Проявление математических способностей изучал кто. Психология математических способностей. Можно ли развить математическое чувство

Подписаться
Вступай в сообщество «servizhome.ru»!
ВКонтакте:

«Очень большой и сложный вопрос: имеются ли у данного ученика математические способности или нет?

Прежде всего, что понимать под наличием способностей: творческие способности или же способность успешно преодолеть школьную программу по математике, программу втуза?

Слишком большой разброс начальных данных в исходном материале: одни не научились учиться и считают, что если они запомнили без понимания правила, методы решения, то это всё, что от них требуется; других же с раннего детства приучили прежде понимать, а потом запоминать, и к самостоятельному поиску решений; третьих - пользоваться правилами решения, придуманных для разных типов задач, но не самостоятельно мыслить.

Третий тип хорошо известен преподавателям, они знают этих натасканных на правилах мальчиков и девочек, у которых моментально слетают с языка заученные формулировки, но нет привычки искать самостоятельное решение.

Мне приходилось встречаться со школьниками всех трёх указанных типов первоначальной математической подготовки. Конечно, те, кто привык понимать и самостоятельно мыслить, резко выделялись на фоне остальной серенькой массы. Но затем, когда после двух-трёх лет переподготовки и остальные подходили к необходимости понимания материала и отказывались от привычки зазубривания без понимания, появлялись и в их среде яркие личности, способные вносить нечто новое , предлагать неожиданные решения, проявлять свои истинные способности.

Моё убеждение, что способности к хорошему познанию математики, по крайней мере школьной и вузовской, имеют все нормальные дети. Их только нужно научить учиться. Научить пользоваться тем даром, которым наделила человека природа - способностью мыслить. Некоторые школьники буквально менялись коренным образом, когда в их первоначальном математическом образовании удавалось ликвидировать пропуски в знаниях и умениях. Поэтому я резко осуждаю тех, кто слишком рано приклеивает к тому или иному учащемуся ярлык неспособного к математике. Я позволю себе в качестве примера привести самого себя: включительно до шестого класса мне тяжело давалась математика, я испытывал постоянный страх перед задачами.

Я помню, как говорил родителям: «как бы было хорошо учиться, если бы не было математики». В 1925 г. семья переехала в Саратов. Обнаружилось, что в саратовской школе прошли по математике больше, и мне пришлось догонять класс. Я самостоятельно изучил нужные разделы и обратился к прежнему материалу, в котором у меня также оказались пробелы.

Затем мне на глаза попался сборник конкурсных задач, предлагавшихся при поступлении в Петербургский институт путей сообщения. Я перерешал значительное число задач самостоятельно. Через полгода я прослыл лучшим учеником класса по математике. Всё дело в том, что при самостоятельной работе над учебником я доводил дело до понимания и только затем шёл дальше, предварительно закрепляя пройденный материал самостоятельным решением задач. Затем в университете я также занял положение математического лидера, хотя речь шла только об учебном процессе, а не о собственном творчестве. Потребовалось много лет, чтобы я выдвинул проблемы для исследования и начал влиять на творческие интересы других.

Будучи студентом университета, я придерживался такого правила: внимательно слушал лекции, в тот же день просматривал сделанные краткие записи и расширял полученные сведения, прочитывая соответствующие места учебника. Изученное немедленно закреплял несколькими самостоятельно решенными задачами. Такой способ повторения помогал мне избегать горячки перед экзаменами. Мне достаточно было освежить в памяти ранее изученное.

Я никогда не позволял себе идти дальше, не поняв предыдущего. Пожалуй, имеет смысл сказать, что сразу же после лекций, после обдумывания, я вкратце записывал содержание лекции, уделяя внимание четкости формулировок определений и теорем. Дополнительные сведения, почерпнутые из книг, я также помещал после записи содержания лекции. Мои записки пользовались успехом на курсе, их брали, переписывали, просили на время каникул для пересдачи. В результате мне не удалось сохранить ни одной такой тетради, все они разошлись по рукам.

Я считаю, что составление записок мне принесло двойную пользу. Во-первых, я с самого начала изучал как следует всё новое, что нам излагалось и, во-вторых, я приучался кратко излагать то основное, что следовало знать и уметь применять. Эта привычка к кратким и чётким формулировкам сохранилась у меня на всю дальнейшую жизнь.

Если говорить о способностях воспринимать курс школьной и вузовской математики, то я убеждён в том, что в большинстве случаев отсутствие способностей приписывают тем, кто не хочет учиться или же имеет серьёзные пробелы в предшествующих частях курса и не считает нужным восстановить своевременно непознанное. Многолетний опыт общения со студентами, школьниками и их родителями убедил меня в том, что, как правило, неудачи усвоением курса математики связаны не с отсутствием математических способностей, а с отсутствием прочных знаний фундаментальных понятий, с ленью ума, которая мешает систематической работе над материалом, и со стремлением се познание свести к запоминанию без понимания. Мы же должны помнить, что только в самостоятельном преодолении трудностей - ключ к познанию и уверенности в своих гениях и знаниях.

В подавляющем большинстве случаев, когда говорят об отсутствии у учащегося математических способностей для познания обязательного курса, речь должна идти о другом - либо о неумении, либо о нежелании учиться.

Заключение же об отсутствии способностей обычно педагогически необосновано и вредно. Такое заключение способно угнетающе подействовать на психику учащегося. Это во-первых. А во-вторых, оно как бы выдает индульгенцию лентяю или же не научившемуся учиться.

Умение учиться не приходит само собой, а нуждается в систематическом воспитании, постоянном внимании учителей и серьёзных усилиях учащихся. Цель школьного обучения состоит не в том, чтобы перегрузить память учащихся сведениями, которые не превращаются в орудие труда, а в том, чтобы сделать ум пытливым, подвижным, способным анализировать новые ситуации, находить подходы к решению возникающих проблем. Тот, кто делает ставку только на память, на зубрёжку, отключает мысль, разум от работы по познанию. Память обязана играть роль активного помощника разума, и не следует навязывать ей несвойственную роль единственного средства познания. В памяти должны храниться основные сведения и идеи, которые по мере надобности превращаются в активные методы.

Точно так же невозможно научить говорить на чужом языке, если только снабдить память словами и правилами. Этого мало. Необходимо ещё приучить человека активно пользоваться полученным запасом знаний. А для этого нужно говорить, т. е. заставлять знания не лежать мертвым грузом в недрах памяти, а активно действовать. Для математики упражнения на решение задач, на проведение логических заключений так же обязательны, как разговор на чужом языке при его изучении».

Гнеденко Б.В., Математика и жизнь, М., «Комкнига», 2006 г., с.118-121.

Способности к математике – это один из данных природой талантов, проявляющийся уже с раннего возраста и связанный напрямую со становлением творческого потенциала, стремлением к познанию мира вокруг малыша. Но почему изучение математики так сложно дается некоторым детям и можно ли улучшить эти способности?

Мнение, что математика подвластна лишь одарённым детям, ошибочно. Математические способности, как и прочие таланты, являются результатом гармоничного развития ребенка, и начинать надо с самого раннего возраста.

В современном компьютерном мире с его цифровыми технологиями умение “дружить” с числами крайне необходимо. Много профессий основано на математике, развивающей мышление и относящейся к одному из самых важных факторов влияния на интеллектуальный рост детей. Эта точная наука, чья роль в воспитании и обучении ребенка неоспорима, развивает логику, учит последовательно мыслить, определять сходства, связи и отличия предметов и явлений, делает детский ум быстрым, внимательным и гибким.

Чтобы занятия математикой у детей пяти-семи лет были эффективными, необходим серьезный подход, и первым делом следует диагностировать их знания и умения – оценить, на каком уровне находятся у малыша логическое мышление и базовые математические понятия.

Диагностика математических способностей детей 5-7 лет по методу Белошистой А.В.

Если ребенок с математическим складом ума освоил устный счет еще в раннем возрасте, это еще не является основанием для стопроцентной уверенности в его будущем как гения математики. Навыки устного счёта – это лишь небольшой элемент точной науки и далеко не самый сложный. О наличии у ребенка способностей к математике свидетельствует особый способ мышления, которому присущи логика и абстрактное мышление, понимание схем, таблиц и формул, умение анализировать, способность видеть фигуры в пространстве (объемными).

Чтобы определить наличие у детей от младшего дошкольного (4-5 лет) до младшего школьного возраста данных способностей, существует система эффективной диагностики, созданная доктором педагогических наук Анной Витальевной Белошистой. Она основана на создании учителем или родителем определенных ситуаций, в которых ребенок должен применить то или иное умение.

Этапы диагностики:

  1. Проверка ребенка 5-6 лет на предмет владения навыками анализа и синтеза. На данном этапе можно оценить, как ребенок умеет сравнивать предметы различных форм, разделять их и обобщать по определенным признакам.
  2. Тестирование навыков образного анализа у детей в возрасте 5-6 лет.
  3. Проверка умения анализировать и синтезировать информацию, по результатам которого выявляется способность дошкольника (первоклассника) определять формы различных фигур и замечать их в сложных картинках с наложенными друг на друга фигурами.
  4. Тестирование с целью определения у ребенка понимания базовых тезисов математики – речь идет о понятиях “больше” и “меньше”, порядковом счете, форме простейших геометрических фигур.

Первые два этапа такой диагностики проводятся в начале учебного года, остальные – в конце, что дает возможность оценить динамику математического развития ребенка.

Применяемый для проверки материал должен быть понятным и интересным для детей – соответствующим возрасту, ярким и с картинками.

Диагностика математических способностей ребенка по методу Колесниковой Е.В.

Елена Владимировна создала немало учебно-методических пособий для развития математических способностей у дошкольников. Её метод тестирования детей 6 и 7 лет получил широкое распространение у учителей и родителей разных стран и соответствует требованиям ФГОС (Россия).

Благодаря методу Колесниковой можно максимально точно установить уровень основных показателей развития математических навыков детей, узнать их готовность к школе, определить слабые стороны для своевременного восполнения пробелов. Данная диагностика помогает найти пути улучшения математических способностей малыша.

Развитие математических способностей ребенка: советы родителям

С любой наукой, даже такой серьезной, как математика, малыша лучше знакомить в игровой форме – именно это будет лучшим методом обучения, который следует выбрать родителям. Прислушайтесь к словам известного ученого Альберта Эйнштейна: “Игра – это высшая форма исследования”. Ведь при помощи игры можно получить потрясающие результаты:

– познание себя и окружающего мира;

– формирование базы математических знаний;

– развитие мышления:

– становление личности;

– развитие коммуникабельности.

Применять можно различные игры:

  1. Счетные палочки. Благодаря им малыш запоминает формы предметов, развивает свое внимание, память, смекалку, формируются навыки сравнения и усидчивость.
  2. Головоломки, развивающие логику и смекалку, внимание и память. Логические задачи помогают детям научиться лучшему восприятию пространства, взвешенному планированию, простому и обратному, а также порядковому счету.
  3. Математические загадки – это отличный способ развития основных аспектов мышления: логики, анализа и синтеза, сравнения и обобщения. Во время поиска решения дети учатся самостоятельно делать выводы, справляться с трудностями и отстаивать свою точку зрения.

Развитие математических способностей через игру формирует учебный азарт, добавляет яркие эмоции, помогает малышу полюбить заинтересовавший его предмет изучения. Также стоит отметить, что игровая деятельность способствует и развитию творческих способностей.

Роль сказок в развитии математических способностей дошкольников

Детской памяти присущи свои особенности: она фиксирует яркие эмоциональные моменты, то есть ребенок запоминает ту информацию, которая связана с удивлением, радостью, восхищением. И учиться “из-под палки” – крайне неэффективный способ. В поиске результативных методов обучения взрослым следует вспомнить о таком простом и обыденном элементе, как сказка. Именно сказка является одним из первых средств знакомства малыша с окружающим миром.

Для детей сказка и реальность тесно связаны, волшебные персонажи – настоящие и живые. Благодаря сказкам развивается речь ребенка, его фантазия и смекалка; они дают понятие добра, честности, расширяют кругозор, а также дают возможность развивать и математические навыки.

К примеру, в сказке “Три медведя” малыш в ненавязчивой форме знакомится со счётом до трех, понятиями “маленький”, “средний” и “большой”. “Репка”, “Теремок”, “Козленок, который умел считать до 10”, “Волк и семеро козлят”, – в этих сказках можно научиться простому и порядковому счёту.

Обсуждая сказочных персонажей, можно предложить крохе сравнить их по ширине и высоте, “спрятать” в геометрических фигурах, подходящих по размеру или форме, что способствует развитию абстрактного мышления.

Использовать сказки можно не только дома, но и на занятиях в школе. Дети очень любят уроки, построенные на сюжетах их любимых сказок, с применением загадок, лабиринтов, пальцематики. Такие занятия станут настоящим приключением, в которых малыши будут принимать личное участие, а значит, и материал будет усвоен лучше. Главное – вовлечь детей в процесс игры и вызвать у них интерес.

WikiHow работает по принципу вики, а это значит, что многие наши статьи написаны несколькими авторами. При создании этой статьи над ее редактированием и улучшением работали, в том числе анонимно, 98 человек(а).

Если математика не ваш конек, и дается она вам не без труда, прочтите эту статью до конца, и вы узнаете, как улучшить свои математические навыки и добиться успехов в изучении этого непростого предмета.

Шаги

    Просите о помощи.

    • Во время урока просите объяснить вам значение того или иного понятия. Если ответ все-таки не проливает свет на все темные пятна, останьтесь после урока и поговорите с учителем еще раз. Может быть, в беседе один на один он объяснит вам материал поподробнее и больше того, что уместилось в урочное время.
  1. Удостоверьтесь, что понимаете значение всех слов. Математика, если говорить о задачах более высокого уровня, представляет собой, как правило, набор простых операций. Например, при умножении используется сложение, а при делении не обойтись без вычитания. До того, как вы усвоите какое-либо понятие, вам необходимо разобраться в том, какие математические операции оно в себя включает. С каждым математическим термином (например, «переменная») поступайте так:

    • Выучите определение в учебнике: «Символ для неизвестного нам числа, как правило, обозначается буквами, например, x или y.»
    • Упражняйтесь в решении примеров по теме. Например, "4x - 7 = 5," где x – неизвестная переменная, а 4, 7 и 5 – «константы» (определение для этого понятия тоже нужно посмотреть в учебнике).
  2. Уделяйте особое внимание изучению математических правил. Свойства, формулы, уравнения и методы решения задач – все это основные инструменты математической науки. Научитесь полагаться на них так же, как хороший плотник полагается на свои пилу, рулетку, молоток и т. д.

    Принимайте активное участие в классной работе. Если не знаете ответа на вопрос, попросите объяснения. Расскажите учителю, что именно вы уже поняли, чтобы он смог уделить больше внимания тем моментам, которые вызвали у вас затруднение.

    • Рассмотрим ситуацию на примере упомянутой выше задачи с переменной. Скажите учителю так: «Я понимаю, что если умножить на 4 неизвестную переменную (x), отнять 7, то получится 5. С чего мне начать решение?» Теперь учитель будет знать, что именно вызывает у вас трудность и как вовлечь вас в решение задания. А вот если бы вы сказали просто: «Я не понимаю», - учитель мог бы подумать, что ему нужно прежде всего объяснить вам, что такое переменная и константа.
    • Никогда не бойтесь задавать вопросы. Даже Эйнштейн задавал вопросы (а потом сам же и отвечал на них)! Решение не придет к вам само собой, если вы будете бездействовать. Не хотите спрашивать учителя, тогда попросите помощи у соседа по парте или приятеля.
  3. Ищите помощь извне. Если все-таки вам еще нужна помощь, а учитель не может объяснить вам материал так, чтобы вы поняли, попросите порекомендовать вам кого-нибудь для более обстоятельных занятий. Узнайте, может быть, есть какие-нибудь специальные курсы или репетиторские программы, или попросите учителя позаниматься с вами до или после школьных занятий.

    • Наряду с различными способами изучения материала (аудио-, визуальное восприятие и т.д.) существуют и различные подходы в преподавании. Если вы лучше всего воспринимаете информацию визуально, а ваш учитель, пусть и самый лучший в мире, ориентируется в процессе обучения на тех, кто хорошо воспринимает информацию на слух, то вам будет тяжело заниматься с таким педагогом. Поэтому было бы полезно получить дополнительную помощь от тех, кто обучает таким методом, какой удобнее именно для вас.
  4. Записывайте каждое действие в решении. Например, при решении уравнений разделите свое решение на отдельные действия и запишите все, что вы сделали прежде, чем перейти к следующему действию.

    • Подробная запись поможет проследить путь решения и найти ошибки.
    • Пошаговое письменное решение покажет вам, где именно вы ошиблись.
    • Записывая каждое действие в математическом решении, вы еще раз повторите и лучше запомните то, что уже знали.
  5. Старайтесь решать все задания, которые вам были заданы. После нескольких примеров вы набьете руку. Если задания все еще даются с трудом, то вы поймете, где именно у вас возникают сложности.

  6. Просмотрите свои уже проверенные учителем задания. Изучите его пометки и исправления и разберите свои ошибки. Если не все понятно, попросите учителя разобраться вместе.

    • Не стесняйтесь просить о помощи, учитесь на своих ошибках!
    • Даже если математика для вас трудновата, не бойтесь ее. Волнение только все усложняет. Вместо этого наберитесь терпения и постепенно, шаг за шагом изучайте ее.
    • Не забывайте делать домашнее задание! Можете даже составлять свои собственные примеры и задачи, чтобы потренироваться.
    • Не сидите сложа руки из-за страха ошибиться. Пытайтесь что-нибудь решить, даже если не до конца уверены в правильности вашего решения.
    • Спрашивайте, если не понимаете. Попросите учителя объяснить то, что вам непонятно, во время урока или после. Не позволяйте страху бежать впереди паровоза. Не теряйте веры в себя и не обращайте внимания на других.
    • Когда арифметика останется позади, и вы будешь изучать алгебру и геометрию, знайте, что все то новое, что вы будете проходить в этих разделах математики, будет основано на уже изученном ранее материале. Так что убедитесь, что хорошо усвоили каждый свой урок прежде, чем двигаться дальше.
    • Вам будет гораздо проще, если вы будете показывать учителю свою работу.
    • Всегда обращайтесь за помощью к учителю, если что-то не понимаете.
    • Старайтесь понимать все, что вы делаете, а не просто бездумно решайте схожие задания одинаковым способом. Скажем, если вы учитесь складывать большие числа, то подумайте, почему число, обозначающее десятки, нужно прибавлять к сумме в следующем столбце. А если все-таки еще не понимаете, то спросите.
    • Нравится нам это или нет, но умение быстро и правильно считать играет важную роль и в нашей деловой, и в личной жизни.
    • Получайте удовольствие. Ведь даже если пока вам это и не очень-то интересно, тем не менее, математика может быть воистину прекрасна в своей элегантной упорядоченности.
    • Занимайтесь математикой не менее получаса в день.

Калькуляторы могут быть удивительно полезными, но они не всегда под рукой. К тому же не всем удобно доставать калькуляторы или телефоны, чтобы подсчитать, сколько нужно заплатить в ресторане, или вычислить размер чаевых. Вот десять подсказок, которые могут помочь вам произвести все эти подсчеты в уме. На самом деле это совсем не сложно, особенно если запомнить несколько простых правил.

Прибавляйте и вычитайте слева направо

Помните, как в школе нас учили прибавлять и вычитать в столбик справа налево? Это сложение и вычитание удобно, когда под рукой карандаш и листок бумаги, но в уме эти математические действия легче выполнить, считая слева направо. В числе слева расположена цифра, определяющая большие ценности, например сотни и десятки, а справа меньшие, то есть единицы. Слева направо считать интуитивнее. Таким образом, прибавляя 58 и 26, начните с первых цифр, сначала 50 + 20 = 70, потом 8 + 6 = 14, затем сложите оба результата - и получите 84. Легко и просто.

Облегчите себе задачу

Если вы столкнулись со сложным примером или задачей, попытайтесь найти способ упростить ее, например, добавить или отнять определенное число, чтобы сделать общее вычисление проще. Если, например, вам нужно посчитать, сколько будет 593 + 680, сначала прибавьте 7 к 593, чтобы получить более удобное число 600. Вычислите, сколько будет 600 + 680, а затем от полученного результата 1280 отнимите те же 7, чтобы получить правильный ответ - 1273.

Подобным образом можно поступать и с умножением. Чтобы умножить 89 x 6, вычислите, сколько будет 90 x 6, а затем отнимите оставшиеся 1 х 6. Таким образом, 540 - 6 = 534.

Запомните стандартные блоки

Запоминание таблиц умножения является важной и нужной частью математики, которая отлично помогает решать примеры в уме.

Запоминая основные «стандартные блоки» математики, такие как таблица умножения, квадратные корни, процентные соотношения десятичных и обыкновенных дробей, мы можем немедленно получить ответы на простые задачи, спрятанные в более трудных.

Помните полезные уловки

Чтобы быстрее справиться с умножением, важно помнить несколько простых уловок. Одно из самых очевидных правил - умножение на 10, то есть просто добавление ноля к умножаемому числу или перенос запятой на один десятичный показатель. При умножении на 5, ответ будет всегда заканчиваться цифрой 0 или 5.

Кроме того, умножая число на 12, сначала умножьте его на 10, а потом на 2, затем прибавьте результаты. Например, вычисляя 12 x 4, сначала умножьте 4 x 10 = 40, а затем 4 x 2 = 8, и прибавьте 40 + 8 = 48. Умножая на 15, просто умножьте число на 10, и затем прибавьте еще половину полученного, например, 4 x 15 = 4 x 10 = 40, плюс еще половина (20), получается 60.

Есть также хитрая уловка для умножения на 16. Во-первых, умножьте рассматриваемое число на 10, а затем умножьте половину числа на 10. После прибавьте оба результата к числу, чтобы получить окончательный ответ. Таким образом, чтобы вычислить 16 x 24, сначала вычислите 10 x 24 = 240, затем половину 24, то есть 12, умножьте на 10 и получите 120. И последний шаг: 240 + 120 + 24 = 384.

Квадраты и их корни очень полезны

Почти как таблица умножения. И помочь они могут с умножением более крупных чисел. Квадрат получается при умножении числа на само себя. Вот как работает умножение с использованием квадратов.

Давайте предположим на мгновение, что мы не знаем ответ на 10 x 4. Сначала выясняем среднее число между этими двумя числами, оно равно 7 (т. е. 10 - 3 = 7, и 4 + 3=7, при этом различие между средним числом равно 3 - это важно).

Затем определяем квадрат 7, который равен 49. У нас теперь есть число, близкое к финальному ответу, но оно не достаточно близко. Чтобы получить правильный ответ, возвращаемся к различию между средним числом (в этом случае 3), его квадрат дает нам 9. Последний шаг включает в себя простое вычитание, 49 - 9 = 40, теперь у вас есть правильный ответ.

Это похоже на окольный и чересчур сложный способ вычислить, сколько же будет 10 x 4, но та же самая техника прекрасно работает и для больших чисел. Возьмем, например, 15 x 11. Сначала мы должны найти среднее число между этими двумя (15 - 2 = 13, 11 + 2 = 13). Квадрат 13 равен 169. Квадрат различия среднего числа 2 равен 4. Получаем 169 - 4 = 165, вот и правильный ответ.

Иногда достаточно и приблизительного ответа

Если вы пытаетесь решить сложные задачи в уме, неудивительно, что на это уходит немало времени и усилий. Если вам не нужен абсолютно точный ответ, возможно, достаточно будет подсчитать приблизительное число.

То же самое касается и задач, в условиях которых вам не известны все точные данные. Например, во время Манхэттенского проекта физик Энрико Ферми хотел примерно подсчитать силу атомного взрыва, прежде чем ученые получат точные данные. С этой целью он набросал бумажных обрывков на пол и следил за ними с безопасного расстояния, в тот момент, когда до бумажек дошла взрывная волна. Измерив расстояние, на которое сдвинулись обрывки, он предположил, что сила взрыва составила приблизительно 10 килотонн в тротиловом эквиваленте. Эта оценка оказалась довольно точна для предположения навскидку.

К счастью, нам не приходится регулярно оценивать приблизительную силу атомных взрывов, однако приблизительные подсчеты не повредят, если, например, вам нужно предположить, сколько в городе настройщиков фортепиано. Для этого проще всего оперировать числами, которые просто делить и умножать. Таким образом, сначала вы оцениваете население своего города (например, сто тысяч человек), затем оцениваете предположительное число фортепьяно (скажем, десять тысяч), ну и затем количество настройщиков фортепьяно (например, 100). Вы не получите точный ответ, но сумеете быстро предположить приблизительное количество.

Перестраивайте примеры

Основные правила математики помогают перестроить сложные примеры в более простые. Например, вычисление в уме примера 5 x (14 + 43) кажется грандиозной и даже непосильной задачей, но пример можно «разломить» на три довольно несложных вычисления. Например, эта непосильная задача может быть перестроена следующим образом: (5 x 14) + (5 x 40) + (5 x 3) = 285. Не так уж и сложно, правда?

Упрощайте задачи

Если задача кажется сложной, упростите ее. Всегда проще справиться с несколькими простыми заданиями, чем с одним сложным. Решение многих сложных примеров в уме заключается в умении правильно разделить их на более простые примеры, решение которых не составляет труда.

Например, умножать на 8 проще всего, удваивая число три раза. Таким образом, вместо того, чтобы пытаться решить, сколько будет 12 x 8 традиционным способом, просто удвойте 12 три раза: 12 х 2 = 24, 24 х 2 = 48, 48 х 2 = 96.

Или умножая на 5, сначала умножайте на 10, так как это легко, затем разделите результат на 2, так как это также довольно легко. Например, для решения 5 x 18, вычислите 10 x 18 и разделите на 2, где 180: 2 = 90.

Пользуйтесь возведением в степень

Вычисляя большие суммы в уме, помните, что вы можете преобразовать их в более мелкие числа, умноженные на 10 в нужной степени. Например, сколько получится, если 44 миллиарда разделить на 400 тысяч? Простой способ решить эту задачу состоит в том, чтобы преобразовать 44 миллиарда в следующее число - 44 х 10 9 , а из 400 тысяч сделать 4 х 10 5 . Теперь мы можем преобразовать задачу следующим образом: 44: 4 и 10 9: 10 5 . Согласно математическим правилам, все это выглядит так: 44: 4 х 10(9-5), таким образом, мы получаем 11 x 10 4 = 110,000.

Самый простой способ вычислить необходимые чаевые

Математика необходима даже во время ужина в ресторане, точнее после него. В зависимости от заведения, размер чаевых может составлять от 10% до 20% от стоимости счета. Например, в США принято оставлять на чай официантам 15%. И там, как и во многих европейских странах, чаевые обязательны.

Если вычислить 10% от общей суммы сравнительно легко (просто разделите сумму на 10), то с 15 и с 20% дело, кажется, обстоит сложнее. Но на самом деле, все так же просто и очень логично.

Вычисляя 10-процентные чаевые за ужин, который обошелся в 112,23 доллара, просто переместите десятичную точку влево на одну цифру, получится 11,22 $. Вычисляя 20-процентные чаевые, сделайте то же самое, и просто удвойте полученную сумму (20% просто в два раза больше 10%), в этом случае чаевые составят 22,44 $.

Для 15-процентных чаевых сначала определите 10% от суммы, а затем добавьте половину полученной суммы (дополнительные 5% - это половина 10-процентной суммы). Не волнуйтесь, если не можете получить точный ответ, до последнего цента. Если не заморачиваться слишком сильно с десятичными знаками, мы можем быстро вычислить, что 15-процентные чаевые от суммы 112,23 $ составляют 11 + 5,50 $, что дает нам 16,50 $. Достаточно точно. Если вы не хотите обидеть официанта, недосчитав нескольких центов, округлите сумму до целого числа и заплатите 17 долларов.

В исследование математических способностей внесли свой вклад такие представители определенных направлений в психологии, как А. Бинэ, Э. Торндайк и Г. Ревеш, и такие выдающиеся математики, как А.Пуанкаре и Ж. Адамар. Большое разнообразие направлений определяет и большое разнообразие в подходах к исследованию математических способностей. Все ученые сходятся во мнении, что следует различать обычные, «школьные» способности к усвоению математических знаний, к их репродуцированию, самостоятельному применению и творческие математические способности, связанные с самостоятельным созданием оригинального и имеющего общественную ценность продукта.

А. Роджерс отмечает две стороны математических способностей: репродуктивная (связанная с функцией памяти) и продуктивная (связанная с функцией мышления). В. Бетц определяет математические способности как способности ясного осознания внутренней связи математических отношений и способность точно мыслить математическими понятиями.

В статье «Психологи математического мышления» Д. Мордухай-Болтовский придавал особое значение «бессознательному мыслительному процессу», утверждая, что «мышление математика глубоко внедряется в бессознательную сферу, то всплывая на ее поверхность, то погружаясь в глубину. Математик не осознает каждого шага своей мысли, как виртуоз движений смычка». Внезапное появление в сознании готового решения какой-либо задачи, которую мы не можем долго решить, мы объясняем бессознательным мышлением, которое продолжало заниматься задачей, а результат всплывает за порог сознания. По мнению Д. Мордухай-Болтовского, наш ум способен производить кропотливую и сложную работу в подсознании, где и совершается вся «черновая» работа, причем бессознательная работа мысли даже отличается меньшей погрешностью, чем сознательная.

Д. Мордухай-Болтовский отмечает совершенно специфический характер математического таланта и математического мышления. Он утверждает, что способность к математике не всегда присуща даже гениальным людям, что между математическим и нематематическим умом есть существенная разница.

Выделяют следующие компоненты математических способностей:

  • -«сильная память» (память, скорее не на факты, а на идеи и мысли);
  • -«остроумие» как способность «обнимать в одном суждении» понятия из двух малосвязанных областей мысли находить в уже известном сходное с данным, отыскивать сходное в самых отдаленных, совершенно разнородных предметах;
  • -«быстрота мысли» (быстрота мысли объясняется той работой, которую совершает бессознательное мышление в помощь сознательному).

Д. Мордухай-Болтовский различает типы математического воображения, которые лежат в основе разных типов математиков - «алгебраистов» и «геометров». Арифметики, алгебраисты и вообще аналитики, у которых открытие производится в самой абстрактной форме прорывных количественных символов и их взаимоотношений, не могут воображать, так как «геометр».

Отечественная теория способностей создавалась совместным трудом виднейших психологов, из которых в первую очередь надо назвать Б.М. Теплова, а так же Л.С. Выготского, А.Н. Леонтьева, С.Л. Рубинштейна и Б.Г. Ананьева. Помимо общетеоретических исследований проблемы математических способностей, В.А. Крутецкий своей монографией «Психология математических способностей школьников» положил начало экспериментальному анализу структуры математических способностей. Под способностями к изучению математики он понимает индивидуально-психологические особенности (прежде всего особенности умственной деятельности), отвечающие требованиям учебной математической деятельности и обуславливающие при прочих равных условиях успешность творческого овладения математикой как учебным предметом, в частности относительно быстрое, легкое и глубокое овладение знаниями, умениями, навыками в области математики.

Д.Н. Богоявленский и Н.А. Менчинская, говоря об индивидуальных различиях обучаемости детей, вводят понятие психологических свойств, определяющих при прочих равных условиях успех в учении.

Математические способности - сложное структурное психическое образование, своеобразный синтез свойств, интегральное качество ума, охватывающее разнообразные его стороны и развивающееся в процессе математической деятельности. Указанная совокупность представляет собой единое качественно-своеобразное целое, - только в целях анализа мы выделяем отдельные компоненты, не рассматривая их как изолированные свойства. Эти компоненты тесно связаны, влияют друг на друга и образуют в своей совокупности единую систему, проявление которой называют «синдромом математической одаренности».

Большой вклад в разработку данной проблемы внес В.А. Крутецкий . Собранный им экспериментальный материал позволяет говорить о компонентах, занимающих существенное место в структуре такого интегрального качества ума, как математическая одаренность. В.А. Крутецкий представил схему структуры математических способностей в школьном возрасте:

  • · Получение математической информации (способность к формализованному восприятию математического материала, охватыванию формальной структуры задачи).
  • · Переработка математической информации
  • А)Способность к логическому мышлению в сфере количественных и пространственных отношений, числовой и знаковой символики. Способность мыслить математическими символами.
  • Б)Способность к быстрому и широкому обобщению математических объектов, отношений и действий.
  • В)способность к свертыванию процесса математического рассуждения и системы соответствующих действий. Способность мыслить свернутыми структурами.
  • Г)Гибкость мыслительных процессов в математической деятельности.
  • Д)Стремление к ясности, простоте, экономности и рациональности решений.
  • Е)Способность к быстрой и свободной перестройке направленности мыслительного процесса, переключение с прямого на обратный ход мысли (обратимость мыслительного процесса при математическом рассуждении).
  • · Хранение математической информации.

Математическая память (обобщенная память на математические отношения, типовые характеристики, схемы рассуждений, доказательств, методы решения задач и принципы подхода к ним).

· Общий синтетический компонент. Математическая направленность ума.

Не входят в структуру математической одаренности те компоненты, наличие которых в этой структуре не обязательно. Они являются нейтральными по отношению к математической одаренности. Однако их наличие или отсутствие в структуре (точнее степень развития) определяют типы математического склада ума. Быстрота мыслительных процессов как временная характеристика, индивидуальный темп работы не имеют решающего значения. Математик может размышлять неторопливо, даже медленно, но очень обстоятельно и глубоко. Также к нейтральным компонентам можно отнести вычислительные способности (способности к быстрым и точным вычислениям, часто в уме). Известно, что есть люди, способные воспроизводить в уме сложные математические вычисления (почти мгновенное возведение в квадрат и куб трехзначных чисел), но не умеющие решать сколько-нибудь сложные задачи. Известно также, что существовали и существуют феноменальные «счетчики» не давшие математике ничего, а выдающийся математик А. Пуанкре писал о себе, что без ошибки не может сделать даже сложение.

Память на цифры, формулы и числа является нейтральной по отношению к математической одаренности. Как указывал академик А.Н. Коломогоров, многие выдающиеся математики не обладали сколько-нибудь выдающейся памятью такого рода.

Способность к пространственным представлениям, способность наглядно представлять абстрактные математические отношения и зависимости также составляют нейтральный компонент.

Важно отметить, что схема структуры математических способностей имеет в виду математические способности школьника. Нельзя сказать в какой мере ее можно считать общей схемой структуры математических способностей, в какой мере ее можно отнести к вполне сложившимся одаренным математикам.

Известно, что в любой области науки одаренность как качественное сочетание способностей всегда многообразна и в каждом отдельном случае своеобразна. Но при качественном многообразии одаренности всегда можно наметить какие-то основные типологические характеристики различия в структуре одаренности, выделить определенные типы, значительно отличающиеся один от другого, разными путями приходящие с одинаково высокими достижениями в соответствующей области.

Об аналитическом и геометрическом типах упоминается в работах А. Пуанкре, Ж. Адамара, Д. Мордухай-Болтовского, но с этими терминами у них связывается скорее логический, интуитивный пути творчества в математике.

Из отечественных исследователей вопросами индивидуальных различий учащихся при решении задач с точки зрения соотношения абстрактных и образных компонентов мышления много занималась Н.А. Менчинская. Она выделяла учащихся с относительным преобладанием: а) образного мышления над абстрактным в) гармоническим развитием обоих видов мышления.

Нельзя думать, что аналитический тип проявляется только в алгебре, а геометрический - в геометрии. Аналитический склад может проявляться в геометрии, а геометрический - в алгебре. В.А. Крутецкий дал развернутую характеристику каждого типа.

Аналитический тип. Мышление этого типа характеризуется преобладанием очень хорошо развитого словесно-логического компонента над слабым наглядно-образным. Они легко оперируют отвлеченными схемами. У них нет потребности в наглядных опорах, в использовании предметной или схематической наглядности при решении задач, даже таких, когда данные в задаче математические отношения и зависимости «наталкивают» на наглядные представления.

Представители этого типа не отличаются способностью наглядно-образного представления и в силу этого используют более трудный и сложный логико-аналитический путь решения там, где опора на образ дает гораздо более простое решение. Они очень успешно решают задачи, выраженные в абстрактной форме, задачи же, выраженные в конкретно-наглядной форме, стараются по возможности переводить в абстрактный план. Операции, связанные с анализом понятий, осуществляются ими легче, чем операции, связанные с анализатором геометрической схемы или чертежа.

  • -Геометрический тип. Мышление представителей этого типа характеризуется очень хорошо развитым наглядно-образным компонентом. В связи с этим можно говорить о преобладании над хорошо развитым словесно-логическим компонентом. Эти учащиеся испытывают потребность в наглядной интерпретации выражения абстрактного материала и демонстрируют большую избирательность в этом отношении. Но если им не удается создать наглядные опоры, использовать предметную или схематическую наглядность при решении задач, то они с трудом оперируют отвлеченными схемами. Они упорно пытаются оперировать наглядными схемами, образами, представлениями даже там, где задача легко решается рассуждением, а использование наглядных опор излишне или затруднительно.
  • -Гармонический тип. Для этого типа характерно равновесие хорошо развитых словесно-логического и наглядно-образного компонента при ведущей роли первого. Пространственные представления у представителей этого типа развиты хорошо. Они избирательны в наглядной интерпретации абстрактных отношений и зависимостей, но наглядные образы и схемы подчинены у них словесно-логическому анализу. Оперируя наглядными образами, эти учащиеся четко осознают, что содержание обобщения не исчерпывается частными случаями. Представители этого типа успешно осуществляют образно-геометрический подход к решению многих задач.

Установленные типы имеют общее значение. Их наличие подтверждается многими исследованиями.

В зарубежной психологии до настоящего времени широко распространены представления о возрастных особенностях математического развития школьника, исходящих из исследований Ж. Пиаже. Пиаже считал, что ребенок только к 12 годам становится способным к абстрактному мышлению . Анализируя стадии развития математических рассуждений подростка, Л. Шоанн пришел к выводу, что в наглядно-конкретном плане школьник мыслит до 12 - 13 лет, а мышление в плане формальной алгебры, связанное с овладением операциями, символами, складывается к 17 годам.

Исследование отечественных психологов дают иные результаты. П.П. Блонский писал об интенсивном развитии у подростка, обобщающего и абстрагирующего мышления, умения доказывать и разбираться в доказательствах . Исследования И.В. Дубровиной дают основание говорить о том, что применительно к возрасту младших школьников мы не можем утверждать о сколько-нибудь сформированной структуре собственно математических способностей, конечно, исключая случаи особой одаренности. Поэтому «понятие математические способности» условно в применении к младшим школьникам - детям 7 - 10 лет, при исследовании компонентов математических способностей в этом возрасте речь может идти лишь об элементарных формах таких компонентов. Но отдельные компоненты математических способностей формируются уже в начальных классах.

Опытное обучение, которое осуществлялось в ряде школ Института психологии (Д.Б. Эльконин, В.В. Давыдов) показывают, что при специальной методике обучения младшие школьники приобретают большую способность к отвлечению и рассуждению, чем принято думать. Однако, хотя возрастные особенности школьника в большей мере зависят от условий, в которых осуществляется обучение, считать, что они целиком создаются обучением, было бы неверно. Поэтому неправильна крайняя точка зрения на этот вопрос, когда считают, что не существует никакой закономерности естественного психического развития. Более эффективная система обучения может «стать» весь процесс, но до известных пределов, может несколько измениться последовательность развития, но не может придать линии развития совершенно иной характер. Здесь не может быть произвольности. Не может, например, способность к обобщению сложных математических отношений и методов сформироваться раньше, чем способность к обобщению простых математических отношений . Таким образом, возрастные особенности - это несколько условное понятие. Поэтому все исследования ориентированы на общую тенденцию, на общее направление развития основных компонентов структуры математических способностей под влиянием обучения.

В зарубежной психологии имеются работы, где сделана попытка выявить отдельные качественные особенности математического мышления мальчиков и девочек. В. Штерн говорит о своем несогласии с той точкой зрения, согласно которой различия в умственной области мужчин и женщин есть результат неодинакового воспитания. По его мнению, причины кроются в разных внутренних задатках. Поэтому женщины менее склонны к абстрактному мышлению и менее способны в этом отношении.

В своих исследованиях Ч. Спирмен и Э. Торндайк пришли к выводу, что «в отношении способностей большой разницы нет», но при этом отмечают большую склонность девочек к детализированию, запоминанию подробностей.

Соответствующие исследования в отечественной психологии были проведены под руководством И.В.Дубровиной и С.И.Шапиро. Они не обнаружили каких-либо качественных специфических особенностей в математическом мышлении мальчиков и девочек. Не указали на эти различия и опрошенные ими учителя.

Разумеется, фактически мальчики чаще обнаруживают математические способности. Победителями в математических олимпиадах чаще бывают мальчики, чем девочки. Но это фактическое различение надо отнести за счет разницы в традициях, в воспитании мальчиков и девочек, за счет распространенного взгляда на мужские и женские профессии. Это приводит к тому, что математика часто оказывается вне направленности интересов девочек.



← Вернуться

×
Вступай в сообщество «servizhome.ru»!
ВКонтакте:
Я уже подписан на сообщество «servizhome.ru»