Почему лёд не тонет в воде? — Other. Почему лёд не тонет в воде, а плавает на её поверхности Почему лед плавает на поверхности воды

Подписаться
Вступай в сообщество «servizhome.ru»!
ВКонтакте:

В том, что лёд плавает на воде, никто не сомневается; каждый это видел сотни раз и на пруду, и на реке.

Но многие ли задумывались над таким вопросом: все ли твёрдые вещества ведут себя так же, как лёд, то есть плавают в жидкостях, образовавшихся при их плавлении?

Расплавьте в банке парафин или воск и бросьте в эту жидкость ещё кусочек того же твёрдого вещества, он тотчас же потонет. То же произойдёт и со свинцом:, и с оловом, и со многими другими веществами. Оказывается, как правило, твёрдые тела всегда тонут в жидкостях, которые образуются при их плавлении.

Обращаясь чаще всего с водой, мы так привыкли к обратному явлению, что нередко забываем это характерное для всех других веществ свойство. Надо помнить, что вода в этом отношении представляет редкое исключение. Только металл висмут и чугун ведут себя так же, как и вода.

Если бы лёд был тяжелее воды и не удерживался бы на её поверхности, а тонул, то даже в глубоких водоёмах вода замерзала бы зимой целиком. В самом: деле, падающий на дно пруда лёд вытеснял бы нижние слои воды вверх, и это происходило бы до тех пор, пока вся вода не превратилась в лёд.

Однако при замерзании воды происходит совсем обратная картина. В тот момент, когда вода превращается в лёд, объём её внезапно увеличивается примерно на 10 процентов, и лёд оказывается менее плотным, чем вода. Поэтому-то он и плавает в воде, как плавает любое тело в жидкости, имеющей большую плотность: железный гвоздь в ртути, пробка в масле и т. д. Если считать плотность воды равной единице, то плотность льда будет составлять только 0,91. Эта цифра позволяет нам узнать толщину плывущей по воде льдины. Если высота льдины над водой равна, например, 2 сантиметрам, то мы можем заключить, что подводный слой льдины в 9 раз толще, то есть равен 18 сантиметрам, а вся льдина имеет 20 сантиметров толщины.

В морях и океанах встречаются иногда огромные ледяные горы - айсберги (рис. 4). Это сползшие с полярных гор и унесённые течением и ветром в открытое море ледники. Высота их может достигать 200 метров, а объём - нескольких миллионов кубических метров. Девять десятых всей массы айсберга спрятаны под водой. Поэтому встреча с ним весьма опасна. Если судно во-время не заметит движущегося ледяного гиганта, оно может при столкновении получить серьёзные повреждения или даже погибнуть.

Внезапное увеличение объёма при переходе жидкой коды в лёд представляет важную особенность воды. С этой особенностью приходится часто считаться в практической жизни. Если оставить бочку с водой на морозе, то вода, замёрзнув, разорвёт бочку. По этой же причине нельзя оставлять воду в радиаторе автомобиля, стоящего в холодном гараже. В сильные морозы нужно опасаться малейшего перерыва в подаче тёплой воды по трубам водяного отопления: вода, остановившаяся в наружной трубе, может быстро замёрзнуть, и тогда труба лопнет.

Замерзая в трещинах скал, вода нередко является причиной горных обвалов.

Рассмотрим теперь один опыт, который имеет прямое отношение к расширению воды при нагревании. Постановка этого опыта требует специального оборудования, и вряд ли кто из читателей может его воспроизвести в домашней обстановке. Да это и не является необходимостью; опыт легко себе представить, а его результаты мы постараемся подтвердить на хорошо знакомых для каждого примерах.

Возьмём очень крепкий металлический, лучше всего стальной цилиндр (рис. 5), насыплем на дно его немного дроби, наполним водой, укрепим крышку болтами и станем поворачивать винт. Так как вода сжимается очень мало, то долго крутить винт не придётся. Уже после нескольких оборотов давление внутри цилиндра поднимается до сотен атмосфер. Если теперь цилиндр охладить даже на 2-3 градуса ниже нуля, то вода в нём не замёрзнет. Но как в этом убедиться? Если открыть цилиндр, то при такой температуре и атмосферном давлении вода моментально превратится в лёд, и мы не будем знать, была ли она жидкой или твёрдой, когда находилась под давлением. Здесь нам помогут насыпанные дробинки. Когда цилиндр остужен, перевернём его вверх дном. Если вода замёрзла, дробь будет лежать на дне, если не замёрзла, дробь соберётся у крышки. Открутим винт. Давление упадёт, и вода обязательно замёрзнет. Сняв крышку, мы убеждаемся, что вся дробь собралась около крышки. Значит, действительно вода, находящаяся под давлением, не замерзала при температуре ниже нуля.

Опыт показывает, что температура замерзания воды с увеличением давления понижается примерно на один градус на каждые 130 атмосфер.

Если бы мы стали строить свои рассуждения на основании наблюдений над множеством других веществ, то должны были бы прийти к обратному выводу. Давление обычно помогает жидкостям затвердевать: под давлением жидкости замерзают при более высокой температуре, и удивляться тут нечему, если вспомнить, что большинство веществ при застывании уменьшается в объёме. Давление вызывает уменьшение объёма и этим облегчает переход жидкости в твёрдое состояние. Вода же при застывании, как мы уже знаем, не уменьшается в объёме, а наоборот, расширяется. Поэтому-то давление, препятствуя расширению воды, понижает температуру её замерзания.

Известно, что в океанах на больших глубинах температура воды ниже нуля градусов, и тем не менее вода на этих глубинах не замерзает. Объясняется это давлением, которое создают верхние слои воды. Слой воды толщиной в один километр давит с силой около ста атмосфер.

Будь вода нормальной жидкостью, мы вряд ли бы испытывали удовольствие от катанья на коньках по льду. Это было бы то же самое, что и катанье по совершенно гладкому стеклу. Коньки не скользят по стеклу. Совсем другое дело на льду. Кататься на коньках по льду очень легко. Почему? Под тяжестью нашего тела тонкое лезвие конька производит на лёд довольно сильное давление, и лёд под коньком тает; образуется тонкая плёнка воды, которая служит превосходной смазкой.

2015-03-27
Теплая вода, охлаждаясь становиться более плотной и, следовательно, опускается на дно. То есть лед должно образовываться на дне озера в первую очередь. Но этот процесс происходит только до отметки 4 градуса по Цельсию, далее вода начинает опять расширяться и становится менее плотной. Таким образом, в точке близкой к замораживанию, холодная вода всплывает на поверхность, а теплая вода опускается на дно. В конце концов, вода в верхней части озера в зимних условиях, замерзнет и превращается в слой льда. Кроме того, когда вода замерзает и превращается в лед, лед становится значительно менее плотным, чем вода и продолжает плавать на поверхности озера.

Лед имеет меньшую плотность, чем вода, из-за того, что он имеет гексагональную кристаллическую структуру. Каждая молекула воды состоит из двух атомов водорода, связанных с атомом кислорода. При формировании льда, атомы водорода одной молекулы образуют слабые водородные связи с атомами кислорода двух других молекул воды. Выстраиваемые молекулы воды в этой модели занимают больше места, чем хаотически перемешанные молекулы в жидкой воде. Следовательно, лед является менее плотным. По той же причине вода, ниже 4 градусов по Цельсию становится все менее плотной.

Так что теперь мы понимаем, почему лед плавает на поверхности воды, но, как это работает на водоемах? Представьте себе, что это начало зимы, и температура только недавно стала ниже точки замерзания. Воздух меняет температуру быстрее, чем вода - вот почему вода в водоеме, кажется, гораздо теплее, в вечернее время. Воздух охлаждается ночью, но вода в водоеме остается почти такой же горячий. Таким образом, хотя воздух холодный, вода не замерзает. Вода в верхней части водоеме находится в непосредственном контакте с холодным воздухом и все время охлаждается. Образующейся на поверхности лед также действует в качестве барьера, или изолятора, между холодным воздухом и теплой воды под ним.

Последний факт позволяет воде в озерах и прудах не замерзать до самого дна, что позволяет растениям и рыбам пережить зиму в условиях севера.

Лед и вода.
Известно, что кусок льда, помещенный в стакан с водой, не тонет. Это происходит потому, что на лед со стороны воды действует выталкивающая сила.

Рис. 4.1. Лёд в воде.

Как видно из рис. 4.1, выталкивающая сила является результирующей сил давления воды, действующих на поверхность погруженной под воду части льда (на рис. 4.1 заштрихованная область). Лед плавает на воде, так как сила тяжести, тянущая его ко дну, уравновешивается выталкивающей силой.
Представим себе, что льда в стакане нет, а заштрихованная на рисунке область заполнена водой. Здесь между водой, находящейся в пределах этой области и вне ее, не будет границы раздела. Однако и в этом случае выталкивающая сила и сила тяжести, действующие на воду, заключенную в заштрихованной области, уравновешивают друг друга. Так как в обоих рассмотренных выше случаях выталкивающая сила остается неизменной, то это значит, что сила тяжести, действующая на кусок льда и па воду в пределах вышеуказанной области, одинакова. Другими словами, они имеют равный вес. Правильно также и то, что масса льда равна массе воды в заштрихованной области.
Растаяв, лед превратится в воду той же массы и заполнит объем, равный объему заштрихованной области. Поэтому уровень воды в стакане с водой и куском льда после того, как лед растает, не изменится.
Жидкое и твердое состояния.
Теперь мы знаем, что объем куска льда больше объема, занимаемого водой равной массы. Отношение массы вещества к занимаемому им объему называют плотностью данного вещества. Следовательно, плотность льда меньше плотности воды. Их численные значения, измеренные при 0 °С, составляют: для воды - 0,9998, для льда - 0,917 г/см3. Не только лед, но и другие твердые тела при нагревании достигают определенной температуры, при которой начинается их переход в жидкое состояние. В случае плавления чистого вещества его температура при нагревании не начнет повышаться, пока вся его масса не перейдет в жидкое состояние. Эта температура называется точкой плавления данного вещества. После того как плавление закончилось, нагревание будет приводить к дальнейшему повышению температуры жидкости. Если жидкость охладить, понижая температуру до точки плавления, начнется переход ее в твердое состояние.
Для большинства веществ, в отличие от случая со льдом и водой, плотность в твердом состоянии выше, чем в жидком. Например, аргон, обычно находящийся в газообразном состоянии, при температуре-189,2 °С затвердевает; плотность твердого аргона 1,809 г/см3 (в жидком состоянии плотность аргона 1,38 г/см3). Итак, если сравнивать плотность вещества в твердом состоянии при температуре, близкой к точке плавления, с плотностью его в жидком состоянии, то окажется, что в случае аргона она уменьшается на 14,4%, а в случае натрия - на 2,5%.
Изменение плотности вещества при переходе через точку плавления для металлов обычно невелико, за исключением алюминия и золота (соответственно 0 и 5,3 %). Для всех этих веществ, п отличие от воды, процесс затвердевания начинается не па поверхности, а иа дне.
Существуют, однако, металлы, плотность которых при переходе в твердое состояние уменьшается. К ним относятся сурьма, висмут, галлий, для которых это уменьшение составляет, соответственно, 0,95, 3,35 и 3,2 %. Галлий, температура плавления которого равна -29,8 °С, вместе со ртутью и цезием относится к классу легкоплавких металлов.
Различие между твердым и жидким состояниями вещества.
В твердом состоянии, в отличие от жидкого, молекулы, из которых состоит вещество, расположены упорядоченно.

Рис. 4.2. Различие между жидким и твердым состояниями вещества

На рис. 4.2(справа) приведен пример плотной упаковки молекул (условно изображены кружочками), характерной для вещества в твердом состоянии. Рядом приведена неупорядоченная структура, характерная для жидкости. В жидком состоянии молекулы находятся на больших расстояниях друг от друга, обладают большей свободой перемещения, и, как следствие, вещество в жидком состоянии легко изменяет свою форму, то есть обладает таким свойством, как текучесть.
Для текучих веществ, как уже отмечалось выше, характерно беспорядочное расположение молекул, однако не все вещества, имеющие такую структуру, способны течь. Примером является стекло, молекулы которого располагаются беспорядочно, однако текучестью оно не обладает.
Кристаллическими называются вещества, молекулы которых располагаются упорядоченно. В природе существуют вещества, кристаллы которых имеют характерный для них вид. К их числу относятся кварц и лед. Твердые металлы, такие как железо и свинец, в природе в виде больших кристаллов не встречаются. Однако, изучая их поверхность под микроскопом, можно различить скопления небольших кристалликов, как это видно на фотографии (рис. 4.3).

Рис. 4.3. Микрофотография поверхности железа.

Существуют специальные методы, позволяющие получать большие кристаллы металлических веществ.
Каких бы размеров ни были кристаллы, общим для них является упорядоченное расположение молекул. Для них характерно также существование совершенно определенной точки плавления. Это значит, что температура плавящегося тела при нагревании не увеличивается до тех пор, пока оно полностью не расплавится. У стекла, в отлично от кристаллических веществ, нет определенной температуры плавления: при нагревании оно постепенно размягчается и превращается в обычную жидкость. Таким образом, точка плавления соответствует температуре, при которой разрушается упорядоченное расположение молекул и кристаллическая структура переходит в неупорядоченную. В заключение отметим еще одно интересное свойство стекла, объясняющееся отсутствием у него кристаллической структуры: приложив к нему долговременное растягивающее усилие, например па срок, равняющийся 10 годам, мы убедимся, что стекло течет подобно обыкновенной жидкости.
Упаковка молекул.
Используя рентгеновское излучение и электронный пучок, можно изучать, каким образом располагаются молекулы в кристалле. У рентгеновского излучения длина волны намного меньше, чем у видимого света, поэтому оно может дифрагировать на геометрически правильной кристаллической структуре атомов или молекул. Зарегистрировав на фотопластинке дифракционную картину (рис. 4.4), можно установить расположение атомов в кристалле. Используя этот же метод для жидкостей, можно убедиться, что молекулы в пей расположены неупорядоченно.

Рис. 4.4. Дифракция рентгеновских лучей на периодической структуре.
Рис. 4.5. Два способа плотной упаковки шариков.

Молекулы твердого тела, находящегося в кристаллическом состоянии, располагаются довольно сложно относительно друг друга. Сравнительно просто выглядит структура веществ, состоящих из атомов или молекул одного вида, как, например, кристалл аргона, представленный на рис. 4.5(слева), где шариками условно обозначены атомы. Плотно заполнить определенный объем пространства шариками можно различными способами. Такая плотная упаковка возможна благодаря наличию сил межмолекулярного притяжения, которые стремятся расположить молекулы так, чтобы занимаемый ими объем был минимальным. Однако в действительности структура на рис. 4.5 (справа) не встречается; дать объяснение этому факту непросто.
Так как представить себе различные способы размещения шариков в пространстве довольно трудно, рассмотрим, каким образом можно плотно расположить монеты на плоскости.

Рис. 4.6. Упорядоченное расположение монет на плоскости.

На рис. 4.6 представлены два таких способа: при первом - каждая молекула соприкасается с четырьмя соседними, центры которых являются вершинами квадрата со стороной d, где d - диаметр монеты; при втором - каждая монета соприкасается с шестью соседними. Пунктирными линиями на рисунке ограничена площадь, занимаемая одной монетой. В первом случае
она равна d 2 , а повтором эта площадь меньше и равна √3d 2 /2 .
Второй способ размещения монет существенно уменьшает зазор между ними.
Молекула внутри кристалла. Цель исследования кристаллов - установить, как расположены в них молекулы. Кристаллы таких металлов, как золото, серебро, медь устроены подобно кристаллам аргона. В случае металлов следует говорить об упорядоченном расположении ионов, а не молекул. Атом меди, например, теряя один электрон, превращается в отрицательно заряженный ион меди. Электроны же совершают свободное движение между ионами. Если ионы условно представить в виде шариков, получим структуру, характеризующуюся плотной упаковкой. Кристаллы таких металлов, как натрий и калий по структуре от меди несколько отличаются. Молекулы СО 2 и органических соединений, состоящие из разных атомов, нельзя представить в виде шариков. Переходя в твердое состояние, они образуют чрезвычайно сложную кристаллическую структуру.

Рис. 4.7. Кристалл "сухого льда" (большие крупные шарики - атомы углерода)

На рис. 4.7 представлены кристаллы твердого СО2, называемые сухим льдом. Алмаз, не являющийся химическим соединением, тоже имеет особую структуру, так как между атомами углерода образуются химические связи.
Плотность жидкости. При переходе в жидкое состояние молекулярная структура вещества становится неупорядоченной. Этот процесс может сопровождаться как уменьшением, так и увеличением объема, занимаемого данным веществом в пространстве.


Рис. 4.8. Модели из кирпичей, соответствующие структуре воды и твердого тела.

В качестве иллюстрации рассмотрим представленное на рис. 4.8 строение из кирпича. Пусть каждый кирпич соответствует одной молекуле. Кирпичное строение, разрушенное землетрясением, превращается в груду кирпича, размеры которой меньше, чем были у здания. Однако, если все кирпичи аккуратно сложить один к одному, объем занимаемого ими пространства станет еще меньшим. Подобная взаимосвязь существует между плотностью вещества в твердом и жидком состояниях. Кристаллам меди и аргона можно поставить в соответствие изображенную плотную упаковку кирпичей. Жидкое состояние в них соответствует груде кирпичей. Переход из твердого состояния в жидкое в этих условиях сопровождается уменьшением плотности.
В то же время переход от кристаллической структуры с большими межмолекулярными расстояниями (которой соответствует здание из кирпича) к жидкому состоянию сопровождается увеличением плотности. Однако в действительности многие кристаллы при переходе в жидкое состояние сохраняют большие межмолекулярные расстояния.
Для сурьмы, висмута, галлия и других металлов, в отличие от натрия п меди, не характерна плотная упаковка. Из-за больших межатомных расстояний при переходе в жидкую фазу их плотность возрастает.

Структура льда.
Молекула воды состоит из атома кислорода и двух атомов водорода, расположенных по разные стороны от него. В отличие от молекулы углекислого газа, у которой атом углерода и два атома кислорода располагаются вдоль одной прямой, у молекулы воды линии, соединяющие атом кислорода с каждым из атомов водорода, образуют между собой угол 104,5°. Поэтому между молекулами воды существуют силы взаимодействия, имеющие электрическую природу. Кроме того, благодаря особым свойствам атома водорода, при кристаллизации вода образует структуру, в которой каждая молекула связана с четырьмя соседними. Упрощенно эта структура представлена на рис. 4.9. Большими шариками обозначены атомы кислорода, маленькими черными - атомы водорода.

Рис. 4.9. Кристаллическая структура льда.

В этой структуре реализуются большие межмолекулярные расстояния. Поэтому, когда лед плавится и структура разрушается, объем, приходящийся на одну молекулу, уменьшается. Это приводит к тому, что плотность воды выше плотности льда и лед может плавать па воде.

Исследование 1
ПОЧЕМУ ПЛОТНОСТЬ ВОДЫ САМАЯ ВЫСОКАЯ ПРИ 4 °С?

Водородная связь и тепловое расширение. Растаяв, лед превращается в воду, плотность которой выше, чем у льда. При дальнейшем повышении температуры воды се плотность увеличивается до тех пор, пока температура не достигнет 4 °С. Если при 0°С плотность воды равна 0,99984 г/см3, то при 4 °С она составляет 0,99997 г/см3. Дальнейшее повышение температуры вызывает уменьшение плотности и при 8°С она опять будет иметь то же значение, что и при 0 °С.

Рис. 4.10. Кристаллическая структура льда (большие шарики - атомы кислорода).

Это явление связано с наличием у льда кристаллической структуры. Со всеми подробностями она приведена на рис. 4.10, где для наглядности атомы изображены в виде шариков, а химические связи обозначены сплошными линиями. Особенностью структуры является то, что атом водорода находится всегда между двумя атомами кислорода, располагаясь ближе к одному из них. Таким образом, атом водорода способствует возникновению силы сцепления между двумя соседними молекулами воды. Эта сила сцепления называется водородной связью. Так как водородные связи возникают только в определенных направлениях, расположение молекул воды в куске льда близко к тетраэдрическому. Когда лед, растаяв, превращается в воду, значительная часть водородных связей не разрушается, благодаря чему сохраняется структура, близкая к тетраэдрической с характерными для нее большими межмолекулярными расстояниями. С повышением температуры растет скорость поступательного и вращательного движения молекул, в результате чего рвутся водородные связи, межмолекулярное расстояние уменьшается и увеличивается плотность воды.
Однако параллельно этому процессу при повышении температуры происходит тепловое расширение воды, которое вызывает уменьшение ее плотности. Влияние этих двух факторов приводит к тому, что максимальная плотность воды достигается при 4 °С. При температуре выше 4°С фактор, связанный с тепловым расширением, начинает преобладать и плотность опять уменьшается.

Исследование 2
ЛЕД ПРИ НИЗКИХ ТЕМПЕРАТУРАХ ИЛИ ВЫСОКИХ ДАВЛЕНИЯХ

Разновидности льда. Так как при кристаллизации воды межмолекулярные расстояния увеличиваются, плотность льда меньше, чем плотность воды. Если кусок льда подвергнуть действию высокого давления, то можно ожидать, что межмолекулярное расстояние уменьшится. Действительно, подвергнув лед при 0°С действию давления 14 кбар (1 кбар = 987 атм), получаем лед с другой кристаллической структурой, плотность которого 1,38 г/см3. Если находящуюся под таким давлением воду охлаждать при определенной температуре, она начнет
кристаллизоваться. Так как плотность такого льда выше, чем у воды, кристаллики не могут удержаться на ее поверхности и опускаются на дно. Таким образом, вода в сосуде кристаллизуется, начиная со дна. Такая разновидность льда получила название лед VI; обычный лед - лед I.
При давлении 25 кбар и температуре 100 °С вода затвердевает, превращаясь в лед VII с плотностью, равной 1,57 г/см3.

Рис. 4.11. Диаграмма состояний воды.

Изменяя температуру и давление, можно получить 13 разновидностей льда. Области изменения параметров показаны на диаграмме состояний (рис. 4.11). По этой диаграмме можно определить, какая разновидность льда соответствует заданным температуре и давлению. Сплошные линии соответствуют таким температурам и давлениям, при которых сосуществуют две различные структуры льда. Наибольшую плотность 1,83 г/см3 среди всех разновидностей льда имеет лед VIII.
При сравнительно низком давлении, 3 кбар, существует лед II, плотность которого тоже выше, чем у воды, и составляет 1,15 г/см3. Интересно отметить, что при температуре-120 °С кристаллическая структура исчезает и лед переходит в стекло-образное состояние.
Что касается воды и льда I, то из диаграммы видно, что по мере увеличения давления температура плавления падает. Так сак плотность воды выше, чем у льда, переход «лед - вода» сопровождается уменьшением объема, а приложенное извне давление только ускоряет этот процесс. У льда III, плотность которого выше, чем у воды, ситуация прямо противоположная - его температура плавления растет по мере повышения давления.

Одно из самых распространенных веществ на Земле: вода. Она, как и воздух, необходима нам, но мы ее порой совсем не замечаем. Она просто есть. Но, оказывается, обыкновенная вода может менять свой объем и весить то больше, то меньше. При , ее нагревании и охлаждении происходят поистине удивительные вещи, о которых мы и узнаем сегодня.


Мюриэль Мэнделл в своей занимательной книге «Phycisc Experiments for Children» излагает интереснейшие мысли о свойствах воды, на основе которых не только юные физики могут узнать немало нового, но и взрослые освежат свои знания, которые давненько не приходилось применять, поэтому они оказались слегка забытыми.

Сегодня речь пойдет об объеме и весе воды. Оказывается, один и тот же объем воды не всегда весит одинаково. И если налить воду в стакан и она не прольется через край — это еще не значит, что она поместится в нем при любых обстоятельствах.

1. При нагревании вода увеличивается в объеме

Поставьте наполненную водой банку в кастрюлю, наполненную сантиметров на пять кипящей водой, и на слабом огне поддерживайте кипение. Вода из банки начнет переливаться через край. Это происходит потому, что при нагревании вода, подобно другим жидкостям, начинает занимать больше пространства. отталкиваются друг от друга с большей интенсивностью и это ведет к увеличению объема воды.

2. При охлаждении вода сжимается

Дайте воде в банке остыть при комнатной температуре, или налейте новую воду, и поставьте ее в холодильник. Через некоторое время вы обнаружите, что полная прежде банка уже не полна. При охлаждении до температуры 3,89 градусов по Цельсию вода уменьшает свой объем по мере снижения температуры. Причиной тому стало снижение скорости движения молекул и их сближение друг с другом под воздействием охлаждения.

Казалось бы, все очень просто: чем холоднее вода, тем меньший объем она занимает, но…

3. …объем воды вновь возрастает при замерзании

Наполните банку водой до краев и накройте куском картона. Поставьте ее в морозилку и дождитесь замерзания. Вы обнаружите, что картонную «крышку» вытолкнуло. На температурном интервале между 3,89 и 0 градусов по Цельсию, то есть на подходе к точке своего замерзания, вода вновь начинает расширяться. Она является одним из немногих известных веществ, обладающих подобным свойством.

Если использовать плотную крышку, то лед просто разнесет банку. Приходилось ли вам слышать о том, что даже водопроводные трубы может разорвать льдом?

4. Лед легче воды

Поместите пару кубиков льда в стакан с водой. Лед будет плавать на поверхности. Вода при замерзании увеличивается в объеме. И, вследствие этого, лед легче воды: его объем составляет около 91% соответствующего объема воды.

Это свойство воды существует в природе не зря. У него есть вполне определенное предназначение. Говорят, что зимой реки замерзают. Но на самом деле это не совсем верно. Обычно замерзает лишь небольшой верхний слой. Это ледяной покров не тонет, поскольку он легче жидкой воды. Он замедляет замерзание воды на глубине реки и служит своеобразным одеялом, оберегая рыб и другую речную да озерную живность от лютых зимних морозов. Изучая физику, начинаешь понимать, что очень многое в природе устроено целесообразно.

5. Водопроводная вода содержит минералы

Влейте в небольшую стеклянную миску 5 столовых ложек обычной водопроводной воды. Когда вода испарится, на миске останется белая кайма. Эта кайма сформирована минералами, которые были растворены в воде, когда она проходила слои грунта.

Посмотрите внутрь своего чайника и вы увидите там минеральный налет. Такой же налет образуется и на отверстии для стока воды в ванне.

Попробуйте испарить дождевую воду, чтобы самостоятельно проверить, содержит ли она минералы.

Если совместить воду с другими жидкостями, то можно обнаружить, что с некоторыми вода не смешивается. Благодаря таким свойствам веществ можно сделать красивейшую .

Маленькие дети очень часто задают интересные вопросы взрослым, а те не всегда могут ответить на них сразу. Чтобы не казаться ребенку глупым, рекомендуем ознакомиться с полноценным и развернутым, обоснованным ответом касательно плавучести льда. Ведь плавает, а не тонет. Почему же так происходит?

Как объяснить ребенку сложные физические процессы?

Первое, что приходит на ум, так что плотность. Да, на самом деле, лёд плавает потому, что он менее плотный, чем . Но как объяснить ребенку, что такое плотность? Рассказывать ему школьную программу никто не обязан, а вот свести все к тому, что , вполне реально. Ведь по факту один и то же объем воды и льда обладает разным весом. Если изучать проблему более подробно, то можно озвучить еще несколько причин, кроме плотности.
не только потому, что его уменьшенная плотность не дает ему опускаться ниже. Причина еще и в том, что в толще льда заморожены небольшие пузырьки воздуха. Они также уменьшают плотность, а потому в общем получается, что вес пластины из льда становится еще меньше. Когда лед расширяется, он не захватывает больше воздуха, но зато все те пузырьки, которые уже оказались внутри этого пласта, оказываются там до тех пор, пока лед не начнет таять или сублимироваться.

Проводим опыт над силой расширения воды

Но как доказать, что лёд на самом деле расширяется? Ведь вода тоже может расширяться, как же доказать это в искусственных условиях? Можно провести интересный и очень простой опыт. Для этого понадобится пластиковый или картонный стаканчик и вода. Ее количество необязательно должно быть большим, заполнять стаканчик до краев не потребуется. Также в идеале нужна температура около -8 градусов или ниже. Если температура будет слишком высокой, опыт продлится неоправданно долго.
Итак, вода залита внутрь, надо ждать, когда образуется лёд. Поскольку мы выбрали оптимальную температуру, при которой небольшой объем жидкости обратится в лёд в течение двух-трех часов, можно спокойно идти домой и ждать. Ждать нужно до тех пор, пока вся вода не обратится в лед. Спустя некоторое время смотрим на результат. Деформированный или разорванный льдом стаканчик гарантирован. При более низкой температуре последствия выглядят более эффектно, да и сам эксперимент занимает меньше времени.

Негативные последствия

Получается простой опыт подтверждает, что в ледяные глыбы и правда расширяются при уменьшении температуры, а объем воды легко увеличивается при замерзании. Как правило, эта особенность несет немало проблем забывчивым людям: бутылка шампанского, оставленная на балконе под Новый год на большой срок, разрывается из-за воздействия льда. Поскольку сила расширения очень большая, повлиять на нее никак нельзя. Ну а что касается плавучести ледяных глыб, то здесь можно ничего не доказывать. Самые любопытные могут легко провести подобный опыт весной или осенью самостоятельно, пытаясь утопить в большой луже кусочки льда.



← Вернуться

×
Вступай в сообщество «servizhome.ru»!
ВКонтакте:
Я уже подписан на сообщество «servizhome.ru»