Линейные неравенства. Калькулятор онлайн. Решение неравенств: линейные, квадратные и дробные

Подписаться
Вступай в сообщество «servizhome.ru»!
ВКонтакте:

Как решать линейные неравенства? Для начала неравенство надо упростить: раскрыть скобки, привести подобные слагаемые.

Рассмотрим примеры решения линейных неравенств с одной переменной.

Раскрываем скобки . Если перед скобками стоит множитель, умножаем его на каждое слагаемое в скобках. Если перед скобками стоит знак «плюс», знаки в скобках не меняются. Если перед скобками стоит знак «минус», знаки в скобках меняются на противоположные.

Приводим подобные слагаемые.

Получили неравенство вида ax+b≤cx+d. Переносим неизвестные в одну сторону, известные — в другую с противоположными знаками (можно было сначала перенести неизвестные в одну сторону, известные в другую, а уже потом привести подобные слагаемые).

Обе части неравенства делим на число, стоящее перед иксом. Так как 8 больше нуля, знак неравенства не меняется:

Title="Rendered by QuickLaTeX.com">

Так как , точку -2 отмечаем на числовой прямой закрашенной. от -2, на минус бесконечность.

Так как неравенство нестрогое и точка закрашенная, в ответ -2 записываем с квадратной скобкой.

Чтобы от десятичных дробей перейти к целым числам, можно обе части неравенства умножить на 10 (это не обязательно. Можно работать с десятичными дробями).

Title="Rendered by QuickLaTeX.com">

При умножении обеих частей на положительное число знак неравенства не меняется. Умножать на 10 надо каждое слагаемое. При умножении произведения на 10 используем сочетательное свойство умножения , то есть умножаем на 10 только один множитель.

Раскрываем скобки:

Приводим подобные слагаемые:

Переносим неизвестные в одну сторону, известные — в другую с противоположными знаками:

Обе части неравенства делим на число, стоящее перед иксом. Поскольку -6 — отрицательное число, знак неравенства меняется на противоположный:

Title="Rendered by QuickLaTeX.com">

Сокращаем дробь:

Title="Rendered by QuickLaTeX.com">

Так как неравенство строгое, на числовой прямой -2/3 отмечаем выколотой точкой. Штриховка идёт вправо, на плюс бесконечность:

Неравенство строгое, точка выколотая, поэтому в ответ -2/3 записываем с круглой скобкой:

Title="Rendered by QuickLaTeX.com">

Раскрываем скобки. Если перед произведением двух скобок стоит знак «минус», удобно сначала выполнить умножение, и только потом раскрывать скобки, изменяя знак каждого слагаемого на противоположный:

Title="Rendered by QuickLaTeX.com">

Title="Rendered by QuickLaTeX.com">

Title="Rendered by QuickLaTeX.com">

Title="Rendered by QuickLaTeX.com">

Приводим подобные слагаемые:

Title="Rendered by QuickLaTeX.com">

Неизвестные — в одну сторону, известные — в другую с противоположными знаками:

Title="Rendered by QuickLaTeX.com">

Title="Rendered by QuickLaTeX.com">

Обе части неравенства делим на число, стоящее перед иксом. Так как -10<0, знак неравенства меняется на противоположный:

Поскольку неравенство строгое, 1,6 отмечаем на числовой прямой выколотой точкой. Штриховка от 1,6 идёт влево, на минус бесконечность:

Так как неравенство строгое и точка выколотая, 1,6 в ответ записываем с круглой скобкой.

Теперь можно разбираться, как решаются линейные неравенства a·x+b<0 (они могут быть записаны и с помощью любого другого знака неравенства).

Основной способ их решения заключается в использовании равносильных преобразований, позволяющих прийти при a≠0 к элементарным неравенствам вида x

, ≥), p - некоторое число, которые и являются искомым решением, а при a=0 – к числовым неравенствам вида a

, ≥), из которых делается вывод о решении исходного неравенства. Его мы и разберем в первую очередь.

Также не помешает взглянуть на решение линейных неравенств с одной переменной и с других позиций. Поэтому, мы еще покажем, как можно решить линейное неравенство графически и методом интервалов.

Используя равносильные преобразования

Пусть нам нужно решить линейное неравенство a·x+b<0 (≤, >, ≥). Покажем, как это сделать, используя равносильные преобразования неравенства .

Подходы при этом различаются в зависимости от равенства или неравенства нулю коэффициента a при переменной x . Рассмотрим их по очереди. Причем при рассмотрении будем придерживаться схемы из трех пунктов: сначала будем давать суть процесса, дальше – алгоритм решения линейного неравенства, наконец, приводить решения характерных примеров.

Начнем с алгоритма решения линейного неравенства a·x+b<0 (≤, >, ≥) при a≠0 .

  • Во-первых, число b переносится в правую часть неравенства с противоположным знаком. Это позволяет перейти к равносильному неравенству a·x<−b (≤, >, ≥).
  • Во-вторых, проводится деление обеих частей полученного неравенства на отличное от нуля число a . При этом, если a – положительное число, то знак неравенства сохраняется, а если a - отрицательное число, то знак неравенства изменяется на противоположный. В результате получается элементарное неравенство, равносильное исходному линейному неравенству, оно и является ответом.

Остается разобраться с применением озвученного алгоритма на примерах. Рассмотрим, как с его помощью решаются линейные неравенства при a≠0 .

Пример.

Решите неравенство 3·x+12≤0 .

Решение.

Для данного линейного неравенства имеем a=3 и b=12 . Очевидно, коэффициент a при переменной x отличен от нуля. Воспользуемся соответствующим алгоритмом решения, приведенным выше.

Во-первых, переносим слагаемое 12 в правую часть неравенства, не забывая изменить его знак, то есть, в правой части окажется −12 . В результате приходим к равносильному неравенству 3·x≤−12 .

И, во-вторых, делим обе части полученного неравенства на 3 , так как 3 – число положительное, то знак неравенства не изменяем. Имеем (3·x):3≤(−12):3 , что то же самое x≤−4 .

Полученное элементарное неравенство x≤−4 равносильно исходному линейному неравенству и является его искомым решением.

Итак, решением линейного неравенства 3·x+12≤0 является любое действительное число, меньшее или равное минус четырем. Ответ можно записать и в виде числового промежутка , отвечающего неравенству x≤−4 , то есть, как (−∞, −4] .

Приобретя сноровку в работе с линейными неравенствами, их решения можно будет записывать кратко без пояснений. При этом сначала записывают исходное линейное неравенство, а ниже – равносильные ему неравенства, получающиеся на каждом шаге решения:
3·x+12≤0 ;
3·x≤−12 ;
x≤−4 .

Ответ:

x≤−4 или (−∞, −4] .

Пример.

Укажите все решения линейного неравенства −2,7·z>0 .

Решение.

Здесь коэффициент a при переменной z равен −2,7 . А коэффициент b отсутствует в явном виде, то есть, он равен нулю. Поэтому, первый шаг алгоритма решения линейного неравенства с одной переменной выполнять не нужно, так как перенос нуля из левой части в правую не изменит вид исходного неравенства.

Остается разделить обе части неравенства на −2,7 , не забыв изменить знак неравенства на противоположный, так как −2,7 – отрицательное число. Имеем (−2,7·z):(−2,7)<0:(−2,7) , и дальше z<0 .

А теперь кратко:
−2,7·z>0 ;
z<0 .

Ответ:

z<0 или (−∞, 0) .

Пример.

Решите неравенство .

Решение.

Нам нужно решить линейное неравенство с коэффициентом a при переменной x , равным −5 , и с коэффициентом b , которому отвечает дробь −15/22 . Действуем по известной схеме: сначала переносим −15/22 в правую часть с противоположным знаком, после чего выполняем деление обеих частей неравенства на отрицательное число −5 , изменяя при этом знак неравенства:

В последнем переходе в правой части используется , затем выполняется .

Ответ:

Теперь переходим к случаю, когда a=0 . Принцип решения линейного неравенства a·x+b<0 (знак, естественно, может быть и другим) при a=0 , то есть, неравенства 0·x+b<0 , заключается в рассмотрении числового неравенства b<0 и выяснении, верное оно или нет.

На чем это основано? Очень просто: на определении решения неравенства . Каким образом? Да вот каким: какое бы значение переменной x мы не подставили в исходное линейное неравенство, мы получим числовое неравенство вида b<0 (так как при подстановке любого значения t вместо переменной x мы имеем 0·t+b<0 , откуда b<0 ). Если оно верное, то это означает, что любое число является решением исходного неравенства. Если же числовое неравенство b<0 оказывается неверным, то это говорит о том, что исходное линейное неравенство не имеет решений, так как не существует ни одного значения переменной, которое обращало бы его в верное числовое равенство.

Сформулируем приведенные рассуждения в виде алгоритма решения линейных неравенств 0·x+b<0 (≤, >, ≥) :

  • Рассматриваем числовое неравенство b<0 (≤, >, ≥) и
    • если оно верное, то решением исходного неравенства является любое число;
    • если же оно неверное, то исходное линейное неравенство не имеет решений.

А теперь разберемся с этим на примерах.

Пример.

Решите неравенство 0·x+7>0 .

Решение.

Для любого значения переменной x линейное неравенство 0·x+7>0 обратится в числовое неравенство 7>0 . Последнее неравенство верное, следовательно, любое число является решением исходного неравенства.

Ответ:

решением является любое число или (−∞, +∞) .

Пример.

Имеет ли решения линейное неравенство 0·x−12,7≥0 .

Решение.

Если подставить вместо переменной x любое число, то исходное неравенство обратиться в числовое неравенство −12,7≥0 , которое неверное. А это значит, что ни одно число не является решением линейного неравенства 0·x−12,7≥0 .

Ответ:

нет, не имеет.

В заключение этого пункта разберем решения двух линейных неравенств, оба коэффициента которых равны нулю.

Пример.

Какое из линейных неравенств 0·x+0>0 и 0·x+0≥0 не имеет решений, а какое – имеет бесконечно много решений?

Решение.

Если вместо переменной x подставить любое число, то первое неравенство примет вид 0>0 , а второе – 0≥0 . Первое из них неверное, а второе – верное. Следовательно, линейное неравенство 0·x+0>0 не имеет решений, а неравенство 0·x+0≥0 имеет бесконечно много решений, а именно, его решением является любое число.

Ответ:

неравенство 0·x+0>0 не имеет решений, а неравенство 0·x+0≥0 имеет бесконечно много решений.

Методом интервалов

Вообще, метод интервалов изучается в школьном курсе алгебры позже, чем проходится тема решение линейных неравенств с одной переменной. Но метод интервалов позволяет решать самые разные неравенства, в том числе и линейные. Поэтому, остановимся на нем.

Сразу заметим, что метод интервалов целесообразно применять для решения линейных неравенств с отличным от нуля коэффициентом при переменной x . В противном случае вывод о решении неравенства быстрее и удобнее сделать способом, разобранным в конце предыдущего пункта.

Метод интервалов подразумевает

  • введение функции, отвечающей левой части неравенства, в нашем случае – линейной функции y=a·x+b ,
  • нахождение ее нулей, которые разбивают область определения на промежутки,
  • определение знаков, которые имеют значения функции на этих промежутках, на основе которых делается вывод о решении линейного неравенства.

Соберем эти моменты в алгоритм , раскрывающий как решать линейные неравенства a·x+b<0 (≤, >, ≥) при a≠0 методом интервалов:

  • Находятся нули функции y=a·x+b , для чего решается a·x+b=0 . Как известно, при a≠0 оно имеет единственный корень, который обозначим x 0 .
  • Строится , и на ней изображается точка с координатой x 0 . Причем, если решается строгое неравенство (со знаком < или >), то эту точку делают выколотой (с пустым центром), а если нестрогое (со знаком ≤ или ≥), то ставят обычную точку. Эта точка разбивает координатную прямую на два промежутка (−∞, x 0) и (x 0 , +∞) .
  • Определяются знаки функции y=a·x+b на этих промежутках. Для этого вычисляется значение этой функции в любой точке промежутка (−∞, x 0) , и знак этого значения и будет искомым знаком на промежутке (−∞, x 0) . Аналогично, знак на промежутке (x 0 , +∞) совпадает со знаком значения функции y=a·x+b в любой точке этого промежутка. Но можно обойтись без этих вычислений, а выводы о знаках сделать по значению коэффициента a : если a>0 , то на промежутках (−∞, x 0) и (x 0 , +∞) будут знаки − и + соответственно, а если a>0 , то + и −.
  • Если решается неравенство со знаками > или ≥, то ставится штриховка над промежутком со знаком плюс, а если решаются неравенства со знаками < или ≤, то – со знаком минус. В результате получается , которое и является искомым решением линейного неравенства.

Рассмотрим пример решения линейного неравенства методом интервалов.

Пример.

Решите неравенство −3·x+12>0 .

Решение.

Коль скоро мы разбираем метод интервалов, то им и воспользуемся. Согласно алгоритму, сначала находим корень уравнения −3·x+12=0 , −3·x=−12 , x=4 . Дальше изображаем координатную прямую и отмечаем на ней точку с координатой 4 , причем эту точку делаем выколотой, так как решаем строгое неравенство:

Теперь определяем знаки на промежутках. Для определения знака на промежутке (−∞, 4) можно вычислить значение функции y=−3·x+12 , например, при x=3 . Имеем −3·3+12=3>0 , значит, на этом промежутке знак +. Для определения знака на другом промежутке (4, +∞) можно вычислить значение функции y=−3·x+12 , к примеру, в точке x=5 . Имеем −3·5+12=−3<0 , значит, на этом промежутке знак −. Эти же выводы можно было сделать на основании значения коэффициента при x : так как он равен −3 , то есть, он отрицательный, то на промежутке (−∞, 4) будет знак +, а на промежутке (4, +∞) знак −. Проставляем определенные знаки над соответствующими промежутками:

Так как мы решаем неравенство со знаком >, то изображаем штриховку над промежутком со знаком +, чертеж принимает вид

По полученному изображению делаем вывод, что искомым решением является (−∞, 4) или в другой записи x<4 .

Ответ:

(−∞, 4) или x<4 .

Графическим способом

Полезно иметь представление о геометрической интерпретации решения линейных неравенств с одной переменной. Чтобы его получить, давайте рассмотрим четыре линейных неравенства с одной и той же левой частью: 0,5·x−1<0 , 0,5·x−1≤0 , 0,5·x−1>0 и 0,5·x−1≥0 , их решениями являются соответственно x<2 , x≤2 , x>2 и x≥2 , а также изобразим график линейной функции y=0,5·x−1 .

Несложно заметить, что

  • решение неравенства 0,5·x−1<0 представляет собой промежуток, на котором график функции y=0,5·x−1 располагается ниже оси абсцисс (эта часть графика изображена синим цветом),
  • решение неравенства 0,5·x−1≤0 представляет собой промежуток, на котором график функции y=0,5·x−1 находится ниже оси Ox или совпадает с ней (другими словами, не выше оси абсцисс),
  • аналогично решение неравенства 0,5·x−1>0 есть промежуток, на котором график функции выше оси Ox (эта часть графика изображена красным цветом),
  • и решение неравенства 0,5·x−1≥0 является промежутком, на котором график функции выше или совпадает с осью абсцисс.

Графический способ решения неравенств , в частности линейных, и подразумевает нахождение промежутков, на которых график функции, соответствующей левой части неравенства, располагается выше, ниже, не ниже или не выше графика функции, соответствующей правой части неравенства. В нашем случае линейного неравенства функция, отвечающая левой части, есть y=a·x+b , а правой части – y=0 , совпадающая с осью Ox .

Учитывая приведенную информацию, несложно сформулировать алгоритм решения линейных неравенств графическим способом :

  • Строится график функции y=a·x+b (можно схематически) и
    • при решении неравенства a·x+b<0 определяется промежуток, на котором график ниже оси Ox ,
    • при решении неравенства a·x+b≤0 определяется промежуток, на котором график ниже или совпадает с осью Ox ,
    • при решении неравенства a·x+b>0 определяется промежуток, на котором график выше оси Ox ,
    • при решении неравенства a·x+b≥0 определяется промежуток, на котором график выше или совпадает с осью Ox .

Пример.

Решите неравенство графически.

Решение.

Построим эскиз графика линейной функции . Это прямая, которая убывает, так как коэффициент при x – отрицательный. Еще нам понадобится координата точки его пересечения с осью абсцисс, она является корнем уравнения , который равен . Для наших нужд можно даже не изображать ось Oy . Так наш схематический чертеж будет иметь такой вид

Так как мы решаем неравенство со знаком >, то нас интересует промежуток, на котором график функции выше оси Ox . Для наглядности выделим эту часть графика красным цветом, а чтобы легко определить соответствующий этой части промежуток, подсветим красным цветом часть координатной плоскости, в которой расположена выделенная часть графика, так, как на рисунке ниже:

Интересующий нас промежуток представляет собой часть оси Ox , оказавшуюся подсвеченной красным цветом. Очевидно, это открытый числовой луч . Это и есть искомое решение. Заметим, что если бы мы решали неравенство не со знаком >, а со знаком нестрогого неравенства ≥, то в ответ пришлось бы добавить , так как в этой точке график функции совпадает с осью Ox .y=0·x+7 , что то же самое y=7 , задает на координатной плоскости прямую, параллельную оси Ox и лежащую выше нее. Следовательно, неравенство 0·x+7<=0 не имеет решений, так как нет промежутков, на которых график функции y=0·x+7 ниже оси абсцисс.

А графиком функции y=0·x+0 , что то же самое y=0 , является прямая, совпадающая с осью Ox . Следовательно, решением неравенства 0·x+0≥0 является множество всех действительных чисел.

Ответ:

второе неравенство, его решением является любое действительное число.

Неравенства, сводящиеся к линейным

Огромное количество неравенств с помощью равносильных преобразований можно заменить равносильным линейным неравенством, другими словами, свести к линейному неравенству. Такие неравенства называют неравенствами, сводящимися к линейным .

В школе почти одновременно с решением линейных неравенств рассматривают и несложные неравенства, сводящиеся к линейным. Они представляют собой частные случаи целых неравенств , а именно в их левой и правой части находятся целые выражения, которые представляют собой или линейные двучлены , или преобразуются к ним путем и . Для наглядности приведем несколько примеров таких неравенств: 5−2·x>0 , 7·(x−1)+3≤4·x−2+x , .

Неравенства, которые подобны по виду указанным выше, всегда можно свести к линейным. Это можно сделать путем раскрытия скобок, приведения подобных слагаемых, перестановки слагаемых местами и переноса слагаемых из одной части неравенства в другую с противоположным знаком.

Например, чтобы свести неравенство 5−2·x>0 к линейному, достаточно переставить слагаемые в его левой части местами, имеем −2·x+5>0 . Для сведения второго неравенства 7·(x−1)+3≤4·x−2+x к линейному нужно немного больше действий: в левой части раскрываем скобки 7·x−7+3≤4·x−2+x , после этого приводим подобные слагаемые в обеих частях 7·x−4≤5·x−2 , дальше переносим слагаемые из правой части в левую 7·x−4−5·x+2≤0 , наконец, приводим подобные слагаемые в левой части 2·x−2≤0 . Подобным образом и третье неравенство можно свести к линейному неравенству.

Из-за того, что подобные неравенства всегда можно свести к линейным, некоторые авторы даже называют их тоже линейными. Но все же будем их считать сводящимися к линейным.

Теперь становится понятно, почему подобные неравенства рассматривают вместе с линейными неравенствами. Да и принцип их решения абсолютно такой же: выполняя равносильные преобразования, их можно привести к элементарным неравенствам, представляющим собой искомые решения.

Чтобы решить неравенство подобного вида можно его предварительно свести к линейному, после чего решить это линейное неравенство. Но рациональнее и удобнее поступать так:

  • после раскрытия скобок собрать все слагаемые с переменной в левой части неравенства, а все числа – в правой,
  • после чего привести подобные слагаемые,
  • а дальше – выполнить деление обеих частей полученного неравенства на коэффициент при x (если он, конечно, отличен от нуля). Это даст ответ.

Пример.

Решите неравенство 5·(x+3)+x≤6·(x−3)+1 .

Решение.

Сначала раскроем скобки, в результате придем к неравенству 5·x+15+x≤6·x−18+1 . Теперь приведем подобные слагаемые: 6·x+15≤6·x−17 . Дальше переносим слагаемые с левую часть, получаем 6·x+15−6·x+17≤0 , и снова приводим подобные слагаемые (что приводит нас к линейному неравенству 0·x+32≤0 ) и имеем 32≤0 . Так мы пришли к неверному числовому неравенству, откуда делаем вывод, что исходное неравенство не имеет решений.

Ответ:

нет решений.

В заключение отметим, что существует и масса других неравенств, сводящихся к линейным неравенствам, или к неравенствам рассмотренного выше вида. Например, решение показательного неравенства 5 2·x−1 ≥1 сводится к решению линейного неравенства 2·x−1≥0 . Но об этом будем говорить, разбирая решения неравенств соответствующего вида.

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.
  • Мордкович А. Г. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений (профильный уровень) / А. Г. Мордкович, П. В. Семенов. - 2-е изд., стер. - М.: Мнемозина, 2008. - 287 с.: ил. ISBN 978-5-346-01027-2.

§ 1 Линейные неравенства

На этом занятии мы познакомимся с определением линейного неравенства. Рассмотрим свойства, используемые при решении линейных неравенств. Научимся решать линейные неравенства.

Линейным неравенствомназывают неравенства вида aх+ b > 0 или aх+ b < 0, где переменная или искомая величина, a и b- некоторые числа, причем a ≠ 0.

Так как неравенство может быть строгим и нестрогим, то линейные неравенства могут иметь следующий вид aх+ b ≥0, aх+ b ≤ 0.

Неравенство является линейным, так как х входит в неравенство в первой степени.

Решением линейного неравенства является значение переменной х, при котором неравенство обращается в верное числовое неравенство.

Возьмем неравенство 2х+5 > 0.

Подставим вместо х значение нуль. Получим 5 > 0. Это верное неравенство. Значит, х=0, является решением неравенства 2х+5>0.

Подставив вместо х значение -2,5, получим 0 > 0. Это неверное неравенство. Следовательно, х= -2,5 не является решением линейного неравенства 2х + 5>0. Подбирая значения х, можно найти еще несколько частных решений.

Найти все решения или доказать, что неравенство не имеет решений, означает решить линейное неравенство.

Неравенства, которые имеют одни и те же решения, называются равносильными.

При решении неравенств используют правила, применяя которые можно получить более простые для решения равносильные неравенства.

§ 2 Примеры решения линейных неравенств

Решим неравенство 2х+5>0. И первое правило, которое здесь можно использовать: если член неравенства перенести из одной части неравенства в другую с противоположным знаком, не изменив при этом знак неравенства, то получим равносильное неравенство.

Разделим обе части неравенства на 2. Получим х > -2,5.

Ответ можно записать так: х > -2,5 или в виде числового промежутка

Результатом является положительно-направленный открытый луч.

Открытый, так как наше неравенство строгое, а значит, число -2,5 не включается в числовой промежуток.

Решим другое линейное неравенство 3х - 3 ≥ 7х - 15.

Так же, как при решении линейных уравнений, слагаемые с х перенесем влево, а числовые слагаемые - вправо. Не забудем при переносе поменять знаки слагаемых на противоположные. Исходя из первого правила, знак неравенства при этом не меняется.

Получим 3х - 7х ≥ -15 + 3 или -4х ≥ -12.

Далее используем третье правило: если обе части неравенства умножить или разделить на одно и то жеотрицательное число, изменив при этом знак неравенства на противоположный, то получим равносильное неравенство.

Разделим обе части неравенства на -4.

Получим х ≤ 3.

Покажем решение на оси х.

Результатом является отрицательно-направленный закрытый луч. Закрытый, так как наше неравенство нестрогое, а значит, число 3 включается в числовой промежуток.

Рассмотрим решение более сложного линейного неравенства

Используя второе правило, обе части неравенства умножим на число 15. Число 15 будет общим знаменателем дробей.

Умножим числители на дополнительные множители.

Получим неравенство 5х + 6х - 3 > 30х.

Используя правило один, перенесем слагаемые с х влево, числовые слагаемые - вправо, поменяв знаки при переносе на противоположные.

Получим -19х > 3.

Применим правило три, разделим обе части неравенства на -19. В этом случае надо поменять знак неравенства на противоположный знак.

Покажем решение на оси х.

Результатом является открытый луч, потому что неравенство строгое, а значит, число не включается в числовой промежуток. Это отрицательно-направленный луч.

Решим следующее неравенство

Обе части неравенства умножим на 4.

Получим 5 - 2х ≤ 8х. Перенесем слагаемые с х влево, числовые слагаемые - вправо

2х - 8х ≤ -5 или -10х ≤-5.

Разделим обе части неравенства на -10. Это число отрицательное, по правилу 3 необходимо поменять знак неравенства на противоположный.

Получим х≥0,5.

Покажем решение на оси х.

Результатом является закрытый луч, так как неравенство нестрогое, а значит, число 0,5 включается в числовой промежуток. Это положительно-направленный луч.

При решении неравенств после преобразований может получиться так, что коэффициент при х равен нулю, например, 0∙х> b (или 0∙х< b). Такое неравенство не имеет решений или решением является любое число.

Решим неравенство 2(х + 8) -5х < 4-3х.

Раскроем скобки 2х + 16 - 5х < 4 - 3х.

Используя свойство один, перенесем слагаемые с х влево, а числа- вправо, получим 0∙х < -12. При любом значении х неравенство обращается в неравенство 0 < -12. Это неверное неравенство.

Ответ: нет решения или пустое множество.

Решим другое неравенство х > х - 1.

Перенесем х справа налево, получим 0∙х > -1. При любом значении х неравенство обращается в неравенство 0 > -1. Это верное неравенство.

§ 3 Краткий итог урока

Важно запомнить:

Линейным неравенством называют неравенство вида aх+ b > 0 (или aх+ b < 0, aх+ b ≥ 0, aх+ b≤ 0), где х - переменная, a и b- некоторые числа, причем a≠0.

Решить неравенство - значит найти все его решения или доказать, что решений нет.

При решении линейных неравенств используют правила, позволяющие заменить данное неравенство на более простые для решения равносильные ему неравенства:

1) если член неравенства перенести из одной части неравенства в другую с противоположным знаком, не изменив при этом знак неравенства, то получим равносильное неравенство;

2)если обе части неравенства умножить или разделить на одно и то же положительное число, не изменив при этом знак неравенства, то получим равносильное неравенство;

3) если обе части неравенства умножить или разделить на одно и то же отрицательное число, изменив при этом знак неравенства на противоположный, то получим равносильное неравенство.

Целью применения этих правил является приведение линейного неравенства к виду х > b/a или х < b/a.

Решением линейного неравенства является числовой промежуток. Это может быть открытый или закрытый числовой луч, который может быть как

положительно-направленным, так и отрицательно-направленным.

Список использованной литературы:

  1. Макарычев Ю.Н., Н.Г. Миндюк, Нешков К.И., Суворова С.Б., под редакцией Теляковского С.А. Алгебра: учебн. для 8 кл. общеобразоват. учреждений. - М.: Просвещение, 2013.
  2. Мордкович А.Г. Алгебра. 8 кл.: В двух частях. Ч.1: Учеб. для общеобразоват. учреждений. - М.: Мнемозина.
  3. Рурукин А.Н. Поурочные разработки по алгебре: 8 класс.- М.: ВАКО, 2010.
  4. Алгебра 8 класс: поурочные планы по учебнику Ю.Н. Макарычева, Н.Г. Миндюк, К.И. Нешкова, С.Б. Суворовой / Авт.-сост. Т.Л. Афанасьева, Л.А. Тапилина. -Волгоград: Учитель, 2005.

Линейными называются неравенства левая и правая часть которых представляет собой линейные функции относительно неизвестной величины. К ним относятся, например, неравенства:

2х-1 -х+3; 7х 0;

5 >4 - 6x 9- x < x + 5 .

1) Строгие неравенства: ax +b>0 либо ax + b<0

2) Нестрогие неравенства: ax +b≤0 либо ax + b 0

Разберем такое задание . Одна из сторон параллелограмма составляет 7см. Какой должна быть длина другой стороны, чтобы периметр параллелограмма был больше 44 см?

Пусть искомая сторона составит х см. В таком случае периметр параллелограмма будет представлен (14 + 2х) см. Неравенство 14 + 2х > 44 является математической моделью задачи о периметре параллелограмма. Если в этом неравенстве заменить переменную х на, например, число 16, то получим верное числовое неравенство 14 + 32 > 44. В таком случае говорят, что число 16 является решением неравенства 14 + 2х > 44.

Решением неравенства называют значение переменной, которое обращает его в верное числовое неравенство.

Следовательно, каждое из чисел 15,1; 20;73 выступают решением неравенства 14 + 2х > 44, а число 10, например, не является его решением.

Решить неравенство означает установить все его решения или доказать, что решений не существует.

Формулировка решения неравенства сходна с формулировкой корня уравнения. И все же не принято обозначать «корень неравенства».

Свойства числовых равенств помогали нам решать уравнения. Точно так же свойства числовых неравенств помогут решать неравенства.

Решая уравнение, мы меняем его другим, более простым уравнением, но равнозначным заданному. По схожей схеме находят ответ и неравенства. При смене уравнения на равнозначное ему уравнение пользуются теоремой о перенесении слагаемых из одной части уравнения в противоположную и об умножении обеих частей уравнения на одно и то же отличное от нуля число. При решении неравенства есть существенное различие его с уравнением, которое заключается в том, что всякое решение уравнения можно проверить просто подстановкой в исходное уравнение. В неравенствах такой способ отсутствует, так как бесчисленное множество решений подставить в исходное неравенство не представляется возможным. Поэтому есть важное понятие, вот эти стрелочки <=> - это знак эквивалентных, или равносильных, преобразований. Преобразование называются равносильными, или эквивалентными , если они не изменяет множества решений.

Сходные правила решения неравенств.

Если какое-либо слагаемое переместить из одной части неравенства в другую, заменив при этом его знак на противоположный, то получим неравенство, эквивалентное данному.

Если обе части неравенства умножить (разделить) на одно и то же положительное число, то получим неравенство, эквивалентное данному.

Если обе части неравенства умножить (разделить) на одно и то же отрицательное число, заменив при этом знак неравенства на противоположный, то получим неравенство, эквивалентное данному.

Используя эти правила вычислим нижеследующие неравенства.

1) Разберем неравенство 2x - 5 > 9 .

Это линейное неравенство , найдем его решение и обсудим основные понятия.

2x - 5 > 9 <=> 2x > 14 (5 перенесли в левую часть с противоположным знаком), далее поделили все на 2 и имеем x > 7 . Нанесем множество решений на ось x

Нами получен положительно направленный луч. Отметим множество решений либо в виде неравенства x > 7 , либо в виде интервала х(7; ∞). А что выступает частным решением этого неравенства? Например, x = 10 - это частное решение этого неравенства, x = 12 - это тоже частное решение этого неравенства.

Частных решений много, но наша задача - найти все решения. А решений, как правило, бесчисленное множество.

Разберем пример 2:

2) Решить неравенство 4a - 11 > a + 13 .

Решим его: а переместим в одну сторону, 11 переместим в другую сторону, получим 3a < 24, и в результате после деления обеих частей на 3 неравенство имеет вид a<8 .

4a - 11 > a + 13 <=> 3a < 24 <=> a < 8 .

Тоже отобразим множество a < 8 , но уже на оси а .

Ответ либо пишем в виде неравенства a < 8, либо а (-∞;8), 8 не включается.



← Вернуться

×
Вступай в сообщество «servizhome.ru»!
ВКонтакте:
Я уже подписан на сообщество «servizhome.ru»