Нагревание атмосферы (температура воздуха). §33. Нагревание воздуха и его температура

Подписаться
Вступай в сообщество «servizhome.ru»!
ВКонтакте:
1

Согласно оценкам Международного энергетического агентства, приоритетным направлением снижения выбросов диоксида углерода автомобилями является повышение их топливной экономичности. Задача снижения выбросов СО2 путем повышения топливной экономичности автотранспорта является для мирового сообщества одной из приоритетных, учитывая необходимость рационального использования не возобновляемых источников энергии. С этой целью постоянно ужесточаются международные стандарты, лимитирующие показатели пуска и эксплуатации двигателя в условиях низких и даже высоких температур окружающей среды. В статье рассмотрен вопрос топливной экономичности двигателей внутреннего сгорания в зависимости от температуры, давления, влажности окружающего воздуха. Приведены результаты исследования по поддержанию постоянной температуры во впускном коллекторе ДВС с целью экономии топлива и определению оптимальной мощности нагревательного элемента.

мощность нагревательного элемента

температура окружающего воздуха

подогрев воздуха

экономия топлива

оптимальная температура воздуха во впускном коллекторе

1. Автомобильные двигатели. В.М. Архангельский [и др.]; отв. ред. М.С. Ховах. М.: Машиностроение, 1977. 591 с.

2. Карнаухов В.Н., Карнаухова И.В. Определение коэффициента наполнения в ДВС // Транспортные и транспортно-технологические системы, материалы Международной научно-технической конференции, Тюмень, 16 апреля 2014г. Тюмень: Изд-во ТюмГНГУ, 2014.

3. Ленин И.М. Теория автомобильных и тракторных двигателей. М.: Высшая школа, 1976. 364 с.

4. Ютт В.Е. Электрооборудование автомобилей. М: Изд-во Горячая линия-Телеком, 2009. 440 с.

5. Ютт В.Е., Рузавин Г.Е. Электронные системы управления ДВС и методы их диагностирования. М.: Изд-во Горячая линия-Телеком, 2007. 104 с.

Введение

Развитие электроники и микропроцессорной техники привело к широкому внедрению ее на автомобили. В частности, к созданию электронных систем автоматического управления двигателем, трансмиссией ходовой частью и дополнительным оборудованием. Применение электронных систем для управления (ЭСУ) двигателем позволяет снизить расход топлива и токсичности отработанных газов с одновременным повышением мощности двигателя, повысить приемистость и надежность холодного пуска. Современные ЭСУ объединяют в себе функции управления впрыском топлива и работой системы зажигания. Для реализации программного управления в блоке управления записывается зависимость длительности впрыска (количество подаваемого топлива) от нагрузки и частоты вращения коленчатого вала двигателя. Зависимость задается в виде таблицы, разработанной на основе всесторонних испытаний двигателя аналогичной модели. Подобные таблицы используются и для определения угла зажигания. Эта система управления двигателем используется во всем мире, потому что выбор данных из готовых таблиц является наиболее быстрым процессом, чем выполнение вычислений при помощи ЭВМ. Полученные по таблицам значения корректируются бортовыми компьютерами автомобилей в зависимости от сигналов датчиков положения дроссельной заслонки, температуры воздуха, его давления и плотности. Основным отличием данной системы, применяемой в современных автомобилях, является отсутствие жесткой механической связи между дроссельной заслонкой и педалью акселератора, ею управляющей. В сравнении с традиционными системами, ЭСУ позволяет снизить расход топлива на различных автомобилях до 20 % .

Низкое потребление топлива достигается путем различной организации двух основных режимов работы ДВС: режима малой нагрузки и режима высокой нагрузки. При этом двигатель в первом режиме работает с неоднородной смесью, большим избытком воздуха и поздним впрыском топлива, благодаря чему достигается расслоение заряда из смеси воздуха, топлива и оставшихся отработанных газов, в результате чего он работает на бедной смеси. На режиме высокой нагрузки двигатель начинает работать на гомогенной смеси, что приводит к уменьшению выбросов вредных веществ в отработанных газах. Токсичность выброса при применении ЭСУ дизельными двигателями при пуске позволяют снизить различные свечи накаливания. ЭСУ получает информацию о температуре воздуха на впуске, давлении, расходе топлива и положении коленчатого вала. Блок управления обрабатывает информацию от датчиков и, используя характеристические карты, выдает значение угла опережения подачи топлива. С целью учета изменения плотности поступающего воздуха при изменении его температуры датчик расхода оснащен терморезистором. Но в результате колебаний температуры и давления воздуха во впускном коллекторе, несмотря на вышеперечисленные датчики, происходит мгновенное изменение плотности воздуха и, как следствие, уменьшение или увеличение поступления кислорода в камеру сгорания.

Цель, задачи и метод исследования

В Тюменском государственном нефтегазовом университете были проведены исследования с целью поддержания постоянной температуры во впускном коллекторе ДВС КАМАЗ-740, ЯМЗ-236 и D4FB (1.6 CRDi) автомобиля Киа Сид, MZR2.3-L3T - Мазда CX7. При этом температурные колебания воздушной массы учитывались температурными датчиками. Обеспечение нормальной (оптимальной) температуры воздуха во впускном коллекторе должно выполняться при всех возможных эксплуатационных режимах: пуске холодного двигателя, работе на малых и высоких нагрузках, при работе в условиях низких температур окружающей среды.

В современных быстроходных двигателях суммарная величина теплообмена оказывается незначительной и составляет около 1 % от всего количества тепла, выделенного при сгорании топлива. Увеличение температуры подогрева воздуха во впускном коллекторе до 67 ˚С приводит к уменьшению интенсивности теплообмена в двигателях, то есть уменьшению ΔТ и увеличению коэффициента наполнения. ηv (рис.1)

где ΔТ - разность температур воздуха во впускном коллекторе (˚К), Тп - температура нагрева воздуха во впускном коллекторе, Тв - температура воздуха во впускном коллекторе.

Рис. 1. График влияния температуры подогрева воздуха на коэффициент наполнения (на примере двигателя КАМАЗ-740)

Однако подогрев воздуха более 67 ˚С не приводит к росту ηv в связи с тем, что плотность воздуха при этом уменьшается. Полученные экспериментальные данные показали, что воздух у дизельных двигателей без наддува во время его работы имеет интервал температур ΔТ=23÷36˚С. Испытаниями было подтверждено, что для ДВС, работающих на жидком топливе, разница в величине коэффициента наполнения ηv, рассчитанного из условий, что свежим зарядом является воздух или топливовоздушная смесь, незначительна и составляет менее 0,5 % , поэтому для всех типов двигателей ηv определяется по воздуху.

Изменение температуры, давления и влажности воздуха сказывается на мощности любого двигателя и колеблется в интервале Ne=10÷15% (Ne - эффективная мощность двигателя).

Повышение аэродинамического сопротивления воздуха во впускном коллекторе объясняется следующими параметрами:

    Повышенной плотностью воздуха.

    Изменением вязкости воздуха.

    Характером поступления воздуха в камеру сгорания.

Многочисленными исследованиями доказано, что высокая температура воздуха во впускном коллекторе увеличивает расход топлива незначительно. В то же время низкая температура увеличивает его расход до 15-20 %, поэтому исследования проводились при температуре наружного воздуха -40 ˚С и его нагреве до +70 ˚С во впускном коллекторе. Оптимальной по расходу топлива является температура воздуха во впускном коллекторе 15÷67 ˚С.

Результаты исследования и анализ

Во время испытаний была определена мощность нагревательного элемента для обеспечения подержания определенной температуры во впускном коллекторе ДВС. На первой стадии определено количество тепла, необходимого для нагрева воздуха массой 1 кг при постоянной температуре и давлении воздуха, для этого примем: 1. Температура окружающего воздуха t1=-40˚C. 2. Температура во впускном коллекторе t2=+70˚С.

Количество необходимого тепла находим по уравнению:

(2)

где СР - массовая теплоемкость воздуха при постоянном давлении, определяется по таблице и для воздуха при температуре от 0 до 200 ˚С.

Количество тепла для большей массы воздуха определяется по формуле:

где n - объем воздуха в кг, необходимого для нагрева при работе двигателя.

При работе ДВС на оборотах более 5000 об/мин расход воздуха легковых автомобилей достигает 55-60 кг/час, а грузовых - 100 кг/час. Тогда:

Мощность нагревателя определяем по формуле:

где Q - количество тепла, затраченное на нагревание воздуха в Дж, N - мощность нагревательного элемента в Вт, τ - время в сек.

Необходимо определить мощность нагревательного элемента в секунду, поэтому формула примет вид:

N=1,7 кВт - мощность нагревательного элемента для легковых автомобилей и при расходе воздуха более 100 кг/час для грузовых - N=3,1 кВт.

(5)

где Ттр - температура во впускном трубопроводе, Ртр - давление в Па во впускном трубопроводе, Т0 - , ρ0 - плотность воздуха, Rв - универсальная газовая постоянная воздуха.

Подставляя формулу (5) в формулу (2), получаем:

(6)

(7)

Мощность нагревателя в секунду определим по формуле (4) с учетом формулы (5):

(8)

Результаты расчетов количества тепла, необходимого для нагрева воздуха массой 1 кг со средним расходом воздуха для легковых автомобилей более V=55кг/час и для грузовых - более V=100кг/час, представлены в таблице 1.

Таблица 1

Таблица определения количества тепла для нагрева воздуха во впускном коллекторе в зависимости от наружной температуры воздуха

V>55кг/час

V>100кг/час

Q, кДж/сек

Q, кДж/сек

На основании данных таблицы 1 построен график (рис. 2) количества тепла Q в секунду, затраченного на подогрев воздуха до оптимальной температуры. На графике видно, что чем выше температура воздуха, тем меньшее количество тепла необходимо для поддержания оптимальной температуры во впускном коллекторе, вне зависимости от объема воздуха.

Рис. 2. Количество тепла Q в секунду, затраченного на подогрев воздуха до оптимальной температуры

Таблица 2

Расчет времени нагрева различных объемов воздуха

Q1, кДж/сек

Q2, кДж/сек

Время определено по формуле τсек=Q/N при температуре наружного воздуха >-40˚С,Q1 при расходе воздуха V>55 кг/час и Q2- V>100 кг/час

Далее по таблице 2 построен график времени нагрева воздуха до +70 ˚С в коллекторе ДВС при различной мощности нагревателя. На графике видно, что независимо от времени нагрева при повышении мощности нагревателя время нагрева разных объемов воздуха выравнивается.

Рис. 3. Время нагрева воздуха до температуры +70 ˚С.

Заключение

На основании расчетов и экспериментов установлено, что наиболее экономичным является использование нагревателей переменной мощности для поддержания заданной температуры во впускном коллекторе с целью получения экономии топлива до 25-30 %.

Рецензенты :

Резник Л.Г., д.т.н., профессор кафедры «Эксплуатация автомобильного транспорта» ФГБО УВПО «Тюменский государственный нефтегазовый университет», г. Тюмень.

Мерданов Ш.М., д.т.н., профессор, заведующий кафедрой «Транспортные и технологические системы» ФГБО УВПО «Тюменский государственный нефтегазовый университет», г. Тюмень.

Захаров Н.С., д.т.н., профессор, действующий член Российской академии транспорта, заведующий кафедрой «Сервис автомобилей и технологических машин» ФГБО УВПО «Тюменский государственный нефтегазовый университет», г. Тюмень.

Библиографическая ссылка

Карнаухов В.Н. ОПТИМИЗАЦИЯ МОЩНОСТИ НАГРЕВАТЕЛЬНОГО ЭЛЕМЕНТА ДЛЯ ПОДДЕРЖАНИЯ ОПТИМАЛЬНОЙ ТЕМПЕРАТУРЫ ВОЗДУХА ВО ВПУСКНОМ КОЛЛЕКТОРЕ ДВС // Современные проблемы науки и образования. – 2014. – № 3.;
URL: http://science-education.ru/ru/article/view?id=13575 (дата обращения: 01.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Когда солнце греет сильнее – когда оно стоит выше над головой или когда ниже?

Солнце греет сильнее, когда стоит выше. Солнечные лучи в этом случае падают под прямым, или близким к прямому углом.

Какие виды вращения Земли вам известны?

Земля вращается вокруг своей оси и вокруг Солнца.

Почему на Земле происходит смена дня и ночи?

Смена дня и ночи – результат осевого вращения Земли.

Определите, как отличается угол падения солнечных лучей 22 июня и 22 декабря на параллелях 23,5° с. ш. и ю. ш.; на параллелях 66,5° с. ш. и ю. ш.

22 июня угол падения солнечных лучей на параллели 23,50 с.ш. 900, ю.ш. – 430. На параллели 66,50 с.ш. – 470, 66,50 ю.ш. – скользящий угол.

22 декабря угол падения солнечных лучей на параллели 23,50 с.ш. 430, ю.ш. – 900. На параллели 66,50 с.ш. – скользящий угол, 66,50 ю.ш. – 470.

Подумайте, почему самые теплые и холодные месяцы - не июнь и декабрь, когда солнечные лучи имеют наибольший и наименьший углы падения на земную поверхность.

Атмосферный воздух нагревается от земной поверхности. Поэтому в июне происходит нагревание земной поверхности, а температура достигает максимума в июле. Тоже происходит зимой. В декабре выхолаживается земная поверхность. В январе остывает воздух.

Определите:

среднюю суточную температуру по показателям четырех измерений за сутки:-8°С, -4°С,+3°С,+1°С.

Среднесуточная температура -20С.

среднюю годовую температуру Москвы, используя данные таблицы.

Среднегодовая температура 50С.

Определите суточную амплитуду температур для показателей термометров на рисунке 110, в.

Амплитуда температур на рисунке в 180С.

Определите, на сколько градусов годовая амплитуда в Красноярске больше, чем в Санкт-Петербурге, если средняя температура июля в Красноярске +19°С, а января- -17°С; в Санкт-Петербурге +18°С и -8°С соответственно.

Амплитуда температур в Красноярске 360С.

Амплитуда температур в Санкт-Петербурге 260С.

Амплитуда температур в Красноярске больше на 100С.

Вопросы и задания

1. Как происходит нагревание воздуха атмосферы?

Пропуская солнечные лучи, атмосфера от них почти не нагревается. Нагревается же земная поверхность, и сама становится источником тепла. Именно от нее нагревается атмосферный воздух.

2. Насколько градусов уменьшается температура в тропосфере при подъеме на каждые 100 м?

При подъеме вверх па каждый километр температура воздуха понижается на 6 0С. Значит, на 0,60 на каждые 100 м.

3. Вычислите температуру воздуха за боротом самолета, если высота полета 7 км, а температура у поверхности Земли +200С.

Температура при подъеме на 7 км понизится на 420. Значит, температура за бортом самолета составит -220.

4. Можно ли в горах на высоте 2500 м встретить летом ледник, если у подножий гор температура +250С.

Температура на высоте 2500 м составит +100С. Ледник на высоте 2500 м не встретится.

5. Как и почему изменяется температура воздуха в течение суток?

Днем солнечные лучи освещают земную поверхность и прогревают ее, от нее нагревается и воздух. Ночью поступление солнечной энергии прекращается, и поверхность вместе с воздухом постепенно остывает. Солнце наиболее высоко стоит над горизонтом в полдень. В это время поступает больше всего солнечной энергии. Однако самая высокая температура наблюдается через 2-3 ч после полудня, так как на передачу тепла от поверхности Земли к тропосфере требуется время. Самая низкая температура бывает перед восходом солнца.

6. От чего зависит разница в нагревании поверхности Земли в течении года?

В течение года на одной и той же территории солнечные лучи падают на поверхность по-разному. Когда угол падения лучей более отвесный, поверхность получает больше солнечной энергии, температура воздуха повышается и наступает лето. Когда солнечные лучи наклонены сильнее, поверхность нагревается слабо. Температура воздуха в это время понижается, и наступает зима. Самый теплый месяц в Северном полушарии - июль, а самый холодный - январь. В Южном полушарии - наоборот: самый холодный месяц года - июль, а самый теплый - январь.

Температура уходящих газов за котлоагрегатом зависит от вида сжигаемого топлива, температуры питательной воды t n в, расчетной стоимости топливаС т , его приведенной влажности

где

На основании технико-экономической оптимизации, по условию эф­фективности использования топлива и металла хвостовой по­верхности нагрева, а также других условий, получены следующие рекомендации по выбору ве­личины
, приведенной в табл.2.4.

Из табл. 2.4 выбираются меньшие значения оптимальной темпера­туры уходящих газов для дешевых, а большие - для дорогих топлив.

Для котлов низкого давления (Р пе .≤ 3,0 МПа) с хвостовыми поверхностями нагрева температура уходящих газов должна быть не ниже значений» указанных в табл. 2.5, а оптимальное ее значение выбирается на основе технико-экономических расчетов.

Таблица 2.4 – Оптимальная температура уходящих газов для котлов

производительностью свыше 50 т/ч (14 кг/с) при сжигании

малосернистых топлив

Температура питательной воды t n в, 0 С

Приведенная влажность топлива

Таблица 2.5 – Температура уходящих газов для котлов низкого давления

производительностью менее 50 т/ч (14 кг/с)

, 0 С

Угли с приведенной влажностью

и природный газ

Угли с

Мазут высокосернистый

Торф и древесные отходы

Для котлов типа КЕ и ДЕ температура уходящих газов сильно зависит от t n в. При температуре питательной воды t n в =100°С,
, а приt n в = 80 ÷ 90 0 С снижается до значений
.

При сжигании сернистых топлив, особенно высокосернистого мазута, возникает опасность низкотемпературной коррозии воздухоподогревателя при минимальной температуре стенки металлаt ст ниже точки: росы t p дымовых газов. Величинаt p зависит от температуры конденсации водяных паровt к при парциальном давлении их в дымовых газах P H 2 O , приведенного содержания серыS n и золыA n в рабочем топливе

, (2.3)

где
- низшая теплота сгорания топлива, мДж/кг или мДж/м 3 .

Парциальное давление водяных паров равно

(2.4)

где: Р=0,1 МПа – давление дымовых газов на выходе из котла, МПа;

r H 2 O – объемная доля водяных паров в уходящих газах.

Для полного исключения, коррозии при отсутствии специальных мер защиты t ст должна, быть на 5 – 10°С выше t p , однако это приведет к значительному повышению над ее экономическим значением. Поэтому одновременно повышаюти температуру воздуха на входе в воздухоподогреватель.

Минимальная температура стенки, в зависимости от предварительно выбранных значенийиопределяется по формулам: для регенеративных воздухоподогревателей (РВП)

(2.5)

для трубчатых воздухоподогревателей (ТВП)

(2.6)

При сжигании твердых сернистых топлив необходимо температу­ру воздуха на входе в воздухоподогреватель принимать не нижеt к, определяемой в зависимости от P H 2 O .

При использовании высокосернистых мазутов эффективным средст­вом борьбы с низкотемпературной коррозией является сжигание мазу­та с малыми избытками воздуха (= 1,02 ÷ 1,03). Этот метод сжигания практически устраняет полностью низкотемпературную кор­розию и признан наиболее перспективным, однако требует тщательной наладки горелочных устройств и улучшения эксплуатации котлоагрегата.

При установке в холодных ступенях воздухоподогревателя сменяемых кубов ТВП или сменяемой холодной (РВП) набивки допускаются следующие значения температуры входящего воздуха: в регенера­тивных воздухоподогревателях 60 – 70°С, а в трубчатых воздухоподо­гревателях 80 – 90°С.

Для осуществления предварительного подогрева воздуха до зна­чений , перед входом в воздухоподогреватель обычно устанавли­ваются паровые калориферы, обогреваемые отборным паром из турбины. Применяются также и другие методы подогрева воздуха на входе в воздухоподогреватель и меры борьбы с низкотемпературной коррозией, а именно: рециркуляция горячего воздуха на всас вентилятора, уста­новка воздухоподогревателей с промежуточным теплоносителем, газо­вых испарителей и т.п. Для нейтрализации паровH 2 SO 4 применяются присадки различных видов, как в газоходы котлоагрегата, так и в топливо.

Температура подогрева воздуха зависит от вида топлива и характеристики топки. Если высокий подогрев воздуха не требуется по условиям сушки или сжигания топлива, целесообразно устанавливать одноступенчатый воздухоподогреватель. В этом случае оптимальная температура воздуха энергетических котлов в зависимости от температуры питательной воды и уходящих газов ориен­тировочно определяется по формуле

При двухступенчатой компоновке воздухоподогревателя по форму­ле (2.7) определяется температура воздуха за первой ступенью, а во второй ступени воздухоподогревателя производится подогрев воз­духа от этой температуры до температуры горячего воздуха, приня­той согласно табл. 2.6.

Обычно двухступенчатая компоновка воздухоподогревателя в "рас­сечку" со ступенями водяного экономайзера применяется при величине t гв >300°С. При этом температура газов перед "горячей" ступенью воздухоподогревателя не должна превышать 500°С.

Таблица 2.6 – Температура подогрева воздуха для котлоагрегатов

производительностью свыше 75 т/ч (21,2 кг/с)

Характеристики топки

Сорт топлива

"Температура воздуха. °С

1 Топки с твердым шлакоудалением

при замкнутой схеме пылеприготовления

Каменные и тощие угли

Бурые угли фрез.

2 Топки с жидким шлакоудалением, в т.ч. с горизонтальными циклонами и вертикальными предтопками при сушке топлива воздухом и подаче пыли горячим воздухом или сушильным агентом

АШ, ПА бурые угли

Каменные угли и донецкий тощий

3 При сушке топлива газами в замкнутой схеме пылеприготовления, при твердом шлакоудалении

то же при жидком шлакоудалении

Бурые угли

300 – 350 х х

350 – 400 х х

4 При сушке топлива газами в разомкнутой схеме пылеприготовления при твердом шлакоудалении

При жидком шлакоудалении

Для всех

350 – 400 х х

5. Камерные топки

Мазут и природный газ

250 – 300 х х х

х При высоковлажном торфе/W p > 50%/ принимают 400°С;

хх Большее значение при высокой влажности топлива;

ххх Величинаt гв проверяется по формуле .


Основным источником тепла, нагревающим земную поверхность и атмосферу, служит солнце. Другие источники – луна, звезды, разогретые недра Земли – поставляют столь малое количество тепла, что ими можно пренебречь.

Солнце излучает в мировое пространство колоссальную энергию в виде тепловых, световых, ультрафиолетовых и других лучей. Вся совокупность лучистой энергии Солнца называется солнечной радиацией. Земля получает ничтожную долю этой энергии – одну двухмиллиардную часть, которой, однако, достаточно не только для поддержания жизни, но и для осуществления экзогенных процессов в литосфере, физико-химических явлений в гидросфере и атмосфере.

Различают радиацию прямую, рассеянную и суммарную.

При ясной, безоблачной погоде поверхность Земли нагревается в основном прямой радиацией, которую мы ощущаем как теплые или горячие солнечные лучи.

Проходя через атмосферу, солнечные лучи отражаются от молекул воздуха, капелек воды, пылинок, отклоняются от прямолинейного пути и рассеиваются. Чем пасмурнее погода, тем плотнее облачность и тем большее количество радиации рассеивается в атмосфере. При сильной запыленности воздуха, например во время пыльных бурь или в промышленных центрах, рассеивание ослабляет радиацию на 40–45 %.

Значение рассеянной радиации в жизни Земли очень велико. Благодаря ей освещаются предметы, находящиеся в тени. Она же обусловливает цвет неба.

Интенсивность радиации зависит от угла падения солнечных лучей на земную поверхность. Когда солнце находится высоко над горизонтом, его лучи преодолевают атмосферу более коротким путем, следовательно, меньше рассеиваются и сильнее нагревают поверхность Земли. По этой причине в солнечную погоду утром и вечером всегда прохладнее, чем в полдень.

На распределение радиации на поверхности Земли огромное влияние оказывают ее шарообразность и наклон земной оси к плоскости орбиты. В экваториальных и тропических широтах солнце в течение всего года находится высоко над горизонтом, в средних широтах его высота меняется в зависимости от времени года, а в Арктике и Антарктике высоко над горизонтом оно не поднимается никогда. В результате в тропических широтах солнечные лучи рассеиваются меньше, а на единицу площади земной поверхности приходится их большее количество, чем в средних или высоких широтах. По этой причине количество радиации зависит от широты места: чем дальше от экватора, тем меньше ее поступает на земную поверхность.

Поступление лучистой энергии связано с годичным и суточным движением Земли. Так, в средних и высоких широтах ее количество зависит от времени года. На Северном полюсе, например, летом солнце не заходит за горизонт 186 дней, т. е. 6 месяцев, и количество поступающей радиации даже больше, чем на экваторе. Однако солнечные лучи имеют малый угол падения, и большая часть радиации рассеивается в атмосфере. В результате поверхность Земли нагревается незначительно.

Зимой солнце в Арктике находится за горизонтом, и прямая радиация на поверхность Земли не поступает.

На количество поступающей солнечной радиации влияет и рельеф земной поверхности. На склонах гор, холмов, оврагов и т. д., обращенных к солнцу, угол падения солнечных лучей увеличивается, и они сильнее нагреваются.

Совокупность всех этих факторов приводит к тому, что на земной поверхности нет места, где интенсивность радиации была бы постоянной.

Неодинаково происходит и нагревание суши и воды. Поверхность суши нагревается и охлаждается быстро. Вода же нагревается медленно, но зато дольше удерживает тепло. Объясняется это тем, что теплоемкость воды больше теплоемкости горных пород, слагающих сушу.

На суше солнечные лучи нагревают только поверхностный слой, а в прозрачной воде тепло проникает на значительную глубину, в результате чего нагревание происходит медленнее. На его скорость влияет и испарение, так как на него нужно много тепла. Вода остывает медленно, в основном потому, что объем прогреваемой воды во много раз больше объема нагревающейся суши; к тому же при ее охлаждении верхние, остывшие слои воды опускаются на дно, как более плотные и тяжелые, а на смену им из глубины водоема поднимается теплая вода.

Накопленное тепло вода расходует более равномерно. В результате море в среднем теплее суши, а колебания температуры воды никогда не бывают такими резкими, как колебания температуры суши.

Температура воздуха

Солнечные лучи, проходя через прозрачные тела, нагревают их очень слабо. По этой причине прямые солнечные лучи почти не нагревают воздух атмосферы, а нагревают поверхность Земли, от которой прилегающим слоям воздуха передается тепло. Нагреваясь, воздух становится более легким и поднимается вверх, где перемешивается с более холодным, в свою очередь нагревая его.

По мере поднятия вверх воздух охлаждается. На высоте 10 км температура постоянно держится на отметке 40–45 °C.

Понижение температуры воздуха с высотой – это общая закономерность. Однако нередко наблюдается и повышение температуры по мере поднятия вверх. Такое явление называют температурной инверсией, т. е. перестановкой температур.

Возникают инверсии либо при быстром охлаждении земной поверхности и прилегающего воздуха, либо, наоборот, при стекании тяжелого холодного воздуха по склонам гор в долины. Там этот воздух застаивается и вытесняет более теплый вверх по склонам.

В течение суток температура воздуха не остается постоянной, а непрерывно изменяется. Днем поверхность Земли нагревается и нагревает прилегающий слой воздуха. Ночью Земля излучает тепло, охлаждается, и происходит охлаждение воздуха. Наиболее низкие температуры наблюдаются не ночью, а перед восходом солнца, когда земная поверхность уже отдала все тепло. Аналогично этому наиболее высокие температуры воздуха устанавливаются не в полдень, а около 15 ч.

На экваторе суточный ход температур однообразен, днем и ночью они почти одинаковы. Очень незначительны суточные амплитуды на морях и у морских побережий. А вот в пустынях днем поверхность земли часто нагревается до 50–60 °C, а ночью нередко охлаждается до 0 °C. Таким образом, суточные амплитуды превышают здесь 50–60 °C.

В умеренных широтах наибольшее количество солнечной радиации поступает на Землю в дни летних солнцестояний, т. е. 22 июня в Северном полушарии и 21 декабря в Южном. Однако самым жарким месяцем является не июнь (декабрь), а июль (январь), так как в день солнцестояния огромное количество радиации расходуется на нагревание земной поверхности. В июле (январе) радиация уменьшается, но эта убыль компенсируется сильно нагретой земной поверхностью.

Аналогично этому самый холодный месяц не июнь (декабрь), а июль (январь).

На море, в связи с тем что вода более медленно охлаждается и нагревается, смещение температур еще больше. Здесь самый жаркий месяц август, а самый холодный – февраль в Северном полушарии и соответственно самый жаркий – февраль и самый холодный – август в Южном.

Годовая амплитуда температур в значительной степени зависит от широты места. Так, на экваторе амплитуда в течение года остается почти постоянной и составляет 22–23 °C. Самые высокие годовые амплитуды характерны для территорий, расположенных в средних широтах в глубине континентов.

Любая местность характеризуется также абсолютными и средними температурами. Абсолютные температуры устанавливают путем многолетних наблюдений на метеостанциях. Так, самое жаркое (+58 °C) место на Земле находится в Ливийской пустыне; самое холодное (-89,2 °C) – в Антарктиде на станции «Восток». В Северном полушарии самая низкая (-70,2 °C) температура отмечена в поселке Оймякон в Восточной Сибири.

Средние температуры определяют как среднеарифметическое нескольких показателей термометра. Так, чтобы определить среднесуточную температуру, производят измерения в 1; 7; 13 и 19 ч, т. е. 4 раза в сутки. Из полученных цифр находят среднеарифметическую величину, которая и будет среднесуточной температурой данной местности. Затем находят среднемесячные и среднегодовые температуры как среднеарифметическое среднесуточных и среднемесячных.

На карте можно обозначить точки с одинаковыми значениями температур и провести линии, соединяющие их. Эти линии называют изотермами. Наиболее показательны изотермы января и июля, т. е. самого холодного и самого теплого месяца в году. По изотермам можно определить, как распределяется тепло на Земле. При этом прослеживаются отчетливо выраженные закономерности.

1. Самые высокие температуры наблюдаются не на экваторе, а в тропических и субтропических пустынях, где преобладает прямая радиация.

2. В обоих полушариях температуры понижаются от тропических широт к полюсам.

3. В связи с преобладанием моря над сушей ход изотерм в Южном полушарии более плавный, а амплитуды температур между самым жарким и самым холодным месяцем меньше, чем в Северном.

Расположение изотерм позволяет выделить 7 тепловых поясов:

1 жаркий, расположенный между годовыми изотермами 20 °C в Северном и Южном полушариях;

2 умеренных, заключенных между изотермами 20 и 10 °C самых теплых месяцев, т. е. июня и января;

2 холодных, расположенных между изотермами 10 и 0 °C также самых теплых месяцев;

2 области вечного мороза, в которых температура самого теплого месяца ниже 0 °C.

Границы поясов освещенности, проходящие по тропикам и полярным кругам, не совпадают с границами тепловых поясов.



Изменение рециркуляции дымовых газов. Рециркуляция га­зов широко применяется для расширения диапазона регулирова­ния температуры перегретого пара и позволяет поддержать тем­пературу перегрева пара и при малых нагрузках котлоагрегата. В последнее время рециркуляция дымовых газов получает так­же распространение как метод снижения образования NО х. Приме­няется также рециркуляция дымовых газов в воздушный поток перед горелками, что является более эффективным с точки зре­ния подавления образования N0 x .

Ввод относительно холодных рециркулируемых газов в ниж­нюю часть топки приводит к уменьшению тепловосприятия ра­диационных поверхностей нагрева и к возрастанию температу­ры газов па выходе из топки и в конвективных газоходах, в том числе температуры уходящих газов. Увеличение общего расхода дымовых газов на участке газового тракта до отбора газов на рециркуляцию способствует повышению коэффициентов тепло­передачи и тепловосприятия конвективных поверхностей нагрева.

Рис. 2.29. Изменение температуры пара (кривая 1), темпе­ратуры горячего воздуха (кривая 2) и потерь с уходящими газами (кривая 3) в зависимости от доли рециркуляции ды­мовых газов г.

На рис. 2.29 приведены характеристики котлоагрегата ТП-230-2 при изменении доли рециркуляции газов в нижнюю часть топки. Здесь доля рециркуляции

где V рц - объем газов, отбираемых па рециркуляцию; V r - объем газов в месте отбора на рециркуляцию без учета V рц. Как видно, увеличение доли рециркуляции на каждые 10% приводит к повы­шению температуры уходящих газов на 3-4°С, Vr - на 0,2%, температуры пара - на 15° С, причем характер зависимости почти линейный. Эти соотношения не являются однозначными для всех котлоагрегатов. Их величина зависит от температуры рециркулируемых газов (места забора газов) и метода ввода их. Сброс рециркулируемых газов в верхнюю часть топки не ока­зывает влияния на работу топки, но приводит к значительному снижению температуры газов в области пароперегревателя и как следствие к снижению температуры перегретого пара, хотя объем продуктов сгорания увеличивается. Сброс газов в верхнюю часть топки может быть использован для защиты пароперегревателя от воздействия недопустимо высокой температуры газов и уменьшения шлакования пароперегревателя.

Разумеется, применение рециркуляции газов приводит к сни­жению не только к.п.д. брутто, но и к.п.д. нетто котлоагрегата, так как вызывает увеличение расхода электроэнергии на соб­ственные нужды.

Рис. 2.30. Зависимость потерь тепла с механическим недожегом от температуры горячего воздуха.

Изменение температуры горячего воздуха. Изменение тем­пературы горячего воздуха является результатом изменения режима работы воздухоподогревателя вследствие влияния таких факторов, как изменение температурного напора, коэффициента теплопередачи, расхода газов или воздуха. Повышение темпера­туры горячего воздуха увеличивает, хотя и незначительно, уро­вень тепловыделения в топке. Величина температуры горячего воздуха оказывает заметное влияние на характеристики котло-агрегатов, работающих на топливе с малым выходом летучих. Понижение ^ г.в в этом случае ухудшает условия воспламенения топлива, режим сушки и размола топлива, приводит к понижению температуры аэросмеси на входе в горелки, что может вызвать рост потерь с механическим недожогом (см. рис. 2.30).

. Изменение температуры предварительного подогрева воз­духа. Предварительный подогрев воздуха перед воздухоподогре­вателем применяется для повышения температуры стенки его поверхностей нагрева с целью снижения коррозионного воздей­ствия па них дымовых газов, в особенности при сжигании высокосернистых топлив. Согласно ПТЭ , при сжигании сернистого мазута температура воздуха перед трубчатыми воздухоподогревателями должна быть не ниже 110° С, а перед регенеративными - не ниже 70 е С.

Предварительный подогрев воздуха может осуществляться за счет рециркуляции горячего воздуха на вход дутьевых венти­ляторов, однако при этом происходит снижение экономичности котлоагрегата за счет увеличения расхода электроэнергии на дутье и роста температуры уходящих газов. Поэтому подогрев воздуха выше 50°С целесообразно осуществлять в калориферах, работающих на отборном паре или горячей воде.

Предварительный подогрев воздуха влечет за собой уменьше­ние тепловосприятия воздухоподогревателя вследствие снижения температурного напора, температура уходящих газов и потеря тепла при этом повышаются. Предварительный подогрев воздуха требует также дополнительных затрат электроэнергии на подачу воздуха в воздухоподогреватель. В зависимости от уровня и способа предварительного подогрева воздуха на каждые 10° С предварительного подогрева воздуха к.п.д. брутто изменяется примерно на 0,15-0,25%, а температура уходящих газов - на 3-4,5° С.

Так как доля тепла, отбираемого для предварительного подо­грева воздуха, по отношению к теплопроизводительности котлоагрегатов довольно велика (2-3,5%), выбор оптимальной схе­мы подогрева воздуха имеет большое значение.



Холодный воздух

Рис. 2.31. Схема двухступенчатого подогрева воздуха в калориферах сетевой водой и отборным паром:

1 - сетевые подогреватели; 2 - первая ступень подогрева воздуха сетевой водой отопительной системы; 3 - вторая ступень подогрева воздуха пзром; 4 - насос подачи обратной сетевой воды на калориферы; 5 - сетевая вода для подогре­ва воздуха (схема для летнего периода); 6 - сетевая вода для подогрева воздуха (схема для зимнего периода).



← Вернуться

×
Вступай в сообщество «servizhome.ru»!
ВКонтакте:
Я уже подписан на сообщество «servizhome.ru»