Блок защиты зарядных устройств. Устройство защиты от переполюсовки для зарядного устройства. Вот схема защиты от переполюсовки

Подписаться
Вступай в сообщество «servizhome.ru»!
ВКонтакте:

Когда ваше устройство не постоянно питается от блока питания, а вам нужно периодически вставлять клеммы в разъём, особенно часто это бывает с зарядными устройствами для аккумуляторов. Возникает вероятность случайно перепутать клеммы. Описанная схема на диодном мосту станет надёжной защитой от переполюсовки и индикатором вашей нечаянной ошибки.

Схема защиты от переполюсовки:

В технике есть такое жаргонное выражение «защита от дурака», оно вполне справедливо для устройств, которые так или иначе эксплуатируются большим количеством людей, среди которых обязательно найдётся невнимательные и рассеянные личности, которые сначала включают, а потом инструкцию читают.

Есть много разного рода защит от переполюсовки, ну к примеру сделать разъем специальной формы, что бы его кроме как правильно включить нельзя было. Но для радиолюбительских конструкций для этой цели достаточно хорошо подходит схема диодного моста.

Рисунок №1 – Схема защиты от переполюсовки

Всё очень просто и прозаично, вы просто включаете в свою схему дополнительный диодный мост или подключаете отдельную платку со схемой защиты от переполюсовки. При такой организации устройства полярность на входе не имеет никакого значения, и вставляя клеммы в гнёзда блока питания вы ни за что не ошибётесь. У вас на выходе диодного моста всегда будет то, что нужно (А, Б). Просто не забывайте, что дополнительные элементы могут привести к незначительным потерям мошьности.

Я не стал приводить номиналы элементов так как схема универсальная, вам их нужно подобрать самостоятельно. Всё должно подходить по току и напряжению адекватному вашим потребностям. Я постарался наглядно показать диодный мост (В), а в качестве индикации ошибки, использовал двухцветный светодиод, который горит зеленым, когда полярность соблюдена.


Рисунок №2 – Полярность соблюдена – горит зелёный

Светодиод горит красным, когда я неверно подключил схему защиты к клеммам блока питания, но при этом на выходе схемы всегда строго соблюдается полярность, и моему устройству переполюсовка уже не страшна.


Рисунок №3 – Клеммы перепутаны – горит красный светодиод

Как видно по показанием мультиметра на выходе схемы защиты от переполюсовки всегда одинаковая полярность, что существенно снижает вероятность сгорания вашего устройства.

Для особо ленивых, я привёл пример своей печатной платы, и сборочный чертеж, можете просто перерисовать или добавить её в свою схему.


Рисунок №4 – Печатная плата и сборочный чертёж, пример

Надеемся приведенная схема защиты от переполюсовки поможет начинающим радиолюбителям избежать выхода из строя их устройств, потому не забывайте посещать

Знает, что обратное подключение полярности аккумулятора может повредить или зарядное устройство, или сам аккумулятор. Но далеко не все (особенно простые) автомобильные ЗУ имеют систему слежения за такими делами, поэтом чтоб не пришлось в случае чего идти на автобазар и выкладывать 5000 рублей за новый АКБ, в интернете была найдена схема защиты на базе Мосфета.

Схема платы защиты АКБ от КЗ и переполюсовки

После нескольких экспериментов схема модернизировалась и улучшилась, став более безопасной для батареи. Рабочий диапазон этого блока защиты 0-30 В, 0-15 А. Мосфет не требует охлаждения. При токе 15 А на нем выделяется около 2 Вт.

Защита аккумулятора авто 12В — схема

Если выходное напряжение ниже напряжения отключения, схема выключится и будет отображена ошибка. Что касается контактов АКБ, перенапряжение на них произойдет не раньше, чем на резисторах R1 и R2. Это немедленно отключит MOSFET за время порядка нескольких микросекунд, чего недостаточно для нанесения вреда аккумулятору неправильным током или напряжением.

Работа устройства защиты для АКБ

При настройке сначала устанавливаем максимальное напряжение отключения резисторами R1 и R2. Дефектный диод или ключ в преобразователе могут вызвать перенапряжение и повредить потребитель.

Резисторы R3 и R4 отвечают за минимальное напряжение отключения. Общая идея — не перегревать полевой МОП-транзистор при напряжении питания ниже 5 В. Также можете установить указанное напряжение — в этом случае схема защитит источник питания от перегрузки.

Например есть источник питания 12 В. Установите минимальное напряжение отключения 10 В. Падение напряжения на источнике питания ниже 10 В приведет к немедленному отключению. Пока нагрузка не будет отключена, MOSFET будет отключен, а зуммер активен. Зуммер здесь сообщает об ошибке подключения (короткое замыкание, переполюсовка, перенапряжение, низкое напряжение).

Защита отключится автоматически при отключении приемника тока. Конденсатор C1 поддерживает питание затвора MOSFET до тех пор, пока на приемнике тока (подключенной батарее) не будет достигнуто минимальное напряжение отсечки.

Предельное напряжение отключения, как опция, защищает приемник тока от поврежденного источника питания. Цель этого не состоит в том, чтобы отключить батарею после достижения предполагаемого напряжения. Для этого используется система стабилизации напряжения источника питания.

Редакция « » уверена, что этот проект кому-то пригодиться. Было собрано несколько плат и все они прекрасно работают.

Представлена конструкция защиты для блока питания любого типа. Данная схема защиты может совместно работать с любыми блоками питания - сетевыми, импульсными и аккумуляторами постоянного тока. Схематическая развязка такого блока защиты относительна проста и состоит из нескольких компонентов.

Схема защиты блока питания

Силовая часть - мощный полевой транзистор - в ходе работы не перегревается, следовательно в теплоотводе тоже не нуждается. Схема одновременно является защитой от переплюсовки питания, перегруза и КЗ на выходе, ток срабатывания защиты можно подобрать подбором сопротивления резистора шунта, в моем случае ток составляет 8 Ампер, использовано 6 резисторов 5 ватт 0,1 Ом параллельно подключенных. Шунт можно сделать также из резисторов с мощностью 1-3 ватт.

Более точно защиту можно настроить путем подбора сопротивления подстроечного резистора. Схема защиты блока питания, регулятор ограничения тока Схема защиты блока питания, регулятор ограничения тока

~~~При КЗ и перегрузе выхода блока, защита мгновенно сработает, отключив источник питания. О срабатывании защиты осведомит светодиодный индикатор. Даже при КЗ выхода на пару десятков секунд, полевой транзистор остается холодным

~~~Полевой транзистор не критичен, подойдут любые ключи с током 15-20 и выше Ампер и с рабочим напряжением 20-60 Вольт. Отлично подходят ключи из линейки IRFZ24, IRFZ40, IRFZ44, IRFZ46, IRFZ48 или более мощные - IRF3205, IRL3705, IRL2505 и им подобные.

~~~Данная схема также отлично подходит в качестве защиты зарядного устройства для автомобильных аккумуляторов, если вдруг перепутали полярность подключения, то с зарядным устройством ничего страшного не произойдет, защита спасет устройство в таких ситуациях.

~~~Благодаря быстрой работе защиты, ее можно с успехом применить для импульсных схем, при КЗ защита сработает быстрее, чем успеют сгореть силовые ключи импульсного блока питания. Схематика подойдет также для импульсных инверторов, в качестве защиты по току. При перегрузе или кз во вторичной цепи инвертора, мигом вылетают силовые транзисторы инвертора, а такая защита не даст этому произойти.

Комментарии
Защита от короткого замыкания , переплюсовки полярноси и перегруза собрана на отдельной плате. Силовой транзистор использован серии IRFZ44, но при желании можно заменить на более мощный IRF3205 или на любой другой силовой ключ, который имеет близкие параметры. Можно использовать ключи из линейки IRFZ24, IRFZ40, IRFZ46, IRFZ48 и другие ключи с током более 20 Ампер. В ходе работы полевой транзистор остается ледяным,. поэтому в теплоотводе не нуждается.


Второй транзистор тоже не критичен, в моем случае использован высоковольтный биполярный транзистор серии MJE13003, но выбор большой. Ток защиты подбирается исходя из сопротивления шунта — в моем случае 6 резисторов по 0,1Ом параллельно, защита срабатывает при нагрузке 6-7 Ампер. Более точно можно настроить вращением переменного резистора, таким образом я настроил ток срабатывания в районе 5 Ампер.



Мощность блока питания довольно приличная, выходной ток доходит до 6-7 Ампер, что вполне достаточно для зарядки автомобильного аккумулятора.
Резисторы шунта выбрал с мощностью 5 ватт, но можно и на 2-3 ватт.




Если все сделано правильно, то блок начинает работать сразу, замыкайте выход, должен загореться светодиодный индикатор защиты, который будет гореть до тех пор, пока выходные провода находятся в режиме КЗ.
Если все работает как нужно, то приступаем дальше. Собираем схему индикатора.

Схема срисована из зарядника аккумуляторной отвертки. Красный индикатор свидетельствует о том, что имеется выходное напряжение на выходе БП, зеленый индикатор показывает процесс заряда. С таким раскладом компонентов, зеленый индикатор будет постепенно потухат и окончательно потухнет, когда напряжение на аккумуляторе будет 12,2-12,4 Вольт, когда аккумулятор отключен, индикатор гореть не будет.

Только вот имеется в ней такой небольшой недостаток, эта схема не умеет распознавать степень разряженности аккумулятора, что дает возможность подключать даже убитые АКБ(замкнутые, рассыпавшиеся и т.д.), ли ж бы хватало напряжения замкнуть контакты реле. А это может привести к ужасным последствиям, и пожар не самое страшное!

И вот совсем недавно пришла мне в голову умная схема защиты от переполюсовки, которая сумела бы определять, можно ли заряжать этот аккумулятор или нет и сохранила предыдущий параметр определения правильности подключения клемм к Аккумулятору

На самом дел все просто, схема просто определяет какое напряжение на АКБ, то есть степень зарядки, и если оно соответствует нужным пределам, то замыкает контакты реле и пускает ток заряда!

Из схемы видно что это обычный компаратор на ОУ сравнивающий опорное напряжение собранное на цепи R7-VD3, с напряжением АКБ. И если напряжение на неинв.(+) входе поднимается чуть выше чем на инве.(-), транзистор VT1 включает реле.
Настраивается все очень просто. На клемму + АКБ подается напряжение 10.5-11В(напряжение разряженного, рабочего АКБ) удобно и с помощью построечного резистора R4(в сторону увеличения сопротивления) выставляем момент, когда щелкнет релюха K1. На этом настройка заканчивается:) Кстати удобно использовать для настройки

Данная схема собрана на ОУ не зря, поскольку на втором ОУ можно собрать еще одно устройство, я его еже не придумал, но наработки уже есть. К примеру на второи ОУ можно сделать устройство которое будет показывать что все подключено верно
Но если у вас нет возможности ждать, и не хочется тратить попросту операционик, то могу предложить схему чуть проще и с таким же принципом работы

Многие не знают, но TL431 –это обычный компаратор, и для сравнивания напряжения внутри него уже присутствует ИОН 2,5В. Поэтому вместо кучи обвязки вокруг ОУ можно использовать TL431 с одним единственным резисторным делителем, напряжение на котором должно быть чуть больше 2.5В, что бы реле включилось:)

У этой схемы есть еще одно преимущество, ее можно с успехом использовать и для 6В АКБ. Для этого надо заменить реле на 5В, и два резистора R1 и R3 примерно на половину.

Способ настройки такой же самый как и в предыдущей схеме, только на клемму +АКБ для 6В напряжение надо подавать в районе 5-5.5В

Все, с такой защитой можно не боятся что ваш АКБ, ну если ему “торба”, просто взорвется. Поэтому удачи с повторением схемы.

Удачи вам с повторением и жду ваших вопросов в комментариях

Для безопасной, качественной и надежной зарядки любых типов аккумуляторов, рекомендую

Что бы не пропустить последние обновления в мастерской, подписывайтесь на обновления в Вконтакте или Одноклассниках , так же можно подписаться на обновления по электронной почте в колонке справа

Не хочется вникать в рутины радиоэлектроники? Рекомендую обратить внимание на предложения наших китайских друзей. За вполне приемлемую цену можно приобрести довольно таки качественные зарядные устройства

Простенькое зарядное устройство с светодиодным индикатором зарядки, зеленый батарея заряжается, красный батарея заряжена.

Есть защита от короткого замыкания, есть защита от переполюсовки. Отлично подойдет для зарядки Мото АКБ емкостью до 20А\ч, АКБ 9А\ч зарядит за 7 часов, 20А\ч — за 16 часов. Цена на это зарядное всего 403 рубля,доставка бесплатна

Этот тип зарядного способен автоматически заряжать практически любые типы автомобильных и мото аккумуляторов 12В до 80А\Ч. Имеет уникальный способ зарядки в три этапа: 1. Зарядка постоянным током, 2. Зарядка постоянным напряжением, 3. Капельная дозарядка до 100%.
На передней панеле два индикатора, первый указывает напряжение и процент зарядки, второй указывает ток зарядки.
Довольно качественный прибор для домашних нужд, цена всего 781,96 руб, доставка бесплатна. На момент написания этих строк количество заказов 1392, оценка 4,8 из 5. Евровилку

Зарядное устройство для самых разнообразных типов аккумуляторов 12-24В с током до 10А и пиковым током 12А. Умеет заряжать Гелиевые АКБ и СА\СА. Технология зарядки как и у предыдущего в три этапа. Зарядное устройство способно заряжать как в автоматическом режиме, так и в ручном. На панеле есть ЖК индикатор указывающий напряжение, ток заряда и процент зарядки.

Хороший прибор если вам надо заряжать все возможные типы АКБ любых емкостей, аж до 150А\ч

Цена на это чудо 1 625 рублей, доставка бесплатна. На момент написания этих строк количество заказов 23, оценка 4,7 из 5. При заказе не забудьте указать Евровилку

Если какой то товар стал недоступен, пожалуйста напишите в комментарий внизу страницы.

Схема 100% рабочая!!!

После того как один знакомый сжег своё из-за неправильно подключённого аккумулятора, мне предстояло собрать схему защиты от подобных косяков. В интернете нашлось много разнообразных схем, но остановился я на этой:

Источником этой схемы является сайт РадиоКот. После сборки схема заработала без нареканий.

Скажу сразу, что эта схема защищает от КЗ и от переполюсовки аккумулятора. При нормальном режиме, напряжение через светодиод и резистор R4 отпирает Т1 и всё напряжение с входа поступает на выход. При коротком замыкании или переполюсовке, ток импульсно резко возрастает. Падение напряжения на переходе полевика и на шунте резко увеличивается, что приводит к открытию Т2, который в свою очередь шунтирует затвор и исток. Добавочное отрицательное напряжение по отношению к истоку (падение на шунте) прикрывает VT1. Далее происходит лавинный процесс закрытия VT1. Светодиод засвечивается через открытый VT2. Схема может находиться в данном состоянии сколь угодно долго, до устранения замыкания.

Почитав разные форумы и комментарии, решил попробовать немного доработать эту схему. В разных публикациях рекомендуют разные доработки, но в основном вот так:

Резистор рекомендуется установить для лучшей защиты полевого транзистора, так как в таком виде транзистор будет всегда закрыт и будет открываться только при наличии положительного напряжения на плюсовой клемме.

По результатам моего “шаманства” над схемой могу сказать следующее:

1.Стабилитрон действительно нужен, особенно если данная защита будет использоваться в трансформаторных ЗУ или БП. Например, максимальное напряжение Вашего ЗУ 18 В, а максимальное напряжение затвора 20 В. Казалось бы все ОК!, но это не так. Так как в трансформаторах есть такое явление как самоиндукция, то из-за неё в момент отключения трансформатора от сети, на вторичных обмотках будет скачок напряжения, существенно превышающий действующее напряжение. Именно этот скачок может пробить Ваш полевик. Поэтому стабилитрон надо подобрать на несколько вольт меньше чем максимальное напряжение затвора используемого Вами полевого транзистора.

2.Резистор 5, как было сказано выше, держит полевика закрытым при отсутствии положительного напряжения на плюсовой клемме. Но если установить этот резистор, то светодиод всегда будет немного светится, а при срабатывании защиты засветится ярко. От сопротивления этого резистора будет зависеть яркость постоянного свечения светодиода.

3.Конденсатор С2 рекомендовали установить для того чтобы схема не срабатывала когда не надо. В моём случае всё получилось наоборот. После установки этого конденсатора, схема начала вести себя неадекватно: светодиод подсвечивался (значит транзистор Т2 приоткрывался), полевик начинал сильно греется (так как Т2 приоткрывался то Т1 призакрывался что вызывало увеличение сопротивления перехода).

После всех этих проделок, от R5 и С2 я отказался. Оставил только стабилитрон.

И так пройдёмся по некоторым деталям.

R1 - он же шунт. От сопротивления этого резистора зависит ток срабатывания защиты. Я использовал 10 параллельно соединённых резисторов 0,1 Ом 1 Вт. В итоге получился резистор общим сопротивлением 0,01 Ом и мощностью 10 Вт. Находил информацию, что при сопротивлении 0,1 Ом защита сработает на 4-х Амперах, при 0,05 Ом ток срабатывания - 7..8 А. Но этого сам не проверял. Можно также использовать готовый шунт от старого тестера.

Т1 - полевой транзистор. Его параметры зависят от ваших потребностей. Выбирать надо с запасом и по току, и по напряжению. Например, мне нужна была защита для использования в ЗУ с максимальным напряжением 22В и током 10 А. Выбран был транзистор STP30N05(30А, 50В, 0.045 Ω). После неких манипуляций он был удачно спален (температурный пробой). На замену пришел RFP70N06 (70А,60В, 0.014Ω). Можно применить любой из серии IRFZ44,46,48 или им подобные.

Транзистор

Максимальное напряжение С-И Вольт

Максимальный ток С-И

Ампер

Максимальная

Мощность

Ватт

Сопротивление открытого канала

Ом

IRF3205

110

200

0,008

STP75NF75

300

0,011

IRF1010E

170

0,012

SUB85N06

250

0,0052

SUP75N05(06)

158

0,007

IRFZ48N

140

0,016

BUZ100

250

0,018

IRL3705N

170

0,01

IRF2807

150

0,013

IRL2505

104

200

0,008

При выборе транзистора рекомендовал бы обращать внимание на сопротивление открытого канала. Чем оно меньше тем будет меньший нагрев транзистора. В даташите обозначается так R DS(on) - Static Drain-to-Source On-Resistance

Также не забываем обращать внимание на максимальное напряжение затвора, в даташите оно обозначается так V GS - Gate-to-Source Voltage.

При срабатывании защиты, полевой транзистор не нагревается. Но в нормальном режиме, через транзистор проходит не малый ток (в моем случае до 10 А), который и нагревает транзистора. По результатам испытаний оказалось что при прохождении тока до 4А транзистор без радиатора был еле тёплый. При прохождении тока больше 4А начинался нагрев полевика (). Даже если нагрев был такой что пальцами можно было удержатся, то через 3 часа зарядки аккумулятора током 6А транзистор нагревался очень сильно. Вывод однозначный - радиатор необходим (не большой, но надо).

Стабилитрон. С ним мы уже разобрались чуть выше. В моём случае максимальное напряжение затвора транзистора составляло 20 В. Стабилитрон я установил на 18 В.

Транзистор Т2. Не критичен и может быть установлен любой подходящий по параметрам. Например: BC 174, BC 182, BC 190, BC 546, 2SD767 и т. д.

Резистор R4. Встречал описание, в котором говорится, что если установить R4 - подстроечный номиналом 10кОм, то можно в узких пределах регулировать ток срабатывания защиты. Не знаю как там у них, но мне точная регулировка не была нужна. Но все равно решил попробовать. И зачем спрашивал я себя после этого. Как регулируется ток срабатывания я не увидел, но увидел, как красиво вылетает полевой транзистор, если установить сопротивление на R4 меньше 1кОм (случайно отвертка соскользнула). Очень не советую ставить этот резистор меньше 1кОм.

Диод D1. Также не критичен и может быть установлен практически любой. Я установил 1N4148. Встречал форумы, где говорят, что не видят смысла в установке этого диода, но я его не исключал из схемы. Я себе объясняю применение этого диода так: При подаче входного напряжения, на затворе Т1 присутствует положительное напряжение, которое накапливается на емкости затвора. Из-за этой ёмкости, даже после отключения питания, транзистор остается открытым некоторое время. Время, которое транзистор остается открытым зависит от емкости его затвора, чем больше ёмкость - тем дольше он открыт. Допустим, диод D1 отсутствует. Мы к включенному ЗУ подключаем аккумулятор со случайно перепутанной полярностью. Если по какой-то причине транзистор Т2 не откроется, то будет пшик, так как на момент подключения, транзистор Т1 останется открытым из-за накопленного положительного напряжения на затворе. А вот если б диод присутствовал, то напряжение с затвора через диод ушло б на минусовую клемму аккумулятора.

После сборки, готовую защиту хотел уже устанавливать в корпус ЗУ, но вдруг подумал: А что если защита сработает тогда, когда никого рядом не будет, или кто-то будет, но так что ЗУ не попадет в поле зрения и не увидит светящийся светодиод??? Решение - надо установить бузер. Бузер был применён на 12В 8мА. Изначально установил его параллельно светодиоду, но мне это не совсем понравилось, и я чуточку добавил деталей. Если защиту планируется вами применять в регулируемом БП или ЗУ с выходным напряжением от нуля, то бузер лучше установить на 5В. При этом последовательно с бузером необходимо подключить резистор, сопротивление которого надо будет подобрать.

После всего этого плата с защитой отправилась в ЗУ, где и до сих пор живёт-поживает. В результате, схема получилась вот такая:

И на конец несколько фото:

Срабатывание при КЗ.


Срабатывание при переполюсовке.


Просто плата.

Плата в корпусе ЗУ.


Плата в корпусе ЗУ. Ближе.


В архиве есть схема, эта статья и печатка.

Напоследок хотелось бы сказать что много кто пишет что эта схема не работает, работает неправильно или ещё что-то. У меня заработала и работает вполне нормально.

Всем удачи в повторении!!!



← Вернуться

×
Вступай в сообщество «servizhome.ru»!
ВКонтакте:
Я уже подписан на сообщество «servizhome.ru»