростом интенсивности света растет и число фотонов, падающих на поверхность вещества. Следовательно, увеличивается число электронов, которые эти фотоны выбивают. При этом растет фототок насыщения.

    Если энергии фотоны хватает лишь на совершение работы выхода, то скорость вылетающий электронов будет равна нулю. Это и есть «красная граница» фотоэффекта.

Внутренний фотоэффект наблюдается в кристаллических полупроводниках и диэлектриках. Он состоит в том, что под действием облучения увеличивается электропроводность этих веществ за счет возрастания в них числа свободных носителей тока (электронов и дырок).



← Вернуться

×
Вступай в сообщество «servizhome.ru»!
ВКонтакте:
Я уже подписан на сообщество «servizhome.ru»